MATLAB EXPO 2019

Develop and Test Vehicle Controllers for ADAS/Automated Driving Applications through System Simulation

Abhisek Roy

Highway Traffic Jam Assist

 It helps drivers to follow the preceding vehicle automatically with a predefined time interval in a dense traffic condition

... while controlling steering for keeping current lane.

• Longitudinal control with ACC with stop & go

Lateral control with lane following

- Partial/conditional automation at level 2/3
 - Speed limit < 60~65 km/h
 - Dense traffic condition in highway

Challenges

- Wide variety of scenarios and difficult to gather real data
- Complex interplay between multiple sensors
- Incorporate models of right fidelity for various system components
- Costly and hazardous in-vehicle testing

Agenda

- Design model-predictive control-based vehicle controllers
- Run close-loop simulation with synthetic scenarios and test sensor fusion and control algorithms at a model level
- Improve simulation fidelity by incorporating detailed vehicle models and integrating with Unreal gaming engine

- Operation limits
 - Minimum operational speed, $v_{min} = 5$ m/s
 - Average automatic deceleration $\leq 3.5 \text{ m/s}^2$ (average over 2s)
 - Average automatic acceleration ≤ 2.0 m/s²

Performance Requirements: Lateral Control

Vehicle should follow the lane center with allowable lateral deviation.

$$\left| (d_{left} + d_{right})/2 \right| \le e_{max}$$

where,

 d_{left} : lateral offset of left lane w.r.t. ego car

 d_{right} : lateral offset of right lane w.r.t. ego car

 e_{max} : allowable lateral deviation

For example, $e_{max} = (LaneWidth - VehicleWidth)/2 = (3.6-1.8)/2 = 0.9 \text{ m}$

What is model predictive control (MPC)?

Multi-variable

control strategy leveraging an internal model to predict plant behavior in the near future

Optimizes for the current timeslot while keeping future timeslots in account

- Suitable for our problem
 statement
 - Handles MIMO systems with coupling
 - Handles constraints
 - Has preview capabilities

How can MPC be applied to Highway Traffic Jam Assist?

How can MPC be applied to Highway Traffic Jam Assist?

Control Algorithm

Lane Following with Spacing Control

Control Algorithm

		Block Parameters: Path Following Control System	×					
		Path following control (PFC) system (mask) (link)						
	C	Keep the ego vehicle traveling along the center of a straight or curved road, track a set velocity and maintain a safe distance from a lead vehicle by adjusting the longitudinal acceleration and the front steering angle of the ego vehicle.						
	Setv	Parameters Controller Block						
	tim	Optimization Use suboptimal solution Maximum iteration number 10						
200	-	Data Type						
6 Relative distance	→ →	double O single						
	_	Optional Inports						
	▶ _ >1	Use external signal to enable or disable optimization						
(7)	-	Use external control signal for bumpless transfer between PFC and other controllers						
Relative velocity	Longitudi	Customization						
		To customize your controller, generate an PFC subsystem from this block and modify it. The controller configuration data is exported as a structure Create PFC subsystem						
	6	in the MATLAB workspace.	_					
	Cur							
	C		_					
	Lateral							
	\Box							
	Relative							
MATLAB EXP	0 2019	OK Cancel Help Ap	ply					

Agenda

- Design model-predictive control-based vehicle controllers
- Run close-loop simulation with synthetic scenarios and test sensor fusion and control algorithms at a model level
- Improve simulation fidelity with gaming engine integration, vehicle dynamics modelling, and automated scenario creation from recorded data

Architecture for Traffic Jam Assist Controller

Develop and Test Vehicle Controller Traffic Jam Assist

Incorporate Ego Vehicle Dynamics

Bicycle Model - Velocity Input

Bicycle Model - Force Input

- Implement a single track 3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion
- Block calculates only lateral forces using the tire slip angles and linear cornering stiffness.

