
 Software Quality
Objectives

Page 1/28

Version 3.0

MathWorks

http://www.mathworks.com

SOFTWARE QUALITY OBJECTIVES FOR SOURCE CODE

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 2/28

Revision table

Index Date
Object of

modification

Paragraphs

modified

V1.0 15
th
 February 2009 Initial version All

V2.0 5
th
 March 2010

- Improve formulation of SQRs

- Explicit Code Metrics

- Define systematic and potential runtime
errors, safe and unreachable operations

All

V3.0 2
nd

 May 2012

Add mapping with ISO 26262-6:2011

Add Rule 5.2 in the 1
st
 MISRA subset

Add MISRA AC AGC subset

Add MISRA C++ subset

§4

§3.5.1

§3.5.1, §3.5.2

§3.5.1, §3.5.2

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 3/28

Table of contents

REVISION TABLE .. 2

TABLE OF CONTENTS .. 3

1. REQUIREMENTS MAPPING TABLE ... 4

2. INTRODUCTION .. 4

3. SOFTWARE QUALITY OBJECTIVES (SQO) .. 5

3.1. SOFTWARE QUALITY OBJECTIVES OVERVIEW .. 5
3.2. QUALITY PLAN ... 5

3.2.1. Quality levels and number of deliveries... 6
3.2.2. People and tools .. 7
3.2.3. Definitions of runtime errors .. 8
3.2.4. Standard comments and justifications ... 9

3.3. DETAILED DESIGN DESCRIPTION.. 11
3.3.1. Application level ... 11
3.3.2. Module level .. 11
3.3.3. File level .. 11

3.4. CODE METRICS .. 12
3.5. MISRA RULES SUBSETS .. 12

3.5.1. The first MISRA rules subset ... 13
3.5.2. The second MISRA rules subset ... 15

3.6. SYSTEMATIC RUNTIME ERRORS... 18
3.7. NON TERMINATING FUNCTION CALLS AND LOOPS.. 19
3.8. UNREACHABLE BRANCHES .. 19
3.9. POTENTIAL RUNTIME ERRORS ... 20
3.10. DATAFLOW ANALYSIS ... 21

4. REQUIREMENT MAPPING WITH ISO 26262-6:2011 .. 22

4.1. PURPOSE AND SCOPE .. 22
4.2. SUMMARY ... 22
4.3. DETAILS .. 23

4.3.1. Section 5: Initiation of product development at the software level .. 23
4.3.2. Section 8: Software unit design and implementation .. 24
4.3.3. Section 9: Software unit testing ... 25
4.3.4. Section 10: Software integration and testing ... 26

4.4. TRACEABILITY SQO LEVELS / ISO 26262 REQUIREMENTS ... 26
TO EASE THE READING OF THE TRACEABILITY MATRIX NEXT PAGE, THE SQRS ASSOCIATED WITH EACH SQO LEVEL ARE

PROVIDED AGAIN IN THE FOLLOWING TABLE: .. 26

5. GLOSSARY .. ERROR! BOOKMARK NOT DEFINED.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 4/28

1. REQUIREMENTS MAPPING TABLE

Software Quality Requirements that are covered outside of the scope of this document can be mapped onto
the requirements defined within this document. In this case the supplier shall provide a table detailing the
mapping between the two set of requirements.

2. INTRODUCTION

The document defines a general and standard approach to measure the software quality of a product using
criteria linked to code quality and dynamic execution errors.

The diagram on the right shows that the three properties: “Cost”, “Software
Quality” and “Time” are interrelated. Changing the requirements for one property
will impact the other two. In this context “Time” refers to the time required to
deliver the product, “Quality” is the quality of the final product, and “Cost” refers
to the total cost of designing and building the product.

Once the requirements for these properties have been defined the question is
how to achieve them? An approach where all modules are tested until they
meet the required quality could be applied, but the process of improving the quality is often stopped
because the available time or budget has been used and not because we have obtained the quality
objectives. A better verification process within the development process may help reduce time and cost to
achieve quality.

