
Chapter 13

Mandelbrot Set

Fractals, topology, complex arithmetic and fascinating computer graphics.

Benoit Mandelbrot was a Polish/French/American mathematician who has
spent most of his career at the IBM Watson Research Center in Yorktown Heights,
N.Y. He coined the term fractal and published a very influential book, The Fractal
Geometry of Nature, in 1982. An image of the now famous Mandelbrot set appeared
on the cover of Scientific American in 1985. This was about the time that computer
graphical displays were becoming widely available. Since then, the Mandelbrot set
has stimulated deep research topics in mathematics and has also been the basis for
an uncountable number of graphics projects, hardware demos, and Web pages.

To get in the mood for the Mandelbrot set, consider the region in the complex
plane of trajectories generated by repeated squaring,

zk+1 = z2k, k = 0, 1, ...

For which initial values z0 does this sequence remain bounded as k → ∞? It is
easy to see that this set is simply the unit disc, |z0| <= 1, shown in figure 13.1.
If |z0| <= 1, the sequence zk remains bounded. But if |z0| > 1, the sequence is
unbounded. The boundary of the unit disc is the unit circle, |z0| = 1. There is
nothing very difficult or exciting here.

The definition is the Mandelbrot set is only slightly more complicated. It
involves repeatedly adding in the initial point. The Mandelbrot set is the region in
the complex plane consisting of the values z0 for which the trajectories defined by

zk+1 = z2k + z0, k = 0, 1, ...

remain bounded at k → ∞. That’s it. That’s the entire definition. It’s amazing
that such a simple definition can produce such fascinating complexity.
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Figure 13.1. The unit disc is shown in red. The boundary is simply the
unit circle. There is no intricate fringe.
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Figure 13.2. The Mandelbrot set is shown in red. The fringe just outside
the set, shown in black, is a region of rich structure.
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Figure 13.3. Two trajectories. z0 = .25-.54i generates a cycle of length
four, while nearby z0 = .22-.54i generates an unbounded trajectory.

Figure 13.2 shows the overall geometry of the Mandelbrot set. However, this
view does not have the resolution to show the richly detailed structure of the fringe
just outside the boundary of the set. In fact, the set has tiny filaments reaching into
the fringe region, even though the fringe appears to be solid black in the figure. It
has recently been proved that the Mandelbrot set is mathematically connected, but
the connected region is sometimes so thin that we cannot resolve it on a graphics
screen or even compute it in a reasonable amount of time.

To see how the definition works, enter

z0 = .25-.54i

z = 0

into Matlab. Then use the up-arrow key to repeatedly execute the statement

z = z^2 + z0

The first few lines of output are

0.2500 - 0.5400i

0.0209 - 0.8100i

-0.4057 - 0.5739i

0.0852 - 0.0744i

0.2517 - 0.5527i

...

The values eventually settle into a cycle

0.2627 - 0.5508i

0.0156 - 0.8294i

-0.4377 - 0.5659i

0.1213 - 0.0446i
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0.2627 - 0.5508i

...

This cycle repeats forever. The trajectory remains bounded. This tells us that the
starting value value, z0 = .25-.54i, is in the Mandelbrot set. The same cycle is
shown in the left half of figure 13.3.

On the other hand, start with

z0 = .22-.54i

z = 0

and repeatedly execute the statement

z = z^2 + z0

You will see

0.2200 - 0.5400i

-0.0232 - 0.7776i

-0.3841 - 0.5039i

0.1136 - 0.1529i

0.2095 - 0.5747i

...

Then, after 24 iterations,

...

1.5708 - 1.1300i

1.4107 - 4.0899i

-14.5174 -12.0794i

6.5064e+001 +3.5018e+002i

-1.1840e+005 +4.5568e+004i

The trajectory is blowing up rapidly. After a few more iterations, the floating point
numbers overflow. So this z0 is not in the Mandelbrot set. The same unbounded
trajectory is shown in the right half of figure 13.3. We see that the first value,
z0 = .25-.54i, is in the Mandelbrot set, while the second value, z0 = .22-.54i,
which is nearby, is not.

