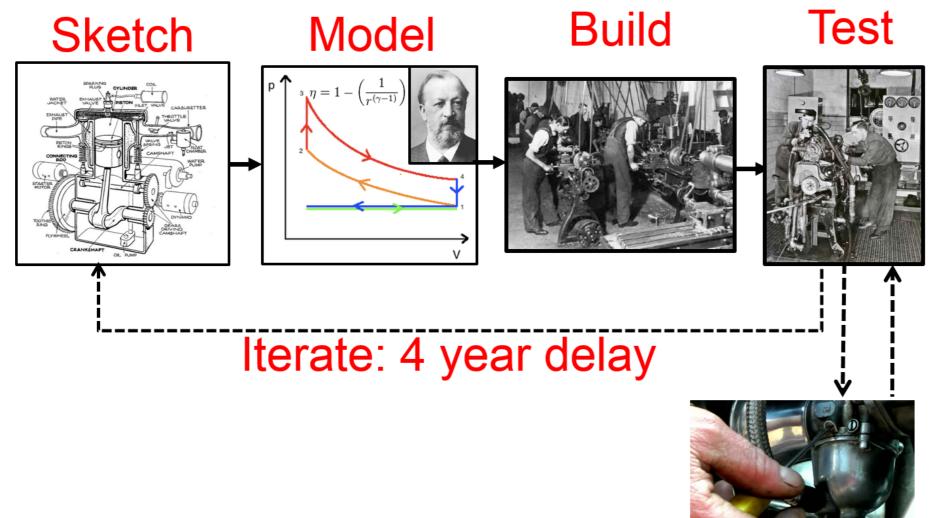


Virtual Engine Calibration Optimization (VECO)

Peter J Maloney, MathWorks Consulting

MathWorks

AUTOMOTIVE CONFERENCE 2015

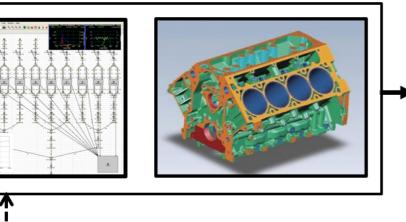

Outline

Calibration After Engine Build Slows Design Iterations By About 4 Years

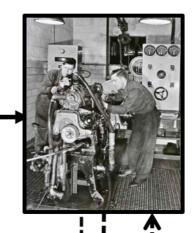
- 4 Year Design Iteration Delay Can Be Removed With
 - GT-POWER co-simulation (Simulink)
 - Direct optimization of engine calibration maps (StateFlow)
 - Rapid calibration development (Parallel Computing)

What Was Engine Calibration?

Engine's Performance
Cannot Be Judged
Until It Is Calibrated

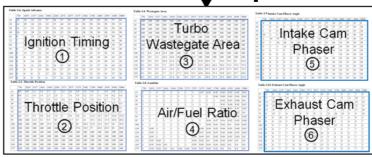


What Is <u>Typical</u> Engine Calibration Now?


Model and Design

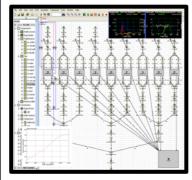
Build

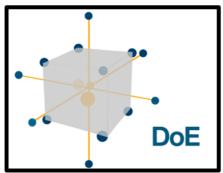
Test

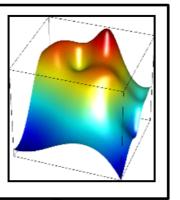


Engine's Performance
Cannot Be Judged
Until It Is Calibrated

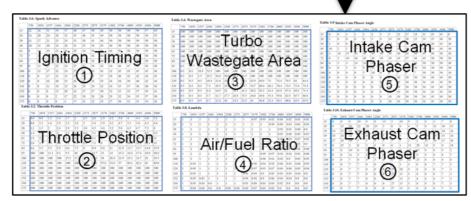
Iterate: 4 year delay

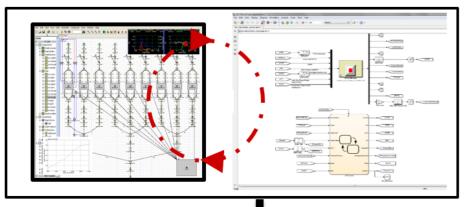



Engineer

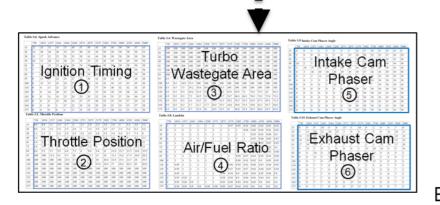

What Is Advanced Engine Calibration Now?