Quality

Time

Cost

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 5/28

3. SOFTWARE QUALITY OBJECTIVES (SQO)

This document defines six Software Quality Objectives (SQO) which are associated to four quality levels,
level QL-1 (lowest quality) to level QL-4 (highest quality). Each Software Quality Objective consists of a
set of Software Quality Requirements (SQR). Examples of SQR are complexity metrics, measure of
unreachable code etc.

3.1. Software Quality Objectives overview

The following table shows the software quality criteria required to reach each of the six Software Quality
Objectives:

Criteria SQR
Objectives

SQO-1 SQO-2 SQO-3 SQO-4 SQO-5 SQO-6

Quality Plan SQR-10 SQR-100 X X X X X X

Detailed design description SQR-110 SQR-130 X X X X X X

Code metrics SQR-140 SQR-150 X X X X X X

First MISRA-C:2004 rules subset SQR-160 SQR-170 X X X X X X

Systematic runtime errors SQR-200 SQR-210 X X X X X

Non terminating constructs SQR-220 X X X X X

Unreachable branches SQR-230 X X X X

First subset of potential runtime
errors

SQR-240 X X X

Second MISRA-C:2004 rules
subset

SQR-180 SQR-190 X X

Second subset of potential
runtime errors

SQR-250 X X

Third subset of potential runtime
errors

SQR-260 X

Dataflow Analysis SQR-270 X

The different criteria are described in the following paragraphs (Quality Plan in §3.2, Detailed design

description in §3.3, etc.).

3.2. Quality Plan

This section describes the general information which shall be provided by a supplier. It covers information
about the methods, tools and teams involved in the Software Quality Requirement fulfillment, as well as
information about the project itself. This information shall help to better understand who performs the work,
and how and where the work is done.

Note: We will use the word “team” to describe people who are using the tools providing information for the
documentation and/or the persons writing the document.

Regarding integration to the development process, information concerning the SQO should be delivered by
the supplier during the project life cycle. It is advised to perform the relevant SQO activities during the code
review phase. This will make it simpler and faster to consolidate and deliver the Software Quality document
for a major delivery.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 6/28

3.2.1. Quality levels and number of deliveries

SQR-10 The supplier shall associate a Quality Level for each module and justify their
choices. This requirement encompasses all source code of the application,
e.g. automatically generated code, legacy code, hand-written code and code
produced by COTS

SQR-20 The supplier shall provide the number of software deliveries and a software
quality plan

The software quality plan shall consist of a table showing for each module:

 the corresponding Quality Level (QL-1 to QL-4);

 the number of times the module will be delivered during the project;

 the Software Quality Objective for every delivery of this module.

Notes:

- The manufacturer shall validate the software quality plan and the decisions taken within it.
- It is not mandatory to have the same SQO improvement from one delivery to one other for all

modules.

The following example table shows the possible progressions for each quality level to achieve the final
Software Quality Objectives. The number of quality levels is fixed. The minimum SQO level associated to
the first, last and penultimate deliveries are also fixed. The number of deliveries (table lines) is project
dependent.

Delivery

Quality Level

QL-1 QL-2 QL-3 QL-4

First SQO-1 SQO-2 SQO-3 SQO-4

X Intermediates … … … …

X Intermediates SQO-2 SQO-3 SQO-4 SQO-5

X Intermediates … … … …

Penultimate SQO-3 SQO-4 SQO-5 SQO-6

Last SQO-3 SQO-4 SQO-5 SQO-6

Each cell gives the lowest Software Quality Objective acceptable

As shown by the above table, different quality levels can correspond to different quality objectives. When a
project is composed with several modules, each module can have a different criticality. The final SQO
level can therefore be different from one module to one other. This final SQO level allows selecting the
corresponding Quality Level for the module. The modules being delivered multiple times during the
project, the selected Quality Level also defines the SQO level of each delivery of the module.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 7/28

Example using the table above for a project composed of 3 Modules Module-1, Module-2 and Module-3 of
different criticalities:

- Module-1 is considered very critical: its Quality Level is the highest, QL-4. The first delivery of
Module-1 should be at least SQO-4 and the two last deliveries should be SQO-6.

- Module-2 is considered not critical: its Quality Level is the lowest, QL-1. The first delivery of
Module-2 should be at least SQO-1 and the two last deliveries should be at least SQO-3.

