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1. Einleitung/ Abstract  
 
Modern engines have an increasing number of control parameters that are having a 
dramatic impact on calibration time. Up-front prototyping of calibration processes can 
be used to reduce the burden of increasing powertrain complexity, however, such tech-
niques are still in their infancy in the automotive field. In this paper we illustrate how flexi-
ble model-based calibration tools can be used to prototype a calibration process for an 
advanced engine type. Specifically, we produce optimal calibration tables for intake and 
exhaust cam timings that trade off brake specific fuel consumption against NOx emis-
sions. The data used is from a GT-Power model of a production 2.2L naturally aspirated 
4-valve overhead-cam spark ignition engine, modified for twin-independent variable 
valve-timing capability. All analysis techniques used are available in version 2.0 of the 
Model-Based Calibration Toolbox. 
 
 
1.1 Introduction   
 
In recent years calibration time has been increasing due to the need to calibrate more 
advanced types of engines. To reduce this calibration time many companies have 
turned to a model-based calibration process combined with test bed improvements to 
allow automation of the data collection process. An additional way of reducing 
calibration time is to move some calibration tasks to earlier in the design process. 
Calibration tasks traditionally occur only on the right-hand side of the V design process 
shown in Figure 1. By performing calibration tasks in parallel with the design tasks on 
the left-hand side of the V design process, significant time savings can be made. 
A calibration process can be prototyped and process-related problems resolved at a 
stage when they are much less costly to correct. Informed decisions on the design of 
experiment, model type and optimisation routines expected can be made, allowing for 
early preparation of initial test plan templates, model templates and optimisation scripts, 
ready for when the actual engine arrives.  



 

 

 
 

Figure 1: V design process for control development 
 

 
In this paper we will produce calibration tables for a dual-independent variable valve-
timing engine to illustrate a model-based calibration process. The data is collected from 
a GT-Power model. Physical models, such as those created by GT-Power can be 
helpful to gain an understanding of engine behaviour early in the design process and to 
identify data-gathering requirements before test. However, physical models can be time-
consuming to run, and this can limit the amount of analysis that can be performed with 
them. In this paper a statistical emulation of the physical model is produced. The 
statistical model evaluates much more quickly than the physical model or an engine test, 
typically in hundreds of microseconds. This opens the door to a greater amount of 
optimisation and analysis – all of which can be performed before the actual engine is 
available.   
 
 
1.2 Problem Statement 
 
The problem addressed in this paper is to produce optimal calibration tables for the 
three main control parameters: spark advance, intake cam phase, and exhaust cam 
phase. The inputs to the tables are engine speed and load. Here, load is defined in the 
typical way as a fraction of the maximum cylinder air charge possible at a given RPM, 
and based on measured airflow.  The values of spark advance and cam positions will be 
chosen to trade off brake-specific fuel consumption (BSFC) against the amount of 
engine-out NOx produced, subject to upper limits on catalyst-in exhaust temperature, 
and intake manifold pressure. The upper bound on intake manifold pressure ensures 
that there is sufficient vaccum in the intake manifold to allow the use of a brake-servo 
(booster). The bound on exhaust temperature is to prevent catalyst overheating.  
 



 

 

 
 
 
1.3 Design of Experiment and Data Collection 
 
The first step in experimental design is to determine the system inputs (factors) that will 
be controlled, and the outputs (responses) that should be measured. The inputs are 
spark advance, intake cam position, exhaust cam position, engine speed, and load. 
Load was treated as an indirect input, since the test was designed to directly vary 
scaled throttle position.  Output measurements for brake torque, fuel flow, engine-out 
NOx mass flow, intake manifold pressure, and catalyst-in exhaust temperature are 
taken.  
Of the three control parameters, spark advance has the greatest impact on the 
responses and the profile of the responses as spark advance changes is distinctive and 
well-known. We would like to make use of this prior knowledge of the sweep shape to 
identify outliers in the data and to guide us the modelling process. Moreover, it is 
relatively quick and easy to change spark advance on the test bed, so a spark sweep 
can usually be collected efficiently. For these reasons, the data is collected in a series of 
spark sweeps at different settings of the other variables. The settings of the cam 
positions, engine speed, and scaled throttle area are chosen using a design of 
experiment technique.  
As this is an advanced engine type, previous experience has suggested that 
polynomials will not be sufficiently flexible to fully capture the non-linear response and an 
advanced model type such as radial basis functions (RBFs) may be required [1]. Use of 
advanced model types precludes the use of optimal design technques, therefore we 
employ a space-filling design technique with 500 points. As we wish to understand the 
impact of the cam positions, the full range from –5 (crank-angle degrees advance from 
base) to 50 degrees (crank-angle degrees retard from base) are tested. This constrains 
the possible settings for speed and scaled throttle area that can be made.  
The data is collected from the GTPower model using a Simulink/Stateflow harness to 
run the design of experiment points, log data, and monitor misfire and stability.  
  