Model, Experiment, Fit, Optimize




3 day wait on 32 Core Cluster

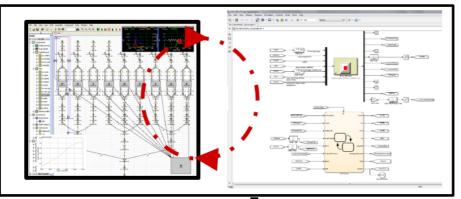
МатhWorks Поттие Calibrate 1350 Numbers via DoE, RSM, Numerical Optimization

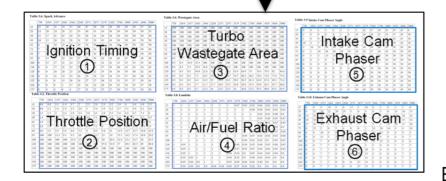


How Do We Speed Up Engine Design?

Model and Calibrate

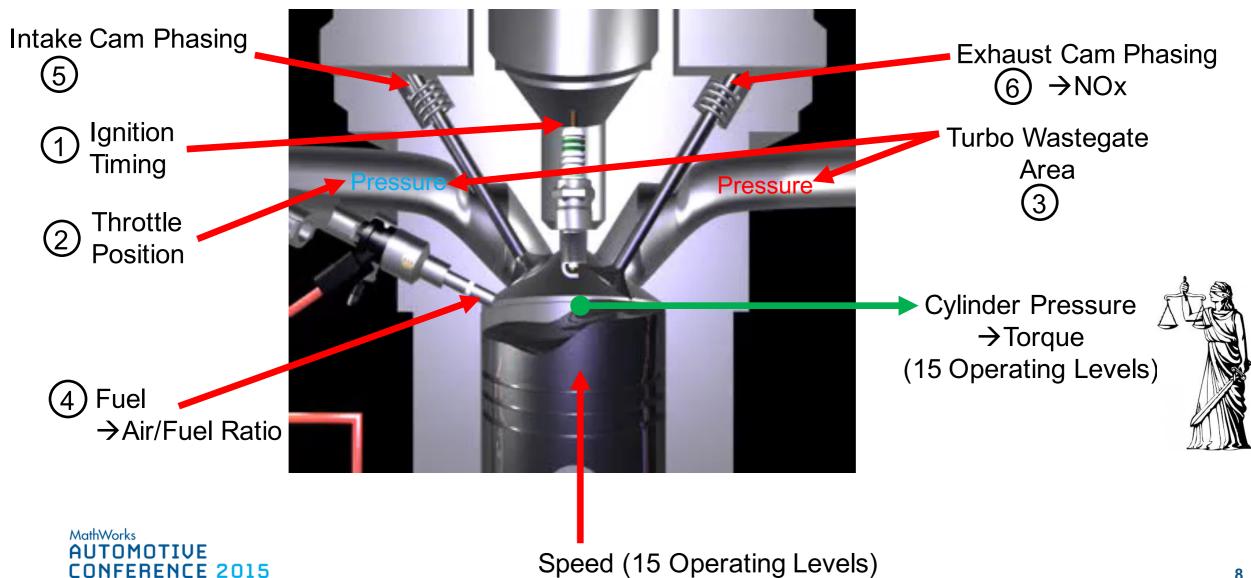
18 day wait on 1 Core




How Do We Speed Up Engine Design?