Develop and Test Vehicle Controller Traffic Jam Assist

A MathWorks

Create Test Scenario using Driving Scenario Designer

MathWorks[®]

Add sensors to test scenario

Develop and Test Vehicle Controller Traffic Jam Assist

Simulation with Simulink Model for Traffic Jam Assist

Simulation with Simulink Model for Traffic Jam Assist

Agenda

- Design model-predictive control-based vehicle controllers
- Run close-loop simulation with synthetic scenarios and test sensor fusion and control algorithms at a model level
- Improve simulation fidelity with gaming engine integration, vehicle dynamics modelling, and automated scenario creation from recorded data

Improve simulation fidelity: Include detailed vehicle dynamics

Vehicle Dynamics Blockset

Improve simulation fidelity: Include detailed vehicle dynamics

Vehicle Model Description		Vehicle Body Degrees-of-Freedom (DOFs)				Wheel DOFs			
Passenger 14DOF Vehicle	Vehicle with four	Six				Two per wheel - eight total			
	wheels	Translational		Rotational		Translational		Rotational	
	Available as model	Longitudinal	~	Pitch	\checkmark	Vertical	\checkmark	Rolling	\checkmark
	variant in the	Lateral	\checkmark	Yaw	\checkmark				
	reference	Vertical	\checkmark	Roll	\checkmark				
	applications								
Passenger 7DOF Vehicle	Vehicle with four	Three		One per wheel - four total					
	wheels	Translational		Rotational	Rotational		Rotational		
	Available as model	Longitudinal	\checkmark	Pitch		Rolling		\checkmark	
	maneuver	Lateral	\checkmark	Yaw	\checkmark				
	reference	Vertical		Roll					
	applications								
Passenger 3DOF Vehicle	Vehicle with ideal	Three				None			
	tire	Translational		Rotational	Rotational				
		Longitudinal	√	Pitch		_			
		Lateral	\checkmark	Yaw	\checkmark				
		Vertical		Roll					

Improve simulation fidelity: Co-simulate with Unreal Engine

Game Engine Co-Simulation

<u>Simulink</u>

- Physics of vehicle
- Initialization of game engine camera

vehicle / camera location

camera image, ground height, ...

Unreal Engine

- Rendering / lighting
- Physics of non-Simulink objects
- Collision detection

Develop and Test Vehicle Controller Traffic Jam Assist: Key takeways

Design Traffic Jam Assist Controller

- Create driving scenario
- Synthesize sensor detection
- Include Vehicle Dynamics
- Design sensor fusion algorithm
- Design controller using MPC

Develop and Test Vehicle Controller Traffic Jam Assist: Next Steps

Design Traffic Jam Assist Controller

- Create driving scenario
- Synthesize sensor detection
- Include Vehicle Dynamics
- Design sensor fusion algorithm
- Design controller using MPC

Reference examples to get started:

1. <u>Lane Following Using Nonlinear Model</u> <u>Predictive Control</u>

2. <u>Lane Following Control with Sensor</u> <u>Fusion and Lane Detection</u>

3. <u>Testing a Lane-Following Controller with</u> <u>Simulink Test</u>

Hitachi develops model-predictive controller for adaptive cruise control in traffic jam

Model Predictive Control Approach to Design Practical Adaptive Cruise Control for Traffic Jam

Taku TAKAHAMA¹⁾ Daisuke AKASAKA²⁾

1) Hitachi Automotive Systems, Ltd. 4-7-1 Onna, Atsugi, Kanagawa, 243-8510, Japan (E-mail: taku.takahama.tz@hitachi-automotive.co.jp) 2) The MathWorks GK 4-15-1 Akasaka, Minato-ku, Tokyo, 107-0052, Japan

The MPC controller was implemented in an embedded microprocessor (Renesas SH-4A, 32-bit processor), we confirmed the processing time of the MPC. The measurement result is shown in Fig. 5, the average time of the ACC function was 1.1ms. The C-code is automatically generated from a Simulink model using Embedded Coder[®].

Hitachi paper published with SAE, Japan 2017 Hitachi also presented at 2017 MathWorks Expo, Japan

Call to action

- Visit the booth!
- Attend the session:
 - Simplifying Requirements-Based Verification with Model-Based Design

- MATLAB Tech Talk:
 - Understanding Model Predictive Control