NOKIA

Rapid Prototyping Using
DL Coder

Who Are We?

fi B

Esa-Matti Turtinen Joonas Jarviluoma

R&D Manager, SoC Prototyping, Nokia Oulu Prototype Engineer, SoC, Nokia Oulu
« M.Sc., Electrical Engineering * M.Sc,, Electrical Engineering

* 31 yearsold « 26 yearsold

* About 6 years of experience working on ¢ Just graduated
different roles related to SoC .

Currently working on FPGA lab testing
development

2 ©Nokia 2016 NOKIA

Nokia vision L% L

Expanding the human possibilities ‘
of the conneated worla

NOKIA

Nokia has

neen at the forefront of

every Tunc

amental change in how

we communicate and connect

NOKIA

A financially strong leader

Revenue® R&D spend™ Net cash* Employees

€20.0bn €4.5bn €70.0bn 106,000

5 ©Nokia2016 * Combined Nokia and Alcatel-Lucent 2015 numbers according to Nokia accounting policies, non-IFRS NOKIA

R&D professionals Services World leading Bell Labs
professionals intellectual

property Nokia Technologies
(patent families)

~40,000 ~40,000 ~31,000

Challenge

MATLAB =] MATLAB
N ::> N
Verilog Verilog
M HDL Coder?

FPGA Prototyping + SW testing FPGA Prototypmg + SW testing

Would it be possible to

left-shift this and
— trial algorithms in
HW earlier?
»time »time

7 © Nokia 2016 NOKIA

FPGA Prototyping Flow Timeline
Proportional Estimation in Generic HLS flow

HLS Flow

Product
ready

Possible costly and
time-consuming

ASIC 3
re-spins t

FPGA Prototyping in HLS Flow ;
Time save in SW

development

Product
ready

FPGA Verification

9 ©Nokia 2016 NOKIA

HDL Coder Flow

From Algorithm to FPGA Programmable Model

HLS

55+1.5.5 >

765 >1.5

5]

MATLAB
‘comments
VATLAB
T Link to) ﬂ
E i) @ MATLAB U";
! design mmber

% — MATLAB ot
= ==z Turfte, Format: 1.5.5 7 1.5.5 > 1.&.5 & 1.5.5]
& "
2 ! 3
B =
15, (6_otgaet
=
g

Co-simulation

10 © Nokia 2016

ed(16£00014, 13);

set (to_integer (sub_cast

+ G_offses (channelIdD+d)), 1, 11, S, fm):

- 1), 13);

FPGA-in-the-loop

Logic Synthesis

NOKIA

Example Design for HDL Coder Flow
Scaling and Power Limitation Block

Arithmetic logic (multipliers, adders etc.)
Loop structures

State-Machine

Look-up tables for dB conversions

I-data
Rounding and
Saturation
L k Q-data

1Q-data output

1Q-data input

v

pay T 3 " * Registers for state control and buffering
R o M * Variable indexing
Saturation I | dB conversion

Configurable parameters

Gain Correction 6@
Control

11 © Nokia 2016 NOKIA

Classic Division of Models
Algorithm and RTL

Algorithm Model RTL Model
7\

e » Hand-written based on algorithm
[abcd-e,....27] ‘c" [x]) \\‘ [(a-b)2.c?(d-e)2..... (227 mo d e |
| |

[a,ab,....b] | [x] | [a2.a2,b?,...,b7

Object-Oriented
Programming

 ASIC optimized performance

\ /
\ /
[a*b,c*d,d-e,...,a] \ (X) / [a*b,c*d,d-e,...,a?

Parallel Operations ® Thorough Verification reqUired

MATLAB operations
optimized for [1 { 1

5 A . . Properties Methods Properties Methods
m a XI m I Z e d S I m u | a t I O n Eye Color Speak Eye Color: Blue Speak
Height Walk Height: 165cm Walk
Weight i ight: 55k i
p e rfo r m a n C e Nationgality Si‘ép Nali\:Jv:':\%t;: givegdish Sitp

12 © Nokia 2016 NOKIA

Division in HDL Coder Workflow
Algorithm and RTL

Algorithm Model: RTL Model:
« Written in MATLAB function « Rapid generation from Simulink (or
blocks/System Objects and MATLAB) model

Simulink library components
» Verification focus moves towards

* Has to be written from HW algorithm
perspective to generate feasible
RTL « Cosimulation verificates RTL

against algorithm model
* "Is as good as the algorithm”

13 © Nokia 2016 NOKIA

RTL Generation
Example 1: Algorithm without Data Type Definition

if (run)

y N

N N
o o

Ny W N ke

o W

NN NN
n Oy Oy Oy Oy Oy Oy

5]