Model and Calibrate

2hr wait 225 Cores



Base Engine Calibration Problem Addressed by VECO

Calibrations Produced By VECO Process

Table 3.2. Throttle Position

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	0.6	0.8	1.1	1.4	1.7	2	2.3	2.6	2.9	3.2	3.6	4	4.4	4.8	5.2
26	0.8	1.2	1.6	1.9	2.3	2.6	3	3.4	3.9	4.2	4.7	5.1	5.6	6.2	6.6
38	1.1	1.5	2	2.4	2.9	3.3	3.8	4.3	4.8	5.2	5.8	6.3	6.7	7.3	8
49	1.4	1.	1.5	3	3,5	4 1	4.6	5.1	5.7	6.2	6.8	7.4	8	8.7	9.3
61	1.9	2.	1.1	3 6	4.2	4.8	5	6.1	6.7	7.4		8.0	9 4	102	11
72	2.8	3.5	3.9	4.6	5.2	3.9	6.5	7.3	8	8.8	9.6	10.4	11.2	12.1	13
84	6.6	5.5	5.5	5.9	6.6	7.5	8	8.9	9.8	11	11.9	12.7	13.7	14.8	15.9
95	100	100	11.1	9.1	9.5	10	10.5	11.7	13	14	15.1	16.2	17.4	18.8	20.2
106	100	100	100	100	25.3	17.2	16.	11.5	20	20.4	21.9	23.1	24.7	28	29.5
118	100	100	100	100	100	100	150	100	97.6	54.9	57	69.1	82.3	85	89.8
129	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
141	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
152	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
164	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
175	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Table 3.4. Wastegate Area

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
26	100	100	100	100	100	.00	100	100	100	100	100	100	100	100	100
38	100	100	100	100	100	00	100	100	po	1 0	100	100	100	100	100
49	100	100	100	100	100	100	L	100	100	100	100	100	100	100	100
61	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
72	100	10	100	100	100	100	100	100	100	100	10	100	100	100	100
84	100	1 0	00	00	100	100	100	100	100	10	100	100	100	100	100
95	0.3	55.7	100	100	100	V	100		160	100	100	100	\checkmark	Ç	100
106	0.3	0.3	18.9	53.3	100	100	100	100	100	100	100	100	100	100	100
118	0.3	0.3	3.5	19.2	36.6	50.9	60.2	81.5	100	100	100	100	100	100	100
129	0.3	0.3	0.3	10.4	21.6	319	407	58.1	63.9	69.9	74	76.4	79.5	82	84.4
141	0.3	0.3	0.3	7.3	16.5	24.	35.9	44.7	54.7	60.4	66.1	70.4	74.5	75.4	75.4
152	0.3	0.3	0.3	6.4	14.3	22	30.4	41.3	50.2	56.3	61.4	64.9	67.4	69.1	71.4
164	0.3	0.3	0.3	5.7	11.7	17.7	26.9	35.5	44.8	49.8	55.4	59.8	62.5	65.7	68.8
175	0.3	0.3	0.3	6.7	12.4	16	24.3	32.5	41	46.8	52.4	56.3	60.6	63.5	65.9

Table 3.8. Lambda

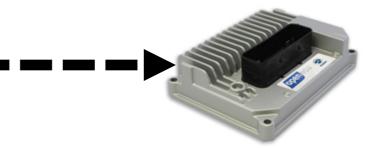

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	1	1	1	1	1	1	1	1	0.97	0.95	0.92	0.86	0.82	0.81	0.81
26	1	1	1	1	1	1	1	1	1	1	0.96	0.89	0.84	0.81	0.81
38	1	1	1	1	1	1	1	1	1	1	1	0.92	0.91	0.88	0.8
49	1	1	1	1	1	1	1	1	1	1	1	0.95	0.88	0.85	0.87
61	1	1	1	1 -	1		-1	1	1	1		0.96	1 93	0.87	0.85
72	1	1	1	1	r/	-	1		N I	1	? ?	0 92	09	0.92	0.9
84	1	1	1	N.	h /				1	1	0.0	a 95	19	.91	0.88
95	1	1	1	1	1	1	1	1	1	0.99	0.97	0.94	0.92	0.91	0.88
106	1	1	1	1	1	1	1	1	1	0.98	0.91	0.92	0.9	0.85	0.85
118	1	0.95	1	1	1	1	(2	1 1	0.96	0.94	0.92	0.86	0.85	0.88	0.85
129	1	0.95	1	1	1	1	1	「丿	0.97	0.93	0.87	0.84	0.86	0.85	0.84
141	1	0.95	1	1	1	1	1	0.96	0.94	0.9	0.85	0.84	0.85	0.84	0.8
152	1	0.95	0.85	1	1	1	1	0.96	0.92	0.9	0.86	0.84	0.84	0.8	0.8
164	1	0.95	0.84	0.8	1	1	1	0.93	0.89	0.84	0.84	0.82	0.8	0.8	0.8
175	1	0.94	0.84	0.8	0.8	0.96	0.96	0.89	0.87	0.84	0.82	0.8	0.8	0.8	0.8