- Module-3 is considered of medium criticality: it has been agreed at the beginning of the project to
set its Quality Level to QL-3. The first delivery of Module-2 should be at least SQO-3 and the two
last deliveries should be at least SQO-5.

The following table gives the Quality Level and the minimum SQO level to reach for the three modules at
the end of the project:

Module Quality Level
Minimum SQO level to reach

(end of project)

Module 1 QL-4 SQO-6

Module 2 QL-1 SQO-3

Module 3 QL-3 SQO-5

SQR-30 Once the quality levels for each module and the process to achieve them are
defined by the supplier, the supplier shall justify all modifications to the plan

3.2.2. People and tools

SQR-40 The supplier shall provide information about people involved directly or
indirectly in requirement fulfillment

This shall contain at least:

 Company name

 Department and division name

 Geographical location

 Work done:
 data generation (tool user), data computation, validation, …
 list of modules verified
 list of requirements satisfied

SQR-50 The supplier shall provide the list of tools and methods used

This shall contain at least:

 Tool or method objectives

 Which requirements are affected and how

 Team responsible for the activity supported by the tool or method

 Tool or method experience, i.e. how long has the team been using the tools or methods and with
what frequency. The frequency should be expressed as follows:

 How many times has the team used these tools (or methods) per year?
 Number of projects which used these tools or methods?

SQR-60 The supplier shall inform and justify any modifications regarding the
requirement SQR-50

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 8/28

SQR-70 The supplier shall justify that methods and tools used are appropriate to
achieve the requirements

This can be done, for example, by referencing the sections of the tools‟ documentation explaining what
the tools provide, and how this helps to achieve the SQR.

SQR-80 Throughout the verification cycle the supplier shall maintain the same option
set for tools used, to ease the comparison of different deliveries

3.2.3. Definitions of runtime errors

In the rest of the document, the following definitions for runtime errors are used:

- A systematic runtime error is an operation which will generate an error for all executions of the
application. It will typically not depend on the values of inputs of the application.
An example of a systematic runtime error is:

1: int foo (int a) {

2: int b = 0;

3: return (a / b); // Systematic Division by Zero

4: }

- A potential runtime error is an operation which will generate an error that may happen under

certain circumstances, for example depending on the values of inputs of the application.
An example of a potential runtime error is:

1: int foo (int a) {

2: int b = 4;

3: return (b / a); // Potential Division by Zero

4: }

Note: the potential error line 3 cannot be proven safe or otherwise because the occurrence of the

error depends on a, which is an input of the program.

- A safe operation is an operation (division, multiplication ...) which cannot produce a runtime error.

An example of a safe operation is:

1: int bar () {

2: int x = 3;

3: return (x);

4: }

5: int foo (int a) {

6: int b = 4, c;

7: c = bar ();

8: b = a / (b – c); // Safe Division

9: return (b / 2); // Safe Division

10: }

Note: the division line 8 can be proven safe by a tool or by a human review.

Indeed, (b – c) = (4 – 3) = 1 and is different from zero. No division by zero may occur.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 9/28

- An unreachable operation is an operation (division, multiplication ...) which cannot be reached
during the execution of the application.
An example of an unreachable operation is:

1: int bar () {

2: int x = 3;

3: return (x);

4: }

5: int foo (int a) {

6: int b;

7: b = bar ();

8: if (b < 0)

9: b = b / a; // Unreachable operation

10: return (b);

11: }

Note: line 9 cannot be reached because the condition (b < 0) is always false. Therefore, no

division by zero can occur on this line.

3.2.4. Standard comments and justifications

Some of the SQRs defined in this document require some operation to be concluded as proven safe or
justified:

- Coding rules violations shall be corrected or justified (SQR-160 , SQR-180);
- Reviews of potential runtime errors should be performed with a defined review coverage1

depending on the objective, and deviations should be corrected or justified (SQR-240 SQR-250
SQR-260).

For runtime errors the review coverage is defined by a percentage, indicated after the runtime error
category (example: “Division by zero: 80%”) which represents the number of operations concluded as
proven safe or justified.

These conclusions could be performed:

- Automatically (with a tool);

- Partially automatically and completed manually;

- Totally manually.

