

Tips and Tricks for Image Processing and Computer Vision Code

Generation

Image processing algorithms may require some special consideration when used with MATLAB Coder

and computer vision algorithms. Image algorithms tend to be bound by data bandwidth (as opposed to

computational bandwidth). In addition, data structures with the generated code may not match those in

your existing code base.

This document is designed to offer simple but effective MATLAB Coder tips and tricks that address your

specific goals for image processing algorithms. It is intended to complement the Quick Start Guide for

MATLAB Coder, which includes:

 MATLAB Coder Tips and Tricks

 Preparing MATLAB Code for MATLAB Coder

 Generating C Code with MATLAB Coder

 Accelerating MATLAB Code with MATLAB Coder

Table of Contents

Common Problems

Before You Begin

Tips and Tricks

Improving Performance

Unit Test Framework with MATLAB Coder

MATLAB Visualization from Visual Studio and Eclipse

Converting nested functions into sub functions

Passing Structures by Reference

Appendix A: Image Processing Toolbox Code Generation Details

Appendix B: Suggested Function Replacements for Unsupported Functions

https://www.mathworks.com/programs/products/download_matlab-coder.html?s_iid=main_custom_ME_cta1
https://www.mathworks.com/programs/products/download_matlab-coder.html?s_iid=main_custom_ME_cta1

Common Problems

Data Alignment
MATLAB structures its matrices (and thus, its images) in a column major format. Most external

image processing vendors tend to favor a row major format.

Example of MATLAB organized image/pixel data as column major:

This data is then not ordered properly when interfacing with row major functions:

Example of image / pixel data after transposing to row major:

The data is correctly ordered when interfacing to row major functions.

This is something users need to be aware of if they are:

 Integrating with external libraries (e.g., OpenCV)

 Interfacing with external hardware (e.g., CMOS image sensor)

When developing software, careful consideration is needed in order to minimize the need for

unnecessary transposes and data copies.

Data Structures
When using variable sized arrays, MATLAB Coder may use data structures as a container for an

image. Understanding these data structures as you integrate generated code with your existing

code/libraries will help you develop more efficient algorithms.

Color Representation
Color images can be represented in a variety of formats in MATLAB, but those formats may not
agree with external code and or devices, again requiring special care. For instance, OpenCV uses
a BGR color format, while MATLAB opts for RGB. Minimizing the interaction between the two
libraries should increase performance.

Before You Begin

Determine Code Generation Goals
The first step is to determine your code generation goals. Three possible choices exist:

 Create C code combined with optimized shared libraries for x86/x64 platforms running

supported operating systems (Windows, Linux, and OSX). The code and libraries are

performance optimized to take advantage of technologies like Intel’s IPP and TBB

libraries. The library components are specific for Intel and AMD architectures and the

supported OS.

 Create Standalone C/C++ code that is capable of being compiled on any processor or

platform. This code is typically single treaded and is not tied to any specific architecture.

 Create and Compile MEX (MATLAB executables) for acceleration in MATLAB

simulations.

Prepare MATLAB Code for Code Generation
When working with image processing and computer vision algorithms for code generation, it is

first necessary to prepare the MATLAB code. Here are a few general purpose steps, but for a

more complete description, see the document, Preparing MATLAB Code for MATLAB Coder.

This section adds additional details specifically related to image processing and computer vision

algorithms.

1. Insert code generation pragma

https://www.mathworks.com/programs/products/download_matlab-coder.html?s_iid=main_custom_ME_cta1

Add %#codegen comment in each MATLAB file that is meant for code generation to

enable additional capabilities of the MATLAB Code Analyzer. Note: This comment can be

place anywhere in the MATLAB file.

2. Exercise code readiness tool

3. Verify functions for code generation

Verify MATLAB functions that support your code generation goal. (View full list of

functions.) See “Remarks and Limitations” column for details.

Functions that support code generation can do one of the following:

 Generate ANSI C source code (platform independent). Most functions do

this.

 Generate precompiled platform-specific shared library (platform-

dependent).