Table 3.9 Intake Cam Phaser Angle

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	0	0	1	1	2	2	3	3	22	17	18	21	25	45	0
26	1	0	0	0	0	3	8	19	20	20	25	19	47	48	50
38	1	0	0	1	4	25	44	44	49	2+	48	40	49	45	48
49	10	2	5	35	4	11		47	49	49 (4)	49	49	48	48
61	4	10	35	44	49	49	49	49	48	49	48	45	49	49	48
72	0	3	48	48	48	48	49	49	49	47	48	49	50	50	50
84	0	5	4	14	14	1	19	13	٥	46	46	50	50	50	48
95	0	0	3	9	8	14	1:	•	5	**	50	50	50	50	50
106	0	0	0	0	5	10	0	0	T	9	7	50	50	50	49
118	0	0	0	0	0	0	0	0	50	50	50	50	49	49	50
129	0	0	0	0	0	0	0	49	49	50	50	36	45	49	50
141	0	0	0	0	0	0	0	ر لا	49	50	50	36	45	49	50
152	0	0	0	0	0	0	0	47	49	50	50	36	45	49	50
164	0	0	0	0	0	0	0	49	49	50	50	36	45	49	50
175	0	0	0	0	0	0	0	49	49	50	50	36	45	49	50

Table 3.10. Exhaust Cam Phaser Angle

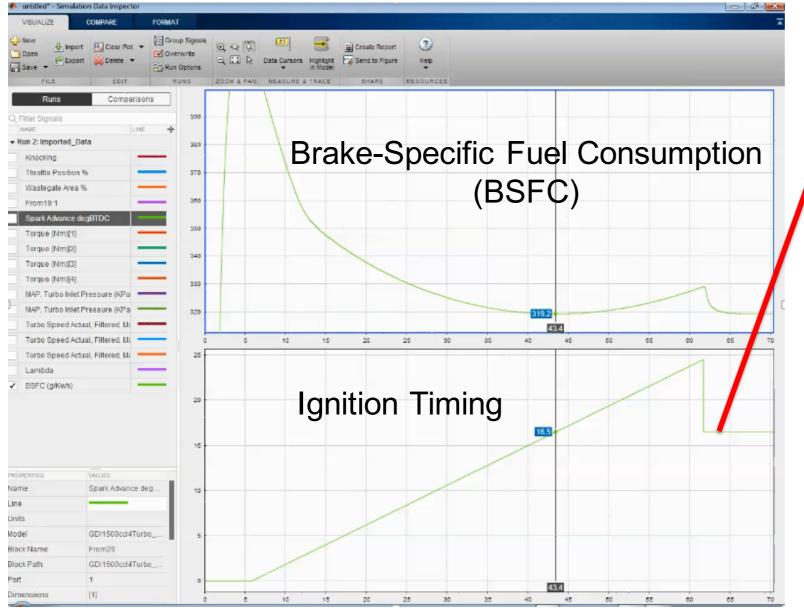
	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	0	0	9	10	9	8	13	3	10	9	2	9	4	7	0
26	9	12	20	22	20	23	3	0	6	6	3	0	11	10	13
38	14	23	22	30-	20	—	5	Ć	₽		6	6	V)	10	18
49	18	28	32	XΙ	9	0	5	5		₹.	<i>•</i>	.5	5	15	16
61	27	28	10	5	5	5	5	5	7	2		11	16	17	20
72	0	23	2	0	5	6	0	0	1	13	20	16	9	9	18
84	0	8	10	6) L	0	1	0	15	15	9	8	9	2
95	0	0	11	5		0	12	4.	SE	24	9	9	8	8	7
106	0	0	7	0	4	3	, ~	0	25	21	25	8	8	8	6
118	0	0	7	7	0	0		9	3	5	8	8	7	7	3
129	0	0	7	7	0	0	0	27	20	9	8	8	8	7	3
141	0	0	7	7	0	0	O	27	15	5	8	8	8	7	3
152	0	0	7	7	0	0		27	15	5	8	8	8	7	3
164	0	0	7	7	0	0	0	27	15	5	8	8	8	7	3
175	0	0	7	7	0	0	0	27	15	5	8	8	8	7	3

