主要内容

为自定义直流电机定制和扩展Simscape库

使用符号数学工具箱为Simscape库创建一个基于方程的自定义组件。

介绍

符号数学工具箱提供了一种灵活的方式,从第一工程原则在任何空间维度发展模型。你可以建立稳态或瞬态物理的数学模型。

您可以开发和解决所需的方程,以代表您的组件所需的物理;并在输入之间执行您自己的降阶模型映射x和一定数量的利息f (x)。

在这里f是自定义分量,它可以以如下形式表示控制方程:

  • 数学公式

  • ode和pde的数值模拟

本示例中的步骤如下

  • 使用参数化Simscape组件symReadSSCVariables

  • 使用以下方法为Simscape组件定义自定义方程diff

  • 用解析的方法求解稳态方程解决潜艇

  • 利用MATLAB软件对时变方程进行数值求解matlabFunction数值

  • 使用symWriteSSC

要运行此示例,您必须拥有Simscape和Symbolic Math Toolbox的许可证。

直流电机模型

直流电动机是一种把电能转换成机械能,反之亦然的装置。直流电机的原理图如下(左图)。模块模拟直流电机提供Simscape电™(右图),这是一个可选产品Simscape

在本例中,我们将使用控制常微分方程(ode)推导直流电机的降阶模型表示。对于直流电动机,电压和电流由基尔霍夫定律导出,机械转矩的公式由牛顿定律导出。使用这些方程,我们可以实现自定义的参数化Simscape组件。

J t w t Ki t 博士 w t l t t + R t V t Kb w t

参数化Simscape组件

导入模板组件的参数和变量

假设您有一个Simscape组件MyMotorTemplate.ssc在您的当前文件夹或在MATLAB的默认路径。这个分量还没有方程。模板记录了将用于开发我们的电机的参数和变量。您可以使用类型以提供该模板的预览。

类型MyMotorTemplate.ssc
这个块实现了一个自定义的直流电机节点p = foundation.electric .electrical;% +:left n = foundation.electric .electric;% -:left r = foundation.mechanical.rotation .rotation;% R:右c =基础。机械的。旋转的。旋转的;% C:右端参数R ={3.9, '欧姆'};%电枢电阻L = {0.000012, 'H'};%电枢电感J = {0.000001, 'kg*m^2'};%惯性Dr = {0.000003, '(N*m*s)/rad'};%转子阻尼Ki = {0.000072, '(N*m)/A'};%扭矩常数Kb = {0.000072, '(V*s)/rad'}; %Back-emf constant end variables torque = {0, 'N*m'}; %Total Torque tau = {0, 'N*m'}; %Electric Torque w = {0, 'rad/s'}; %Angular Velocity I = {0, 'A'}; %Current V = {0, 'V'}; %Applied voltage Vb = {0, 'V'}; %Counter electromotive force end function setup if(R<=0) error('Winding resistance must be greater than 0.'); end end branches torque : r.t -> c.t; % Through variable tau from r to c I : p.i -> n.i; % Through variable i from p to n end equations w == r.w -c.w; % Across variable w from r to c V == p.v -n.v; % Across variable v from p to n end end

从模板组件中读取参数的名称、值和单元。

[parNames, parValues, parUnits] = symReadSSCParameters(“MyMotorTemplate”);

以向量的形式显示参数、它们的值和相应的单位。

vpa ([parNames;parValues;parUnits), 10)
ans =

博士 J Kb Ki l R 0.000003 0.000001 0.000072 0.000072 0.000012 3.9 1 N 牛顿——力的物理单位。 米——长度的物理单位。 年代 秒——时间的物理单位。 rad 弧度-平面角度的物理单位。 1 公斤 千克——质量的物理单位。 米——长度的物理单位。 2 1 V 伏特-电势的物理单位。 年代 秒——时间的物理单位。 rad 弧度-平面角度的物理单位。 1 N 牛顿——力的物理单位。 米——长度的物理单位。 一个 安培-电流的物理单位。 H 亨利-电感的物理单位。 Ω 欧姆-电阻的物理单位。

将参数名称添加到MATLAB工作区中信谊函数。参数在工作区中显示为符号变量。您可以使用在工作区中列出变量。

信谊(parNames)对称
你的符号变量是:Dr jkb Ki L R ans

读取并显示组件变量的名称。使用ReturnFunction同时将这些变量转换为该变量的函数t

[varFuns, varValues, varUnits] = symReadSSCVariables(“MyMotorTemplate”“ReturnFunction”,真正的);vpa ([varFuns;varValues;varUnits), 10)
ans =

t V t Vb t τ t 转矩 t w t 0 0 0 0 0 0 一个 安培-电流的物理单位。 V 伏特-电势的物理单位。 V 伏特-电势的物理单位。 1 N 牛顿——力的物理单位。 米——长度的物理单位。 1 N 牛顿——力的物理单位。 米——长度的物理单位。 1 rad 弧度-平面角度的物理单位。 年代 秒——时间的物理单位。