If you see “platform-specific shared library” in the supported function list, it means it

can generate a precompiled platform-specific shared library.

4. Verify Image Processing Toolbox functions that support your code generation goal. See

Appendix A for code generation details.

5. Verify Computer Vision System Toolbox functions that support your code generation goal.

View list of functions. Make note of the “Remarks and Limitations” column for details.

file://mathworks/Marketing/eMktg_Creative_Svcs/Creative_Services/Visual_Design/Templates/MultiUseCollateral/i.%09http:/www.mathworks.com/help/coder/language-supported-for-code-generation.html
file://mathworks/Marketing/eMktg_Creative_Svcs/Creative_Services/Visual_Design/Templates/MultiUseCollateral/i.%09http:/www.mathworks.com/help/coder/language-supported-for-code-generation.html
http://www.mathworks.com/help/coder/ug/functions-supported-for-code-generation--categorical-list.html
file://mathworks/Marketing/eMktg_Creative_Svcs/Creative_Services/Visual_Design/Templates/MultiUseCollateral/a.%09http:/www.mathworks.com/help/vision/ug/code-generation-support-usage-notes-and-limitations-for-functions-classes-and-system-objects.html

6. Unsupported functions require rewriting MATLAB code or calling external C libraries.

 See section, “Leveraging External Libraries and Custom C Code.”

 See Appendix B for a list of suggested function replacements.

Tips & Tricks

Improving Performance
There are several techniques for improving the performance of your generated code. The

following are a few recommendations:

1. Turn off Dynamic Memory Allocation (MALLOC) and avoid functions that require
MALLOC in performance critical areas if possible (i.e. loops). To disable dynamic memory
allocation in the Project Settings box:

 On the MATLAB Coder project Build tab, click More settings.

 In the Project Settings dialog box Memory tab, under Enable variable-sizing,
set Dynamic memory allocation to Never.

2. Enable parallel processing on multicore machines with OpenMP. If your target compiler

supports OpenMP then use parfor to run parallel threads on a multicore machines.

3. Use Code Generation Metrics Report to gather statistics on the generated code. View
more information.

For more information on improving performance, see Accelerating MATLAB Code with
MATLAB Coder.

http://www.mathworks.com/help/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
https://www.mathworks.com/programs/products/download_matlab-coder.html?s_iid=main_custom_ME_cta1
https://www.mathworks.com/programs/products/download_matlab-coder.html?s_iid=main_custom_ME_cta1

4. Integrate existing C code and libraries. Often you will have existing code that you would

like to leverage in MATLAB with code generation. This section shows how to integrate
external code into MATLAB and to generate code that uses your existing code.

 To integrate existing code or to preserve modifications to generated code, use
coder.target.

o Target options include ‘MATLAB’, ‘MEX’, ‘Sfun’, ‘Rtw’,

‘HDL’, and ‘Custom’.

o Here is an example of how to use coder.target

View more information.

 To integrate external libraries with header files, use

coder.ExternalDependency. This allows external libraries to be accessed

for MATLAB simulations and to be included with code generation. Here is an

example using coder.ExternalDependency:

Features of the coder.ExternalDependency class includes the

following:

 Easy to use as it uses coder.ceval to execute the custom code

 Support for variable sized arrays

 Most controls are on MATLAB side and less burden on external
users

 Creates build info with include paths, header file names, library
names

 Converts MATLAB variables to C types and calls C function API

 Calls MATLAB function with coder.ceval

 Converts MATLAB variable to C pointer using coder.ref or
coder.wref

 Scalar can be passed without any conversion

View more information.

http://www.mathworks.com/help/coder/ref/coder.target.html
http://www.mathworks.com/help/simulink/slref/coder.externaldependency-class.html

5. To take advantage of low level replacements of intrinsic operators, use Code

Replacement Library (CRL). For a replacement to occur, the operator and data type
arguments must match the table tale precisely. Here is the dialog tab showing the
selection of some sample intrinsics.

Note: CRL requires that the input types match and see RTX.Tfl file for more details.
The CRL capability also requires a license for Embedded Coder.