The algorithm doesn’t have to wait until z reachs floating point overflow. As
soon as z satisfies

abs(z) >= 2

subsequent iterations will essential square the value of |z| and it will behave like

22
k

.
Try it yourself. Put these statements on one line.

z0 = ...

z = 0;

while abs(z) < 2

z = z^2+z0;

disp(z),

end
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Use the up arrow and backspace keys to retrieve the statement and change z0 to
different values near .25-.54i. If you have to hit <ctrl>-c to break out of an
infinite loop, then z0 is in the Mandelbrot set. If the while condition is eventually
false and the loop terminates without your help, then z0 is not in the set.

The number of iterations required for z to escape the disc of radius 2 provides
the basis for showing the detail in the fringe. Let’s add an iteration counter to the
loop. A quantity we call depth specifies the maximum interation count and thereby
determines both the level of detail and the overall computation time. Typical values
of depth are several hundred or a few thousand.

z0 = ...

z = 0;

k = 0;

while abs(z) < 2 && k < depth

z = z^2+z0;

k = k + 1;

end

The maximum value of k is depth. If the value of k is less than depth, then z0

is outside the set. Large values of k indicate that z0 is in the fringe, close to the
boundary. If k reaches depth then z0 is declared to be inside the Mandelbrot set.

Here is a small table of iteration counts s z0 ranges over complex values near
0.22-0.54i. We have set depth = 512.

0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245

-0.520 512 512 512 512 512 512 44 512 512

-0.525 512 512 512 512 512 36 51 512 512

-0.530 512 512 512 512 35 31 74 512 512

-0.535 512 512 512 512 26 28 57 512 512

-0.540 512 139 113 26 24 73 56 512 512

-0.545 512 199 211 21 22 25 120 512 512

-0.550 33 25 21 20 20 25 63 85 512

-0.555 34 20 18 18 19 21 33 512 512

-0.560 62 19 17 17 18 33 162 40 344

We see that about half of the values are less than depth; they correspond to points
outside of the Mandelbrot set, in the fringe near the boundary. The other half of
the values are equal to depth, corresponding to points that are regarded as in the
set. If we were to redo the computation with a larger value of depth, the entries
that are less than 512 in this table would not change, but some of the entries that
are now capped at 512 might increase.

The iteration counts can be used as indices into an RGB color map of size
depth-by-3. The first row of this map specifies the color assigned to any points on
the z0 grid that lie outside the disc of radius 2. The next few rows provide colors
for the points on the z0 grid that generate trajectories that escape quickly. The
last row of the map is the color of the points that survive depth iterations and so
are in the set.
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The map used in figure 13.2 emphasizes the set itself and its boundary. The
map has 12 rows of white at the beginning, one row of dark red at the end, and
black in between. Images that emphasize the structure in the fringe are achieved
when the color map varies cyclicly over a few dozen colors. One of the exercises
asks you to experiment with color maps.

Figure 13.4. Improving resolution.

Array operations.
Our script mandelbrot_recap shows how Matlab array arithmetic operates a grid
of complex numbers simultaneously and accumulates an array of iteration counters,
producing images like those in figure 13.4 The code begins by defining the region
in the complex plane to be sampled. A step size of 0.05 gives the coarse resolution
shown on the right in the figure.

x = 0: 0.05: 0.80;

y = x’;

The next section of code uses an elegant, but tricky, bit of Matlab indexing
known as Tony’s Trick. The quantities x and y are one-dimensional real arrays of
length n, one a column vector and the other a row vector. We want to create a two-
dimensional n-by-n array with elements formed from all possible sums of elements
from x and y.

zk,j = xk + yji, i =
√
−1, k, j = 1, ..., n

This can be done by generating a vector e of length n with all elements equal to one.
Then the quantity x(e,:) is a two-dimensional array formed by using x, which is the
same as x(1,:), n times. Similarly, y(:,e) is a two-dimensional arrray containing
n copies of the column vector y.
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n = length(x);

e = ones(n,1);

z0 = x(e,:) + i*y(:,e);

If you find it hard to remember Tony’s indexing trick, the function meshgrid

does the same thing in two steps.