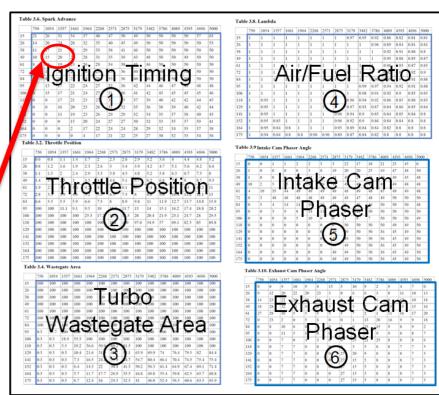
Engine Controller

15 Engine Speeds

X

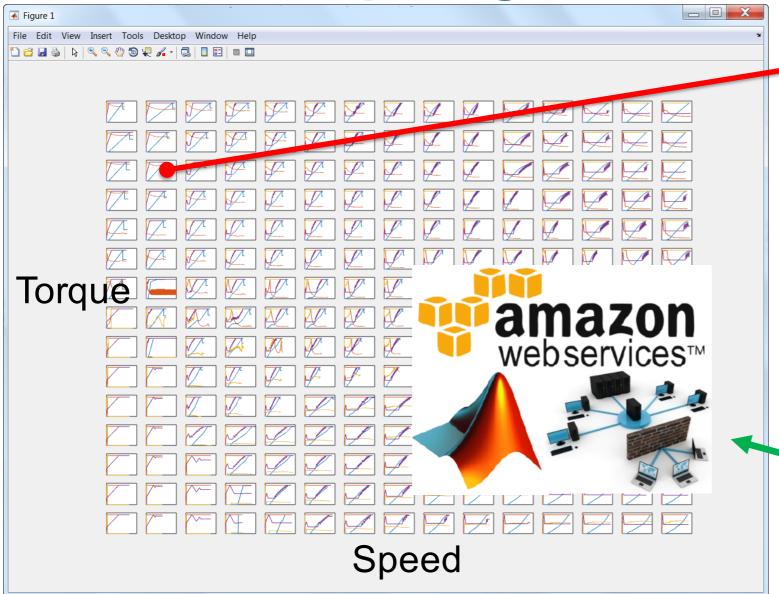
15 Engine Torques

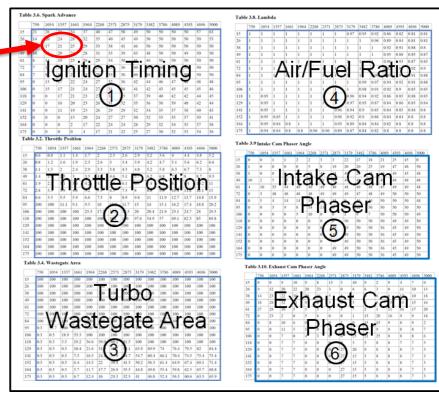

X


6 Variables

1350 Calibration Values

Example VECO At One Operating Point





1.5L SI DOHC I4 GDI Dual VCP Turbo Application Example

Parallel Computing Used for 225x Speed-Up

*Automated Base Engine Calibration Maps In 2hrs!

Summary

Engine Calibration Is a Major Bottleneck in Engine Design Process

- VECO Process For SI Engine Removes Base Calibration Bottleneck
- VECO Is Practical For Everyday Use Due To Parallel Computing

Questions?