Note: Use the following command for a full list of library replacements:

> RTW.viewTfl

Features of CRL include the following:

 Replace low-level MATLAB implementations

 Limitation: does not support variable size

 Needs dedicated table entry for library replacement (uses
coder.replace)

 Requires Embedded Coder

CRL example:
When targeting the ARM Cortex-A and Cortex-M, the Ne10 and CMSIS Code
Replacement Library (CRL) can be used to sSupport Ne10 (ARM Cortex-A):

ne10_add_float_neon()

ne10_sub_float_neon()

ne10_mul_float_neon()

ne10_divc_float_neon()

6. Interface with row-major code libraries. For image processing and computer vision

(IPCV) applications, the fact that MATLAB is column-major while C/C++ code is row-

major can cause issues. This can occur especially when dealing with code generation

(pushing MATLAB algorithms to C code) or legacy code integration (bringing legacy C

code into MATLAB). Here are two approaches to deal with this:

 Modify the existing MATLAB algorithm in such a way as to process matrix data in

a transposed manner.

 At the input and output boundaries of the algorithms, transpose the
input/output matrices.

Unit Test Framework with MATLAB Coder
Users can write an extensive set of test cases for a MATLAB function using the MATLAB Unit Test

Framework, capturing expected behavior, edge cases, and exceptions thrown.

This capability can be combined when you generate code for the function using MATLAB Coder.

Use the Unit Test Framework with MEX-files.

View more information.

Visualization and Verification from Visual Studio and Eclipse
When developing C/C++ applications in Visual Studio and Eclipse, it can be challenging to
visualize and experiment with code changes, and test and verify results.

MATLAB Engine enables you to visualize, experiment, and test C/C++ code directly from Visual
Studio and Eclipse by communicating with MATLAB. This connection enables you to access
MATLAB plots, toolbox functions, and scripts directly from Visual Studio and Eclipse. With this
connection, you can quickly explore and test results throughout the development phase to save
time and effort.

http://www.mathworks.com/help/matlab/matlab-unit-test-framework.html

For more information, see documentation for MATLAB Engine API for C, C++, and Fortran.

Converting Nested Functions into Sub-Functions
Nested functions are not yet supported in MATLAB Coder (as of R2014a). Here’re a workaround

to make nested functions codegen ready:

1. Move the nested function to its own sub-function
2. Pass any data used by the nested function as inputs to the new sub-function
3. Return any data needed by the main function back as an output of the sub-function

Passing Structures by Reference
Depending upon the MATLAB code and/or the configuration of MATLAB Coder, generated code

will either pass by value or pass by reference. When a function has one or two simple scalar

values, passing by value is usually more efficient. However, when function arguments are larger,

passing by reference is more efficient.

http://www.mathworks.com/help/matlab/calling-matlab-engine-from-c-c-and-fortran-programs.html

MATLAB Coder will generate both idioms and the result will depend on when the MATLAB
function includes:

 An input argument

 An output argument

 An input/output argument.

The code also differs for:

 MEX targets

 Standalone code

Here is the MATLAB code used to test each case.

Input only Output only Input and Output
function y = strin(s)

y = s.f;
function s = strout(x)

s.f = x;
function [y,s] = strinout(x,s)

y = x + sum(s.f);

1. PassStructByReference option

Starting in R2013a, a “Pass Structure by Reference” option was introduced.

It only applied to input structures in R2013a, and was later extended to apply to output

structures in R2013b.

This option is only applicable to standalone code. There is no option to alter the generated

MEX code.

Note: The default from the user interface is cfg.PassStructByReference=true for

R2013b and R2014a, but from the command line the default is

cfg.PassStructByReference=false, as shown in the following tables by “default

prj” and “default cfg” respectively.

