主要内容

鲁棒稳定性、鲁棒性能与Mu分析

这个例子展示了如何使用鲁棒控制工具箱™来分析和量化反馈控制系统的鲁棒性。它还提供了与mu分析和mussv函数。

系统描述

图1显示了闭环系统的框图。工厂模型 P 不确定和工厂产量 y 在有干扰的情况下必须保持小 d 和测量噪声 n

图1:闭环系统的鲁棒性分析

干扰抑制和噪声不敏感性由性能目标量化

P 1 + K P - 1 W d 1 + P K - 1 W n

在哪里 W d W n 权重函数是否反映的频率内容 d n .在这里 W d 在低频率是大的吗 W n 在高频率下是很大的。

Wd =补足重量的东西(。4,100 .15点);Wn =补足重量的东西(0.5,20100);bodemag (Wd,“b——”Wn,“g——”)标题(“性能权重函数”)传说(输入扰动的“测量噪声”

图中包含一个轴对象。轴对象包含两个类型为line的对象。这些对象表示输入干扰,测量噪声。

创建不确定植物模型

不确定植物模型P是一个轻阻尼的二阶系统,分母系数具有参数不确定性,显著的频率相关的未建模动力学超过6 rad/s。其数学模型如下:

P 年代 1 6 年代 2 + 0 1 6 年代 + k 1 + W u 年代 δ 年代

的参数k的不确定性约为40%,其名义值为16。在装置输入处,频率相关的不确定性假定在低频时约为30%,在10 rad/s时上升到100%,超过此值则更大。构建不确定植物模型P通过创造和组合不确定的元素:

k =尿素的(“k”, 16岁,“比例”, 30);δ= ultidyn (“δ”[1],“SampleStateDim”4);吴=补足重量的东西(0.3、10、20);P = tf(16,[1 0.16 k]) * (1+Wu*delta);

设计一个控制器

我们使用了实例“在保持开环特性的同时提高稳定性”所设计的控制器。这里使用的植物模型恰好是上面创建的不确定植物模型的名义价值。为了完整起见,我们重复用于生成控制器的命令。

K_PI = pid (0.8);K_rolloff = tf(1,[1/20 1]);Kprop = K_PI * K_rolloff;[negK, ~,伽马]= ncfsyn (P.NominalValue -Kprop);K = -negK;

结束循环

使用连接建立闭环系统的不确定模型,如图1所示。命名进出每个区块的信号,并让它们进入连接做连接:

P.u =“了”; 警察=“yP”;K.u =“英国”;K.y=“yK”;S1 = sumblk ('uP = yK + D');S2 = sumblk ('uK = - yp - N'); Wn.u=“不”;Wn。y =“N”;Wd.u=' d ';Wd。y =' D ';闭环=连接(磷、钾,S1, S2, Wn, Wd, {' d '“不”},“yP”);

的变量闭环是一个具有两个输入和一个输出的不确定系统。它取决于两个不确定因素:实参数k以及一个不确定的线性时不变动态元素δ

闭环
闭环=不确定连续时间状态空间模型,1输出,2输入,11状态。模型不确定性由以下块组成:delta:不确定1x1 LTI,峰值增益= 1,1次出现k:不确定实数,名义值= 16,变异性=[-30,30]%,1次出现NominalValue“查看标称值”,get(ClosedLoop)“查看所有属性”,以及“ClosedLoop. properties”。“不确定性”与不确定因素相互作用。

鲁棒稳定性分析

经典边缘allmargin对环路内的非结构化增益/相位变化具有良好的稳定性和鲁棒性。

所有保证金(P.名义价值*K)
ans =结构体字段:[6.2984 10.9082] GMFrequency: [1.6108 15.0285] phasmargin: [79.9812 -99.6214 63.7590] PMFrequency: [0.4467 3.1469 5.2304] DelayMargin: [3.1253 1.4441 0.2128] DMFrequency: [0.4467 3.1469 5.2304

对于所有的值,闭环系统是否保持稳定kδ在上述范围内?回答这个问题需要更复杂的分析robstab函数。

[stabmarg, wcu] = robstab(闭环);stabmarg
stabmarg =结构体字段:LowerBound: 1.4668 UpperBound: 1.4697 CriticalFrequency: 5.8933

的变量stabmarg给出了上下限鲁棒稳定性裕度,用来衡量未来的不确定性kδ反馈回路在变得不稳定之前可以容忍。例如,0.8的差值表明,只要指定的不确定性水平的80%就会导致不稳定。这里的边际是大约1.5,这意味着闭环将保持稳定高达150%的指定不确定性。