N NN
'} 1 N O
W N =0

NN NN
J

J

) Oy o

N

J
[+

NN N NN

0

14 © Nokia 2016

mk_tmp |

$Multiplsed
mul I = data_I*mk_tmp;
mul_Q = data_Q*mk_tmp:

ranches, format: 1.0.15 * 0.4.14

IF run = *1°' THEN

--'<S837>:1:41"'

(output format is set automatically by matlab)

3:
--Multiplied branches, format: 1.0.15 * 0.4.14 -> 1.4.29 (output format is set automatically by matlab)

-=1<837>:1:44"

mul temp := data_I_signed * signed(resize(Gk_unsigned,
IF (mul_temp(34) = '0') AND (mul_ temp(33) /= '0') THEN
mul I := "01121111131111112233311111123112111111";

19)):

Two multipliers

ELSIF (mul_temp(34) = '1') AND (mul_temp (33)

mul I := "1000000000000000000000000000000000";
ELSE

mul I := mul_temp (33 DOWNIO 0):

.

- Two multiplexers
-—1<837>:1:45"
mul temp O := data_Q signed * signed(resize (Gk_unsigned, 19)):
IF (mul_temp 0(34) = '0') AND (mul_temp 0(33) /= '0') THEN

mal Q := "0111111111111113131113111131311131111111";
ELSIF (mul_temp 0(34) = '1') AND (mul_temp 0(33) '1') THEN

mul Q := "1000000000000000000000000000000000";
ELSE

mul Q := mul temp O0(33 DOWNIO 0):
END IF;

NOKIA

RTL Generation
Example 2: Algorithm with Data Type Definition

L= if (run)

42 - mk_tmp (= fi(Gk, 1, 19, 14);
43 EMultiplied : 1.0.15 * 0.4.14 -> 1.4.29 (output format i=s set automatically by matlab)
44 - mul I = data_I*mk_tmp;
45 - mul Q = data_Q*mk_tmp;
46
258 IF run = '1' THEN
259 -=1<837>:1:41"'
260 -=1<837>:1:42"'
261 mk_tmp := signed(resize (Gk_unsigned, 19));
262 --Multiplied branches, format: 1.0.15 * 0.4.14 -> 1.4.29 (output format i1is set automatically by matlab)
263 -=1<837>:1:44"'
264 mul I := data_I_signed * mk tmp; <— . .
265 ~-1<537>:1:45") Two multipliers
266 mul Q := data_Q signed * mk_tmp;

15 © Nokia 2016 NOKIA

RTL Resource Utilization Comparison
FPGA Prototype Vs. Original ASIC Targeted Model

Flip-Flops
100%

Clock Buffers LUTs
DPS48s == Memory LUTs
Block RAMs 1/0s
Original model ——Generated model

16 © Nokia 2016

» Original hand-written
model, targeted for ASIC,
had slightly more signals
and routing logic
compared to generated
model!

* Generated model tested

succesfully in FPGA-in-
the-loop configuration

NOKIA

ASIC Optimization

Area and Timing Results
Further timing optimization

Total could have been performed Negative slack
150% (Work focused on FPGA 5000
prototyping)

100% 4000

30Q0

50%
2000
'k 1000 Na
0 ____ 1 -
. .. Clock 1/0 Clock
Sequential Combinational

Original model

@ Generated model
Original model
- Generated model
ASIC optimized generated model

ASIC optimized generated model

17 © Nokia 2016 NOKIA

FPGA Prototyping Flow Timeline
Proportional Estimation in HDL Coder Flow

FPGA Prototyping with HLS Flow

Time save in SW
development
SoC
FPGA Verification ASIC '\J
FPGA Prototyping with MathWorks HLS Flow

f‘ ~ Time save in SW
-#, Timesavein geyelopment
| verification SoC
ready
FPGA Verification ASIC Q‘—J

18 © Nokia 2016 NOKIA

Time

Conclusion
Benefits and Shortages

Benefits: Shortages:

 For feasible HDL generation and
FPGA prototyping, algorithms
have to be written strictly from

« Human readable HDL output

Design work and verification focus moves on

higher level HW perspective
« Good synthesis results in both FPGA and * No trivial way to generate generic
ASIC cases variables to create scalable Ips
(due to Model-Based Design flow)
* Distinct GUI

Support for 3rd party tools and FPGA boards

19 © Nokia 2016 NOKIA

Future Work

Algorithm design work change towards RTL design style required
» C(lose co-operation with algorithm and RTL designers is vital
« Algorithm simulation speed might be critical

IP generation with generic interfaces
« Was left out of scope in this study

 Needs to be verified

Projects ongoing

20 © Nokia 2016 NOKIA

21 © Nokia 2016 NOKIA