Example: let‟s take an application containing 60 divisions. Let‟s assume that the review coverage objective
is “Division by zero: 80%”. Then the 80% review coverage can be reached by proving that at least 80% of
the divisions are “safe operations” or “potential runtime errors” that can be justified.

Let‟s consider that a tool is used, which proves automatically that 45 divisions out of the 60 are “safe
operations”. The review objective can be reached by demonstrating that at least 3 “potential errors” can be
justified, because (45 + 3) / 60 = 80%.

To ease the justification review process:

 The status of the systematic and potential errors, and optionally the next action shall be provided;

 The criticality of the systematic and potential errors leading to the violation of a quality requirement
shall be defined.

1
 Review coverage objectives are defined later in the document, in the paragraphs where corresponding SQR are

described.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 10/28

SQR-90 The supplier shall provide a normalized status for systematic and potential
errors

This could be done by assigning a status to systematic and potential errors from the following list:

- “Undecided”: no status assigned yet. This status is used to explicitly defer the decision about the
systematic or potential error;

- “Investigate”: the potential error should be investigated further. This status can be useful for
example if the investigation has to be conducted by someone else later;

- “Fix”: the error must be fixed;
- “Modify code/model”: the code should be modified to make the systematic or potential error

disappear. If the code is automatically generated from a model, the model should be modified.
The status is different from “Fix” in that the reviewer may want the code to be modified even if the
error does not lead to the violation of a quality requirement;

- “Restart with different options”: in the case of a potential error produced by a tool, this status
can be used when the tool should be used with a different set of options or a different
configuration;

- “Justify with code/model annotations”: this status may be used when the supplier wants the
justification of the potential error to be persistent;

- “No action planned”: this status may be used when the supplier doesn‟t plan to do any action
with regards to the potential error. This status may be used in conjunction with a comment
explaining why no action is planned.

Notes:

- A status of “No action planned” or “Justify with code/model annotations” leads to the
potential error being justified in the sense of SQR-160 SQR-180 SQR-240 SQR-250 and SQR-
260 .

- A status of “Undecided”, “Investigate”, “Fix”, “Modify code/model” or “Restart with different
options” leads to the potential error being not justified in the sense of SQR-160 SQR-180 SQR-
240 SQR-250 and SQR-260 .

- The supplier may add other statuses, and negotiate with the car manufacturer to determine if the
statuses allow the justification or not of a potential error.

SQR-100 The supplier shall provide the criticality of systematic and potential errors
leading to the violation of a quality requirement

A criticality shall be provided for all systematic and potential errors leading to the violation of a quality
requirement:

- The possible criticalities are high, medium and low.
- The criticality shall at least be provided for systematic and potential errors with statuses “Fix” and

“Modify code/model”.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 11/28

3.3. Detailed design description

The information provided in this section will help evaluate the architecture of the application and its
maturity. This will form the basis for the following sections of the document.

3.3.1. Application level

SQR-110 The supplier shall describe the architecture of the application

This shall contain at least:

 List of software modules

 How modules relate to one another

 Number of source files

 Number of header files

3.3.2. Module level

SQR-120 The supplier shall describe the structure of each module

This shall contain at least:

 List of source files used by each module

 List of header files with the file scope. Scope can be one of private, public or external.
o „Private‟ means used only by one module
o „Public‟ means used by several modules but developed internally
o „External‟ means header files provided by the operating system, compiler, device drivers or

other header files which are not the intellectual property of the supplier.

3.3.3. File level

SQR-130 For each file the supplier shall provide information describing it

This shall contain at least:

 File (source and header) version based on the file management (revision control) system of the
supplier.
N.B.: If the versioning is only managed at module level the supplier should only provide this

information.

 Indicate the origin of each file, for example:
 COTS
 generated code
 hand-written code
 if other, give details

N.B.: If the entire module has the same origin the information should be provided at the module
level.

 Number of lines.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 12/28

3.4. Code metrics

This paragraph shall help the automotive manufacturer evaluate the module characteristics and better
understand the methods and tools used to demonstrate the application quality regarding the absence of
runtime errors.