 
1.3 Statistical Modelling  
 
The data is modelled using a two-stage modelling approach, see [2] and references 
therein. Two-stage modelling is appropriate when two distinct groups of variables can 
be identified: local variables and global variables. The global variables are held 
approximately constant while the local variables are varied. For example, in our 
application, the global variables are speed, load, intake cam position and exhaust cam 
position. These variables are held constant whilst the local variable (spark angle) is 
swept across its range.  

 
Two stage modelling reflects the underlying structure in the data and can result in more 
accurate models than if the structure in the data is ignored. Two-stage modelling allows 
for the possiblity of the error pattern within sweeps being different than the error pattern 
between sweeps. Prior knowledge of the local sweep shape can be used, and outliers 



 

 

are more readily identified as they can be viewed within the context of the sweep in 
which they were collected.  
The steps to build a two-stage model are:  

1. Fit local models to each sweep  
2. Identify and remove outliers 
3. For each sweep choose a sufficient number of response features to uniquely 

define the local model shape (e.g. response features could be coefficients if the 
local model is a polynomial) 

4. Model how each of these response features depends on the global variables 
5. Combine the response feature models to give an overall description of the 

system, called a two-stage model. 
For example, to build a model for BSFC, in the first step quadratic polynomials are fitted 
to the data in each local sweep. The spark angle corresponding to minimum BSFC is an 
important reference point, therefore a datum model of the position is created. This 
allows the position of minimum spark to be marked on the other response models.  
 

 
 

Figure 2: A local BSFC-Spark Sweep 
 
In the second step outliers are identified. This data set contained some sweeps that 
were very noisy. The GT Power models provide a variable that flags when misfire 
occurs, and this variable was used to automatically filter out sweeps where misfire 
occured. These sweeps had higher errors associated with them and removing these 
points through automatic filtering improved the model quality for this application. All 
points with very high BSFC or towards the extremes of the spark sweep were 
automatically removed using the filters 5<= spark <= 45 when engine speed >= 1800, 
5<= spark <= 40 when 1300 <= engine speed <= 1800, and 5<= spark <= 35 otherwise. 



 

 

The range of speed modelled was [1000, 5000]. The range of load modelled was [0.25, 
0.95]. Moreover, each local sweep was visually screened and outliers in each of the 
local sweeps were identified and removed. For example, in the sweep shown in Figure 
2, the blue cross indicates a data point that has been selected for removal because its 
BSFC value is unusually large when compared to the other points in the sweep.   
In the third step, response features are measured for each local curve. In this example, 
the local curve is quadratic and requires three independent numbers (response 
features) to describe its shape. We chose these response features to be  

1. The spark angle that gives minimum BSFC (the datum) 
2. The BSFC value at datum plus ten degrees 
3. The BSFC value at datum minus ten degrees. 

These response features can be modelled well and have engineering significance. They 
are marked  as dots in Figure 2.  
 