2. Structure is an input
function y = strin(s)

y = s.f;

Stand-alone C code:
 cfg.PassStructByReference=false

R2013a (default) void strin(const struct_T s, real_T y[4])

R2013b (default cfg) void strin(const struct_T s, double y[4])

R2014a (default cfg) void strin(const struct0_T s, double y[4])

 cfg.PassStructByReference=true;

R2013a void strin(const struct_T *s, real_T y[4])

R2013b (default prj) void strin(const struct_T *s, double y[4])

R2014a (default prj) void strin(const struct0_T *s, double y[4])

MEX code:
 cfg.PassStructByReference not applicable

R2013a void strin(const struct_T *s, real_T y[4])

R2013b void strin(const emlrtStack *sp, const struct_T *s, real_T y[4])

R2014a void strin(const struct0_T *s, real_T y[4])

3. Structure is an output
function s = strout(x)

s.f = x;

Stand-alone C code:
 cfg.PassStructByReference=false

R2013a (default) struct_T strout(const real_T x[4])

R2013b (default cfg) struct_T strout(const double x[4])

R2014a (default cfg) struct0_T strout(const double x[4])

 cfg.PassStructByReference=true;

R2013a struct_T strout(const real_T x[4])

R2013b (default prj) void strout(const double x[4], struct_T *s)

R2014a (default prj) void strout(const double x[4], struct0_T *s)

Default from the user interface is cfg.PassStructByReference=true for R2013b

and R2014a, but from the command line the default is

cfg.PassStructByReference=false.

MEX code:
 cfg.PassStructByReference not applicable

R2013a struct_T strout(const real_T x[4])

R2013b void strout(const emlrtStack *sp, const real_T x[4], struct_T *s)

R2014a void strout(const real_T x[4], struct0_T *s)

4. Structure is an input and an output
function [y,s] = strinout(x,s)

y = x + sum(s.f);

Stand-alone C code:
 cfg.PassStructByReference=false

R2013a (default) void strinout(const real_T x[4], const struct_T *s, real_T y[4])

R2013b (default cfg) void strinout(const double x[4], const struct_T *s, double y[4])

R2014a (default cfg) void strinout(const double x[4], const struct0_T *s, double y[4])

 cfg.PassStructByReference=true;

R2013a Same as false

R2013b (default prj) Same as false

R2014a (default prj) Same as false

Default from the user interface is cfg.PassStructByReference=true for R2013b

and R2014a, but from the command line the default is

cfg.PassStructByReference=false.

MEX code:
 cfg.PassStructByReference not applicable

R2013a void strinout(const real_T x[4], const struct_T *s, real_T y[4])

R2013b void strinout(const emlrtStack *sp, const real_T x[4], const struct_T *s, real_T
 y[4])

R2014a void strinout(const real_T x[4], const struct0_T *s, real_T y[4])

Appendix A:

Image Processing Toolbox Code Generation Details:
Function Generates

standalone C
code (any

target)

Generates
standalone C code

using platform-
specific shared

library (applies when
hardware is set to

“MATLAB Host
Computer”)

Requires
dynamic
memory

allocation
support

Requires
enabling
variable

sizing
support

Comments/limitations

affine2d 14a NA No No

bwdist No 14b No No

bweuler 15a 15a No Yes

bwlabel 15a NA Yes Yes

bwlookup 14b 12b No Yes

bwmorph 14b 12b No No

bwpack No 14a No No

bwperim 15a 15a No Yes

bwselect 15a 14a No Yes

bwtracebound

ary

14b NA Yes Yes

bwunpack No 14a No* No* * Dynamic memory
allocation is not required
provided M is a compile-

time constants.
conndef 13a NA No No

edge 15a 14a No* Yes * Dynamic memory
allocation is not required

provided THRESH and
SIGMA are compile-time

constants.
fitgeotrans 14b NA No No

fspecial Pre-12b% NA No* Yes * Dynamic memory
allocation is not required
provided HSIZE, RADIUS,

LEN and THETA are
compile-time constants.