的变量wcu包含kδ最接近导致不稳定的标称值。

wcu
wcu=结构体字段:δ:[1x1不锈钢]k:23.0548

我们可以把这些值代入闭环并验证这些值是否导致闭环系统不稳定。

总体安排e极(usubs(闭环,wcu))
ans =15×1复杂-1.2591+0.0000i-0.2094+0.0000i-0.0248+0.0000i-0.0083+0.0115i-0.0083-0.0115i-0.0200+0.0000i-0.0000+0.0059i-0.0000-0.0059i-0.0033+0.0000i-0.0016+0.0023i⋮

注意,不稳定闭环极点的固有频率为stabmarg。CriticalFrequency

stabmarg。CriticalFrequency
ans = 5.8933 e + 00

与Mu分析的联系

结构奇异值,或 μ 的数学工具robstab计算鲁棒稳定裕度。如果您习惯于结构化奇异值分析,您可以使用mussv函数直接计算作为频率函数的mu,并重现上述结果。这个函数mussv是所有健壮性分析命令的底层引擎。

使用mussv,我们首先提取(δM)不确定闭环模型的分解闭环,在那里δ为(归一化)不确定元素的块对角矩阵。的第三个输出参数lftdataBlkStruct的块对角结构δ可以直接使用mussv

[M,Delta,BlkStruct]=lftdata(ClosedLoop);

对于鲁棒稳定性分析,只有与不确定性相关的通道被使用。的行/列大小δ,选择适当的列和行.记住δ对应于的列,反之亦然。因此,的列维数δ用于指定

szDelta =大小(δ);M11公路= M (1: szDelta (2), 1: szDelta (1));

在其最简单的形式中,mu分析是在有限的频率网格上进行的。选择一个对数间隔频率点的矢量,并评估的频率响应M11公路通过这个频率网格。

50ω= logspace(1、2);M11_g =朋友(M11公路ω);

计算μ(M11公路)在这些频率处,并绘制出结果的上下边界:

mubnds = mussv (M11_g BlkStruct,“年代”); LinMagopt=Bodeopions;LinMagopt.PhaseVisible=“关闭”;LinMagopt。XLim = [1e-1 1e2];LinMagopt。MagUnits =“abs”;bodeplot (mubnds (1, 1), mubnds(1、2),LinMagopt);包含(的频率(rad /秒));ylabel (“μ上/下界限”); 头衔(“稳健稳定边际Mu图(倒比例尺)”);

图中包含一个轴对象。轴对象包含两个类型为line的对象。这些对象表示untitled1, untitled2。

图3:鲁棒稳定边际图(倒比例尺)

鲁棒稳定裕度是结构奇异值的倒数。因此上界mussv变为稳定裕度的下限。进行这些转换并找到mu上限峰值处(即稳定裕度最小处)的失稳频率:

[pkl, wPeakLow] = getPeakGain (mubnds(1、2);(北大)= getPeakGain (mubnds (1,1));SMfromMU。下界= 1 /北大;SMfromMU。UpperBound = 1 / pkl;SMfromMU。CriticalFrequency = wPeakLow;

比较SMfromMU的界限stabmarg计算与robstab.这些价值大致一致robstab利润率略有下降。这是因为robstab采用一种比频率网格更复杂的方法,可以准确地计算出峰值在频率。

stabmarg
stabmarg =结构体字段:下界:1.4668e+00上界:1.4697e+00临界频率:5.8933e+00
SMfromMU
SMfromMU =结构体字段:LowerBound: 1.4735e+00 UpperBound: 1.4735e+00 CriticalFrequency: 5.9636e+00

鲁棒性能分析

为不确定元素的标称值kδ时,闭环增益小于1:

getPeakGain (ClosedLoop.NominalValue)
ans = 9.8137 e-01

这表示控制器K满足抗干扰和噪声不敏感的目标。但是,在模型的不确定性面前,这种名义上的表现能够维持吗?这个问题最好用robgain

选择= robOptions (“显示”“上”); [perfmarg,wcu]=robgain(ClosedLoop,1,opt);
计算峰值…完成百分比:100/100性能等级1对建模不确定性不具有鲁棒性。--增益在建模不确定性的38.6%内保持在1以下。--存在相当于建模不确定性38.7%的不良扰动。--该扰动导致频率为0.128 rad/秒时增益为1。

答案是否定的:robgain发现的扰动仅为规定不确定度的40%,从而使闭环增益达到1。

getPeakGain(通常为关闭回路,wcu),1e-6)
ans = 1.0000 e + 00

这表明在100%的规定不确定度下,闭环增益将超过1。这通过计算最坏情况增益得到证实:

wcg = wcgain(闭环)
wcg =结构体字段:下限:1.5767e+00上限:1.5799e+00临界频率:5.9578e+00

最坏情况下的增益约为1.6。分析表明,当控制器K满足标称装置的干扰抑制和噪声不敏感性目标,它不能在指定的装置不确定性水平上保持这一性能水平。

另请参阅

|||

相关的例子

更多关于