A recommended way is to provide the following metrics:

 Comment Density: relationship of the number of comments to the number of statements;

 Number of paths;

 Number of goto statements;

 Cyclomatic complexity “v(G)”;

 Number of Calling Functions per Function;

 Number of Called Functions per Function;

 Number of Function Parameters;

 Number of Instructions per Function;

 Number of call Levels;

 Number of return points within a function;

 Stability index: supplies a measure of the number of changes between two versions of a piece of
software;

 Language Scope: indicator of the cost of maintaining/changing functions;

 Number of recursions.

Note 1: requirements related to comments in the code are optional on generated code and COTS.

Note 2: following metrics above would provide a high coverage of the metrics defined by the HIS1

initiative.

SQR-140 The automotive manufacturer and the supplier shall choose at the beginning
of the project the code metrics that will be used

SQR-150 For the chosen metrics, the supplier shall demonstrate that the modules
comply with the agreed boundary limits, or justify the deviations

3.5. MISRA rules subsets

Two subsets of MISRA rules are defined. These two subsets correspond to different quality objectives;
they are not to be used as different steps in reaching the final quality.

1
 HIS: Hersteller Inititiative Software. Initiative from German automotive manufacturers (Audi, BMW Group,

DaimlerChrysler, Porsche and Volkswagen) whose goal is the production of agreed standards within the area of
standard software modules for networks, development of process maturity, software test, software tools and
programming of ECU‟s. HIS specifies a fundamental set of Software Metrics to be used in the evaluation of software.
See http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf

http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 13/28

3.5.1. The first MISRA rules subset

Here is the first MISRA rules subset for C code, according to MISRA-C:2004.

A part of this subset is applicable for automatically generated code according to MISRA AC AGC.

An equivalent subset is applicable to C++ code, according to MISRA-C++:2008: for each C rule, the
numbers of the closest C++ rules are provided in the last column of the table.

MISRA-C description
MISRA-C
number

MISRA-C
classif.

MISRA AC
AGC

MISRA-C++
equivalent

Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier

5.2 required OBL 2-10-2

The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage

8.11 required OBL 3-3-2

When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization

8.12 required OBL 3-1-3

Conversions shall not be performed between a pointer to object
and any type other than integral type, another pointer to object
type or a pointer to void

11.2 required OBL 5-2-8

A cast should not be performed between a pointer type and an
integral type

11.3 advisory OBL 5-2-9

The underlying bit representations of floating-point values shall
not be used

12.12 required OBL 3-9-3

Floating-point expressions shall not be tested for equality or
inequality

13.3 required 6-2-2

The controlling expression of a for statement shall not contain any

objects of floating type
13.4 required 6-5-1

The three expressions of a for statement shall be concerned only
with loop control

13.5 required
6-5-2
6-5-3
6-5-4

The goto statement shall not be used. 14.4 required
6-6-1
6-6-2
6-6-4

A function shall have a single point of exit at the end of the
function

14.7 required OBL 6-6-5

Functions shall not be defined with a variable numbers of
arguments

16.1 required OBL 8-4-1

Functions shall not call themselves, either directly or indirectly 16.2 required OBL 7-5-4

A pointer parameter in a function prototype should be declared as
pointer to const if the pointer is not used to modify the addressed
object

16.7 advisory 7-1-2

>, >=, <, <= shall not be applied to pointer types except where
they point to the same array

17.3 required OBL 5-0-18

Array indexing shall be the only allowed form of pointer arithmetic 17.4 required 5-0-15

The declaration of objects should contain no more than 2 levels of
pointer indirection

17.5 advisory 5-0-19

The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object
has ceased to exist

17.6 required OBL
7-5-1
7-5-2

An area of memory shall not be reused for unrelated purposes 18.3 required N/A

Unions shall not be used 18.4 required OBL 9-5-1

Dynamic heap memory allocation shall not be used 20.4 required 18-4-1

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 14/28

In case of C++ code, the above list is completed by the following subset of MISRA-C++:2008:

As a summary, the numbers of coding rules for the first subset are:

- 21 for C language
- 12 for automatically generated code
- 39 for C++ language

SQR-160 The supplier shall demonstrate that all the files within a module are compliant
with the “first MISRA rules subset”. The supplier shall correct or justify all
violations of the rules

The objective is to correct or justify all violations, i.e. zero remaining violations produced by the tool or
remaining violations unjustified.