[X,Y] = meshgrid(x,y);

z0 = X + i*Y;

Now initialize two more arrays, one for the complex iterates and one for the
counts.

z = zeros(n,n);

c = zeros(n,n);

Here is the Mandelbrot iteration repeated depth times. With each iteration we also
keep track of the iterates that are still within the circle of radius 2.

depth = 32;

for k = 1:depth

z = z.^2 + z0;

c(abs(z) < 2) = k;

end

We are now finished with z. The actual values of z are not important, only the
counts are needed to create the image. Our grid is small enough that we can actually
print out the counts c.

c

The results are

c =

32 32 32 32 32 32 11 7 6 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 9 6 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 7 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 27 5 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 30 6 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 13 7 4 3 3 3 2 2 2

32 32 32 32 32 32 32 32 14 7 5 3 3 2 2 2 2

32 32 32 32 32 32 32 32 32 17 4 3 3 2 2 2 2

32 32 32 32 32 32 32 16 8 18 4 3 3 2 2 2 2

32 32 32 32 32 32 32 11 6 5 4 3 3 2 2 2 2

32 32 32 32 32 32 32 19 6 5 4 3 2 2 2 2 2

32 32 32 32 32 32 32 23 8 4 4 3 2 2 2 2 2

32 32 32 19 11 13 14 15 14 4 3 2 2 2 2 2 2

22 32 12 32 7 7 7 14 6 4 3 2 2 2 2 2 2

12 9 8 7 5 5 5 17 4 3 3 2 2 2 2 2 1

32 7 6 5 5 4 4 4 3 3 2 2 2 2 2 1 1

17 7 5 4 4 4 4 3 3 2 2 2 2 2 2 1 1
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We see that points in the upper left of the grid, with fairly small initial z0 values,
have survived 32 iterations without going outside the circle of radius two, while
points in the lower right, with fairly large initial values, have lasted only one or two
iterations. The interesting grid points are in between, they are on the fringe.

Now comes the final step, making the plot. The image command does the
job, even though this is not an image in the usual sense. The count values in c are
used as indices into a 32-by-3 array of RGB color values. In this example, the jet

colormap is reversed to give dark red as its first value, pass through shades of green
and yellow, and finish with dark blue as its 32-nd and final value.

image(c)

axis image

colormap(flipud(jet(depth)))

Exercises ask you to increase the resolution by decreasing the step size, thereby
producing the other half of figure 13.4, to investigate the effect of changing depth,
and to invesigate other color maps.

Mandelbrot GUI
The exm toolbox function mandelbrot is your starting point for exploration of the
Mandelbrot set. With no arguments, the statement

mandelbrot

provides thumbnail icons of the twelve regions featured in this chapter. The state-
ment

mandelbrot(r)

with r between 1 and 12 starts with the r-th region. The statement

mandelbrot(center,width,grid,depth,cmapindx)

explores the Mandelbrot set in a square region of the complex plane with the speci-
fied center and width, using a grid-by-grid grid, an iteration limit of depth, and
the color map number cmapindx. The default values of the parameters are

center = -0.5+0i

width = 3

grid = 512

depth = 256

cmapindx = 1

In other words,

mandelbrot(-0.5+0i, 3, 512, 256, 1)

generates figure 13.2, but with the jets color map. Changing the last argument
from 1 to 6 generates the actual figure 13.2 with the fringe color map. On my
laptop, these computations each take about half a second.

A simple estimate of the execution time is proportional to
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grid^2 * depth

So the statement

mandelbrot(-0.5+0i, 3, 2048, 1024, 1)

could take

(2048/512)2 · (1024/256) = 64

times as long as the default. However, this is an overestimate and the actual exe-
cution time is about 11 seconds.

Most of the computational time required to compute the Mandelbrot set is
spent updating two arrays z and kz by repeatedly executing the step

z = z.^2 + z0;

j = (abs(z) < 2);

kz(j) = d;

This computation can be carried out faster by writing a function mandelbrot_step

in C and creating as a Matlab executable or c-mex file. Different machines and
operating systems require different versions of a mex file, so you should see files
with names like mandelbrot_step.mexw32 and mandelbrot_step.glnx64 in the
exm toolbox.