将变量名添加到MATLAB工作区中信谊函数。变量在工作区中以符号函数的形式出现。使用。验证您已经声明了所有必需的符号变量和函数信谊

信谊(varFuns)对称
符号变量是Dr J Ki R Vb t扭矩I Kb lv和w

为Simscape组件定义自定义方程

定义直流电机建模的方程组

机械转矩的微分方程定义为eq1eq2我(t)表示当前和w (t)角速度。

q =转矩+ J*diff(w(t)) = -Dr*w(t) + tau(t)
eq1 (t) =

J t w t + 转矩 t τ t - 博士 w t

eq = tau(t) = Ki*I(t)
eq2 =
                 
                  
                   
                    
                     
                      
                       
                        τ
                      
                      
                       
                       
                        
                         
                          t
                        
                       
                       
                      
                     
                     
                     
                      
                       
                        Ki
                       
                       
                       
                        
                         
                        
                        
                         
                         
                          
                           
                            t
                          
                         
                         
                        
                       
                      
                     
                    
                   
                  
                 

电压和电流的方程是eq3eq4V (t)Vb (t)分别表示施加的电压和反电动势。

e3 = L*diff(I(t)) + R*I(t) = V(t) - Vb(t)
eq3 =

l t t + R t V t - Vb t

eq4 = Vb(t) == Kb*w(t)
eq4 =
                 
                  
                   
                    
                     
                      
                       
                        Vb
                      
                      
                       
                       
                        
                         
                          t
                        
                       
                       
                      
                     
                     
                     
                      
                       
                        Kb
                       
                       
                       
                        
                         
                          w
                        
                        
                         
                         
                          
                           
                            t
                          
                         
                         
                        
                       
                      
                     
                    
                   
                  
                 

我们可以一起列出。这里,电机的转矩与电流成正比。

方程式=公式([eq1;eq2;eq3;eq4])
方程式=

J t w t + 转矩 t τ t - 博士 w t τ t Ki t l t t + R t V t - Vb t Vb t Kb w t

提取方程的左右两边。

操作数=孩子(方程式);operList =[操作数{:}];lh = operList(1:2:结束)
lh =1×4单元阵列{[J * diff (w (t), t…} {[tau(t)]} {L*diff(I(t), t…]} {(Vb (t))}
rhs = operList(2:2:结束)
rhs =1×4单元阵列{(τ(t) - * w (t)博士]}{[Ki *我(t)]} {[V (t) - Vb (t)]} {(Kb * w (t))}

第二个和第四个方程定义值τ(t)Vb (t).将四个方程的方程组简化为两个方程的方程组,将这些值代入第一个和第三个方程。

式(1)= subs(eqs(1), lhs(2), rhs(2))
公式=

J t w t + 转矩 t Ki t - 博士 w t

式(2)= subs(eqs(3), lhs(4), rhs(4))
公式=

J t w t + 转矩 t Ki t - 博士 w t l t t + R t V t - Kb w t

方程”。
ans =

J t w t + 转矩 t Ki t - 博士 w t l t t + R t V t - Kb w t

在解方程之前,用参数的数值代入参数。此外,使用V (t) = 1

= subs(equation, [parNames,V(t)], [parValues,1]);equation = subs(equation, torque, 0);vpa(方程。',10)
ans =

0.000001 t w t 0.000072 t - 0.000003 w t 0.000012 t t + 3.9 t 1.0 - 0.000072 w t

解析解稳态方程

解稳态方程。

为此,请删除函数的时间依赖性w (t)我(t).例如,用符号变量替换它们ww2

信谊ww2equations_steady = subs(equation, [w(t),I(t)], [ww,ii]);结果=解决(ww, equations_steady ii);steadyStateW = vpa (result.ww, 10)
steadyStateW =
                 
                  
                   
                    6.151120734
                  
                 
steadyStateI = vpa (result.ii, 10)
steadyStateI =
                 
                  
                   
                    0.2562966973
                  
                 

数值求解时变方程

利用MATLAB软件对该符号表达式进行数值模拟matlabFunction数值

创建一个有效的输入数值从符号方程。使用odeToVectorField建立了描述动态系统的MATLAB程序 dY dt f t Y 在初始条件下 Y t 0 Y 0