 
 
Figure 3: Cross-sectional plots for BSFC at SPK = 25, N = 1500, L = 0.6, INTCAM = 

22.5 and EXCAM = 32.7 
 



 

 

In the fourth step each of the response features are modelled using a polynomials and a 
variety of radial basis function models. A radial basis function is a flexible model type 
that is capable of capturing the complex responses from advanced engine types. For 
each response feature, the best model is chosen based on the RMSE, cross-validation 
statistics, qualitative assessment of the model trends, and residual and normal plots. In 
each case, a radial basis function model (supplemented by a low order polynomial) was 
superior to the pure polynomial model.  
In the fifth step, the response feature models are combined to give an overall (two-stage) 
model. Maximum likelihood estimation is applied to model the covariance structure and 
improve the model quality. The maximum likelihood estimation step allows for the 
possibility of interaction between the response features. Moreover, it takes into account 
the fact that some sweeps are noisier than others, and therefore should be weighted 
less in the model fitting process.    
The result of the statistical modelling process is models for BSFC, Intake Manifold 
Pressure, NOx flow, and Exhaust Temperature. Cross-sections of the BSFC model are 
shown in Figure 3. These models can be exported to Simulink or MATLAB for use in 
simulations. In this application, we export the models to CAGE, the calibration 
generation tool in the Model-Based Calibration Toolbox.  
 

 
1.4 Optimal Calibration  
 
In this study we use the models created to perform constrained optimisations to 
determine the optimal settings for the control parameters spark, exhaust cam position 
and intake cam position.  The calibration tables are chosen to have 7 values of load and 
9 values of speed, equally spaced between 0.35 and 0.95 and 1000 and 5000 
respectively. At every speed-load cell we impose the constraints: Manifold Pressure <= 
98 kPa and Exhaust Temperature <= 1200K. The amount of NOx that can be tolerated 
will depend on the value of speed and load, and on how much fuel consumption the 
calibration engineer is willing to trade off to reduce NOx emissions.  
Therefore we pose a multi-objective optimisation problem at each speed-load point in 
the target calibration table.  
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In a more realistic scenario, engine-out hydrocarbon (HC) emissions would also be 
included as an objective, since HC is known to increase steeply at the high dilution 
required for low NOx emissions at part-load.  Combustion stability constraints would be 
enforced for vehicle acceptability by including a model of covariance of indicated mean 
effective pressure (COVIMEP).  Knock limits would also be enforced on spark. In this 
paper HC, COVIMEP, and knock were left out of the analysis because they are not 
currently available as outputs from the GTPOWER model used in this process 
demonstration, but in a later phase of testing on a real engine, they could be added to 
the problem definition.  However, assuming NOx requirements dominate the problem, 
that the NOx model is reasonably predictive, and that staying close to minimum BSFC 
will avoid HC inflection areas, the problem statement in (1) is reasonable to illustrate a 
model-based calibration process useful for initial calibration development. 
In order to decide an appropriate NOx bound for each table cell, a set of Pareto optimal 
points is generated at each speed-load point. The Pareto optimal points define the 
trade off curve. At one end is the point that corresponds to minimum BSFC, and at the 
other end is the point that corresponds to minimum NOx. The points in between these 
extremes on the trade off curve represent solutions that are non-dominated, that is, 
points for which it is not possible to find a setting of the control parameters that give 
simultaneously smaller NOx and smaller BSFC. This is illustrated in Figure 4. The 
algorithm used to generate the curve is called the Normal Boundary Intersection Method 
(NBI) [3]. 
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Figure 4: The set of Pareto-optimal points generated for the operating point where 
speed 4500 rpm = and load = 0.75 

 
For each speed-load operating point of interest, a Pareto solution was chosen that 
represents a good compromise between small BSFC and small NOx. The guideline 
used was to select solutions where BSFC was within 5% of its minimum value, provided 
the corresponding reduction in NOx was significant (above 5%), otherwise the control 
parameters that gave minimum BSFC were chosen. The solution selected at each 
operating point depends on the shape of the Pareto curve.  
The selected solutions were used to fill the calibration tables. The calibration tables 
generated are shown in Figure 5. The tables were automatically extrapolated using 
CAGE to regions where the models do not extend due to lack of data. These tables can 
be exported for download onto the engine control unit.  
 



 

 

  

 

 

 
 

Figure 5: Optimal calibration tables: Spark angle (top left), intake cam timing (top 
right) and exhaust cam timing (bottom left). 

 
 
1.5  Conclusions 
 
In this paper we have demonstrated how, using design of experiments and modelling, 
statistical approximations to physical models can be built and used to generate optimal 
calibration tables. This approach enables calibration processes to be prototyped early 
in the design process, which can decrease development time and save costs.  
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