The mandelbrot gui turns on the Matlab zoom feature. The mouse pointer
becomes a small magnifying glass. You can click and release on a point to zoom by
a factor of two, or you can click and drag to delineate a new region.

The mandelbrot gui provides several uicontrols. Try these as you read along.

The listbox at the bottom of the gui allows you to select any of the predefined
regions shown in the figures in this chapter.

depth. Increase the depth by a factor of 3/2 or 4/3.

grid. Refine the grid by a factor of 3/2 or 4/3. The depth and grid size are
always a power of two or three times a power of two. Two clicks on the depth or
grid button doubles the parameter.

color. Cycle through several color maps. jets and hots are cyclic repetitions
of short copies of the basic Matlab jet and hot color maps. cmyk cycles through
eight basic colors, blue, green, red, cyan, magenta, yellow, gray, and black. fringe
is a noncyclic map used for images like figure 13.2.

exit. Close the gui.

The Mandelbrot set is self similar. Small regions in the fringe reveal features
that are similar to the original set. Figure 13.6, which we have dubbed “Mandelbrot
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Figure 13.5. The figures in this chapter, and the predefined regions in our
mandelbrot program, show these regions in the fringe just outside the Mandelbrot
set.

Junior”, is one example. Figure 13.7, which we call the “‘Plaza”, uses our flag

colormap to reveal fine detail in red, white and blue.
The portion of the boundary of the Mandelbrot set between the two large,

nearly circular central regions is known as “The Valley of the Seahorses”. Fig-
ure 13.8 shows the result of zooming in on the peninsula between the two nearly
circular regions of the set. The figure can be generated directly with the command

mandelbrot(-.7700-.1300i,0.1,1024,512)

We decided to name the image in figure 13.9 the “West Wing” because it resembles
the X-wing fighter that Luke Skywalker flies in Star Wars and because it is located
near the leftmost, or far western, portion of the set. The magnification factor is a
relatively modest 104, so depth does not need to be very large. The command to
generate the West Wing is

mandelbrot(-1.6735-0.0003318i,1.5e-4,1024,160,1)

One of the best known examples of self similarity, the “Buzzsaw”, is shown in
figure 13.11. It can be generated with

mandelbrot(0.001643721971153+0.822467633298876i, ...
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4.0e-11,1024,2048,2)

Taking width = 4.0e-11 corresponds to a magnification factor of almost 1011. To
appreciate the size of this factor, if the original Mandelbrot set fills the screen
on your computer, the Buzzsaw is smaller than the individual transistors in your
machine’s microprocessor.

We call figure 13.12 “Nebula” because it reminds us of interstellar dust. It is
generated by

mandelbrot(0.73752777-0.12849548i,4.88e-5,1024,2048,3)

The next three images are obtained by carefully zooming on one location. We
call them the “Vortex”, the “Microbug”, and the “Nucleus”.

mandelbrot(-1.74975914513036646-0.00000000368513796i, ...

6.0e-12,1024,2048,2)

mandelbrot(-1.74975914513271613-0.00000000368338015i, ...

3.75e-13,1024,2048,2)

mandelbrot(-1.74975914513272790-0.00000000368338638i, ...

9.375e-14,1024,2048,2)

The most intricate and colorful image among our examples is figure 13.16,
the “Geode”. It involves a fine grid and a large value of depth and consequently
requires a few minutes to compute.

mandelbrot(0.28692299709-0.01218247138i,6.0e-10,2048,4096,1)

These examples are just a tiny sampling of the structure of the Mandelbrot
set.

Further Reading
We highly recommend a real time fractal zoomer called “XaoS”, developed by
Thomas Marsh, Jan Hubicka and Zoltan Kovacs, assisted by an international group
of volunteers. See

http://wmi.math.u-szeged.hu/xaos/doku.php

If you are expert at using your Web browser and possibly downloading an
obscure video codec, take a look at the Wikipedia video

http://commons.wikimedia.org/wiki/ ...