[vequations, tVals] = odeToVectorField(equation)
vfEquations =

147573952589676412928 1770887431076117 - 6 Y 2 - 2877692075498690052096 Y 1 8854437155380585 83010348331692984375 Y 1 1152921504606846976 - 27670116110564328125 Y 2 9223372036854775808

tVals =

w

M = matlabFunction (vfEquations“var”, {“t”“Y”})
M =function_handle与价值:@ (t、Y) [Y(1)。* (-3.25 e + 5) - Y (2) * 6.0 + 8.333333333333333 e + 4; Y(1)。* 7.2 e + 1 Y(2) * 3.0]。

利用初始条件求解微分方程w (0) = 0和我(0) = 0

解= ode45(M,[0 3],[0 0])
解决方案=结构体字段:解决方案:'ode45' extdata: [1x1 struct] x: [0 2.414e -09 1.4468e-08 7.4754e-08 3.7618e-07 1.8833e-06…y: [2x293775 double] stats: [1x1 struct] data: [1x1 struct]

在以下时间点评估解决方案t=(0.5, 0.75, 1)。第一个值是当前值我(t)第二个值是角速度w (t).我们看到角速度的解开始接近稳态steadyStateW

德瓦尔(解决方案,0.5),德瓦尔(解决方案,综合成绩),德瓦尔(解决方案,1)
ans =2×10.2563 - 4.7795
ans =2×10.2563 - 5.5034
ans =2×10.2563 - 5.8453
steadyStateW
steadyStateW =
                 
                  
                   
                    6.151120734
                  
                 

策划解决方案。

时间= linspace (0, - 2.5);iValues = deval(solution, time, 1);wValues = deval(解,时间,2);steadyStateValuesI = vpa (steadyStateI * (1100), 10);steadyStateValuesW = vpa (steadyStateW * (1100), 10);图;plot1 =次要情节(2,1,1);plot2 =次要情节(2,1,2);情节(wValues plot1,时间,“蓝”、时间、steadyStateValuesW“——红”“线宽”, 1) plot(plot2, time, iValues,“绿色”、时间、steadyStateValuesI“——红”“线宽”1)标题(plot1“直流电机-角速度”)标题(plot2“直流电机-电流”) ylabel (plot1“角速度(rad / s)”) ylabel (plot2“当前的(一个)”)包含(plot1“时间[s]”)包含(plot2“时间[s]”)传说(plot1“w (t)”“w (t):稳态”“位置”“northeastoutside”)传说(plot2“我(t)”“我(t):稳态”“位置”“northeastoutside”

图中包含2个轴对象。轴对象1与标题直流电机-角速度包含2对象的类型线。这些物体代表w(t), w(t):稳态。标题为“直流电机-电流”的轴对象2包含2个类型为线的对象。这些物体表示I(t), I(t):稳态。

创建Simscape组件

保存数学模型以便在Simscape中使用。

使用原始方程生成Simscape代码方程式

symWriteSSC (“MyMotor.ssc”“MyMotorTemplate.ssc”方程式,...“H1Header”'%自定义直流电机'...“HelpText”, {'% This block implements a custom直流电机'})

控件显示生成的组件类型命令。

类型MyMotor.ssc
这个模块实现了一个自定义的直流电机节点p = foundation.electric .electrical;% +:left n = foundation.electric .electric;% -:left r = foundation.mechanical.rotation .rotation;% R:右c =基础。机械的。旋转的。旋转的;% C:右端参数R ={3.9, '欧姆'};%电枢电阻L = {0.000012, 'H'};%电枢电感J = {0.000001, 'kg*m^2'};%惯性Dr = {0.000003, '(N*m*s)/rad'};%转子阻尼Ki = {0.000072, '(N*m)/A'};%扭矩常数Kb = {0.000072, '(V*s)/rad'}; %Back-emf constant end variables torque = {0, 'N*m'}; %Total Torque tau = {0, 'N*m'}; %Electric Torque w = {0, 'rad/s'}; %Angular Velocity I = {0, 'A'}; %Current V = {0, 'V'}; %Applied voltage Vb = {0, 'V'}; %Counter electromotive force end function setup if(R<=0) error('Winding resistance must be greater than 0.'); end end branches torque : r.t -> c.t; % Through variable tau from r to c I : p.i -> n.i; % Through variable i from p to n end equations w == r.w -c.w; % Across variable w from r to c V == p.v -n.v; % Across variable v from p to n torque+J*w.der == tau-Dr*w; tau == Ki*I; L*I.der+R*I == V-Vb; Vb == Kb*w; end end

从生成的组件构建Simscape库。

如果~ isdir (' + MyLib 'mkdir)+ MyLib结束拷贝文件MyMotor.ssc+ MyLib;ssc_buildMyLib
在/tmp/Bdoc2金宝app1b_1757077_234318/tp238e4c8b/symbolic-ex98670381'目录下生成Simulink库'MyLib_lib'…