Prior to 14b, this function
generated constant-

folded C code. In 14b, the
function started

generating C code.
getrangefrom

class

14a NA No No

histeq No 14b No* No* * Dynamic memory
allocation and variable-

sizing support is not
required provided N is a
compile-time constant.

hsv2rgb^ 14b NA No No

im2uint8 15a 14a No No

im2uint16 No 14a No No

im2int16 No 14a No No

im2single 14a NA No No

im2double^ 14a NA No No

imadjust No 14b No No

imbothat 14b 14a No Yes

imclearborde

r

15a 14b No No

imclose 14b 14a No Yes

imcomplement 13a NA No No

imdilate 14b 14a No Yes

imerode 14b 14a No Yes

imextendedma

x

15a 14a No Yes

imextendedmi

n

15a 14a No Yes

imfill 15a 13a No Yes

imfilter 14b 14a No Yes

imhist 15a 14a No* No* * Both dynamic memory
allocation and variable-

sizing support is not
required provided N, the

number of bins is a
compile-time constant.

imhmax 15a 13a No Yes

imhmin 15a 13a No Yes

imlincomb No 14b

imopen 14b 14a No Yes

imquantize 14b NA No No

imreconstruc

t

15a 13a No Yes

imref2d 14a NA No No

imref3d 14a NA No Yes

imregionalma

x

15a 13a No Yes

imregionalmi

n

15a 13a No Yes

imtophat 14b 14a No Yes

imwarp 15a 14a No* Yes * Dynamic memory
allocation is not required

provided TFORM is a
compile-time constant.

intlut No 14b No No

iptcheckconn 13a NA No No

iptcheckmap 14b NA No No

label2rgb Pre-12b NA No No

mean2 13b NA No No

medfilt2 15a 14b No* Yes * Dynamic memory
allocation is not required

provided [M N], the
neighborhood size is a
compile-time constant.

multithresh 15a 14b No* Yes * Dynamic memory
allocation is not required
provided the number of

thresholds, N is a
compile-time constant.

ordfilt2 15a 14b No Yes

padarray 13a NA No* No* * Both dynamic memory
allocation and variable-

sizing support is not
required provided

PADSIZE is a compile-time
constant.

projective2d 14a NA No No

rgb2gray^ 14b NA No No

rgb2hsv^ 14b NA No No

rgb2ycbcr No 14b No No

regionprops 15a 15a Yes Yes

strel 14a NA No No

stretchlim 15a 14b No No

watershed 15a 15a Yes Yes

ycbcr2rgb No 14b No No

^Indicates that
the function is in
base MATLAB.

* Indicates that
the function
supports a feature
provided certain
conditions in the
Comments/Limita
tions section are
met.

% Indicates an
enhancement to
the generated
code.

Appendix B:

Suggested Function Replacements for Unsupported Functions
MATLAB function Suggested replacement Comments

imcrop vision.ImagePadder imcrop not supported for code generation

imrotate vision.GeometricRotato

r

imrotate not supported for code generation

graythresh multithresh thresh = graythresh(img);

can be replaced by:

thresh = ultithresh(img,1);
graythresh vision.Autothresholder bw = im2bw(img,graythresh(img))

can be replaced by

AT = vision.Autothresholder;

im2bw takes threshold input on [0,1]. You may need to
recast img as type double or to re-scale thresh to
match type of img.

im2bw im2bw(img,thresh)

can be replaced by

bw = img > thresh;

 im2bw takes threshold input on [0,1]. You may need to

recast img as type double or to re-scale thresh to
match type of img.

im2bw In R2014b and later, use imquantize in place of
im2bw

imshow Consider removing visualizations for codegen

regionprops vision.BlobAnalysis

labelmatrix vision.ConnectedCompon

entLabeler

imread Consider passing image (matrix) in directly instead of
using imread

imread vision.VideoFileReader Reads in images (.jpg, .bmp only), video, and audio

imread Use OpenCV calls (i.e.
cv::imread) in a C++
environment.

bwlabel vision.ConnectedCompon

entLabeler

bwareaperim vision.BlobAnalysis

bwareaopen vision.MorphologicalOp

en

bwareaopen vision.ConnectedCompon

entLabeler in

conjunction with

vision.Autothresholder

bwareaopen vision.BlobAnalysis