MISRA-C++ description
MISRA-C
number

MISRA-C++
classif.

MISRA AC
AGC

MISRA-C++
number

A base class shall only be declared virtual if it is used in a
diamond hierarchy.

N/A required N/A 10-1-2

An accessible base class shall not be both virtual and non-virtual
in the same hierarchy.

N/A required N/A 10-1-3

There shall be no more than one definition of each virtual function
on each path through the inheritance hierarchy.

N/A required N/A 10-3-1

Each overriding virtual function shall be declared with the virtual
keyword.

N/A required N/A 10-3-2

A virtual function shall only be overridden by a pure virtual
function if it is itself declared as pure virtual.

N/A required N/A 10-3-3

Control shall not be transferred into a try or catch block using a
goto or a switch statement.

N/A required N/A 15-0-3

An empty throw (throw;) shall only be used in the compound-
statement of a catch handler.

N/A required N/A 15-1-3

Handlers of a function-try-block implementation of a class
constructor or destructor shall not reference non-static members
from this class or its bases.

N/A required N/A 15-3-3

A class type exception shall always be caught by reference. N/A required N/A 15-3-5

Where multiple handlers are provided in a single try-catch
statement or function-try-block for a derived class and some or all
of its bases, the handlers shall be ordered most-derived to base
class.

N/A required N/A 15-3-6

Where multiple handlers are provided in a single try-catch
statement or function-try-block, any ellipsis (catch-all) handler
shall occur last.

N/A required N/A 15-3-7

If a function is declared with an exception-specification, then all
declarations of the same function (in other translation units) shall
be declared with the same set of type-ids.

N/A required N/A 15-4-1

A class destructor shall not exit with an exception. N/A required N/A 15-5-1

Where a function's declaration includes an exception-
specification, the function shall only be capable of throwing
exceptions of the indicated type(s).

N/A required N/A 15-5-2

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 15/28

In this example 78.49% of MISRA-C:2004 rules listed in the first subset are in compliance or justified:

Rule violation commented

5.2 0 0

8.11 10 10

8.12 0 0

11.2 150 120

11.3 0 0

12.2 0 0

13.3 10 8

13.4 0 0

13.5 2 2

14.4 0 0

14.7 0 0

16.1 2 1

16.2 0 0

16.7 0 0

17.3 5 5

17.4 0 0

17.5 6 0

17.6 0 0

18.3 0 0

18.4 1 0

20.4 0 0

Total 186 146

 ratio 78,49%

SQR-170 Any modification of the first subset used shall be agreed between the supplier
and the automotive manufacturer

3.5.2. The second MISRA rules subset

Here is the second MISRA rules subset for C code, according to MISRA-C:2004.

A part of this subset is applicable for automatically generated code according to MISRA AC AGC.

An equivalent subset is applicable to C++ code, according to MISRA-C++:2008: for each C rule, the
numbers of the closest C++ rules are provided in the last column of the table.

MISRA-C description
MISRA-C
number

MISRA-C
classif.

MISRA AC
AGC

MISRA-C++
equivalent

typedefs that indicate size and signedness should be used in
place of the basic types

6.3 advisory OBL 3-9-2

Objects shall be defined at block scope if they are only accessed
from within a single function

8.7 required OBL 3-4-1

Braces shall be used to indicate and match the structure in the
non-zero initialization of arrays and structures

9.2 required 8-5-2

In an enumerator list, the „=‟ construct shall not be used to
explicitly initialise members other than the first, unless all items
are explicitly initialised

9.3 required OBL 8-5-3

The value of a complex expression of integer type may only be
cast to a type that is narrower and of the same signedness as the
underlying type of the expression

10.3 required
5-0-7
5-0-8
5-0-9

If the bitwise operators ~ and << are applied to an operand of

underlying type unsigned char or unsigned short, the result shall
be immediately cast to the underlying type of the operand

10.5 required 5-0-10

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 16/28

MISRA-C description
MISRA-C
number

MISRA-C
classif.