Image:Fractal-zoom-1-03-Mandelbrot_Buzzsaw.ogg

It’s terrific to watch, but it may be a lot of trouble to get working.

Recap
%% Mandelbrot Chapter Recap

% This is an executable program that illustrates the statements
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% introduced in the Mandelbrot Chapter of "Experiments in MATLAB".

% You can access it with

%

% mandelbrot_recap

% edit mandelbrot_recap

% publish mandelbrot_recap

%

% Related EXM programs

%

% mandelbrot

%% Define the region.

x = 0: 0.05: 0.8;

y = x’;

%% Create the two-dimensional complex grid using Tony’s indexing trick.

n = length(x);

e = ones(n,1);

z0 = x(e,:) + i*y(:,e);

%% Or, do the same thing with meshgrid.

[X,Y] = meshgrid(x,y);

z0 = X + i*Y;

%% Initialize the iterates and counts arrays.

z = zeros(n,n);

c = zeros(n,n);

%% Here is the Mandelbrot iteration.

depth = 32;

for k = 1:depth

z = z.^3 + z0;

c(abs(z) < 2) = k;

end

%% Create an image from the counts.

c

image(c)

axis image

%% Colors

colormap(flipud(jet(depth)))
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Exercises

13.1 Explore. Use the mandelbrot gui to find some interesting regions that, as far
as you know, have never been seen before. Give them your own names.

13.2 depth. Modify mandelbrot_recap to reproduce our table of iteration counts
for x = .205:.005:.245 and y = -.520:-.005:-.560. First, use depth = 512.
Then use larger values of depth and see which table entries change.

13.3 Resolution. Reproduce the image in the right half of figure 13.4.

13.4 Big picture. Modify mandelbrot_recap to display the entire Mandelbrot set.

13.5 Color maps. Investigate color maps. Use mandelbrot_recap with a smaller
step size and a large value of depth to produce an image. Find how mandelbrot

computes the cyclic color maps called jets, hots and sepia. Then use those maps
on your image.

13.6 p-th power. In either mandelbrot_recap or the mandelbrot gui, change the
power in the Mandelbrot iteration to

zk+1 = zpk + z0

for some fixed p ̸= 2. If you want to try programming Handle Graphics, add a
button to mandelbrot that lets you set p.

13.7 Too much magnification. When the width of the region gets to be smaller than
about 10−15, our mandelbrot gui does not work very well. Why?

13.8 Spin the color map. This might not work very well on your computer because it
depends on what kind of graphics hardware you have. When you have an interesting
region plotted in the figure window, bring up the command window, resize it so that
it does not cover the figure window, and enter the command

spinmap(10)

I won’t try to describe what happens – you have to see it for yourself. The effect is
most dramatic with the “seahorses2” region. Enter

help spinmap

for more details.
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Figure 13.6. Region #2, “Mandelbrot Junior”. The fringe around the
Mandelbrot set in self similar. Small versions of the set appear at all levels of
magnification.

Figure 13.7. Region #3, “Plaza”, with the flag color map.
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Figure 13.8. Region #4. “Valley of the Seahorses”.

Figure 13.9. Region #5. Our “West Wing” is located just off the real axis
in the thin far western portion of the set, near real(z) = -1.67.
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Figure 13.10. Region #6. “Dueling Dragons”.

Figure 13.11. Region #7. The “Buzzsaw” requires a magnification factor
of 1011 to reveal a tiny copy of the Mandelbrot set.
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Figure 13.12. Region #8. “Nebula”. Interstellar dust.

Figure 13.13. Region #9. A vortex, not far from the West Wing. Zoom
in on one of the circular “microbugs” near the left edge.
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Figure 13.14. Region #10. A 1013 magnification factor reveals a “mi-
crobug” within the vortex.

Figure 13.15. Region #11. The nucleus of the microbug.
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Figure 13.16. Region #12. “Geode”. This colorful image requires a 2048-
by-2048 grid and depth = 8192.