MISRA AC
AGC

MISRA-C++
equivalent

Conversions shall not be performed between a pointer to a
function and any type other than the integral type

11.1 required OBL 5-2-6

A cast shall not be performed that removes any const or volatile
qualification from the type addressed by a pointer

11.5 required OBL 5-2-5

Limited dependence should be placed on C‟s operator
precedence rules in expressions

12.1 advisory 5-0-2

The value of an expression shall be the same under any order of
evaluation that the standard permits

12.2 required OBL 5-0-1

The operands of a logical && or || shall be primary-expressions 12.5 required 5-2-1

The operands of a logical operators (&&, || and !) should be
effectively Boolean. Expressions that are effectively Boolean
should not be used as operands to operators other than (&&, ||
and !)

12.6 advisory 4-5-1

The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.9 required OBL 5-3-2

The comma operator shall not be used 12.10 required OBL 5-18-1

Assignment operators shall not be used in expressions that yield
a Boolean value

13.1 required 6-2-1

Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean

13.2 advisory 5-0-13

Numeric variables being used within a for loop for iteration
counting should not be modified in the body of the loop

13.6 required 6-5-3

The statement forming the body of a switch, while, do ... while or
for statement shall be a compound statement

14.8 required 6-3-1

All if … else if constructs shall be terminated with an else clause 14.10 required 6-4-2

The final clause of a switch statement shall be the default clause 15.3 required 6-4-6

Identifiers shall be given for all of the parameters in a function
prototype declaration

16.3 required OBL N/A

All exit paths from a function with non-void return type shall have
an explicit return statement with an expression

16.8 required OBL 8-4-3

A function identifier shall only be used with either a preceding &,
or with a parenthesised parameter list, which may be empty

16.9 required OBL 8-4-4

C macros shall only expand to a braced initialiser, a constant, a
parenthesised expression, a type qualifier, a storage class
specifier, or a do-while-zero construct

19.4 required 16-2-2

Arguments to a function-like macro shall not contain tokens that
look like pre-processing directives

19.9 required OBL 16-0-5

In the definition of a function-like macro each instance of a
parameter shall be enclosed in parentheses unless it is used as
the operand of # or ##

19.10 required OBL 16-0-6

All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives
and the defined() operator

19.11 required OBL 16-0-7

There shall be at most one occurrence of the # or ## pre-
processor operators in a single macro definition

19.12 required OBL 16-3-1

The validity of values passed to library functions shall be checked 20.3 required OBL N/A

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 17/28

In case of C++ code, the above list is completed by the following subset of MISRA-C++:2008:

As a summary, the numbers of coding rules for the first subset are:

- 29 for C language
- 16 for automatically generated code
- 36 for C++ language

SQR-180 The supplier shall demonstrate that all the files within a module are compliant
with the “second MISRA rules subset”. The supplier shall correct or justify all
violations of the rules

The objective is to correct or justify all violations, i.e. zero remaining violations produced by the tool or
remaining violations unjustified.

SQR-190 Any modification of the second subset used shall be agreed between the
supplier and the automotive manufacturer

MISRA-C++ description
MISRA-C
number

MISRA-C++
classif.

MISRA AC
AGC

MISRA-C++
number

A pointer to a virtual base class shall only be cast to a pointer to a
derived class by means of dynamic_cast

N/A required N/A 5-2-2

An object with pointer type shall not be converted to an unrelated
pointer type, either directly or indirectly

N/A required N/A 5-2-7

The comma operator, && operator and the || operator shall not be
overloaded

N/A required N/A 5-2-11

The unary & operator shall not be overloaded N/A required N/A 5-3-3

Member data in non- POD class types shall be private N/A required N/A 11-0-1

An object's dynamic type shall not be used from the body of its
constructor or destructor

N/A required N/A 12-1-1

The copy assignment operator shall be declared protected or
private in an abstract class

N/A required N/A 12-8-2

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 18/28

3.6. Systematic runtime errors

SQR-200 The supplier shall demonstrate that for all files within a module a review of
systematic runtime errors has been performed and that errors which have not
been corrected are justified, for the following categories:

 Out-of-bounds array access

 Division by zero

 Read access to non-initialized data

 Function returning non initialized value

 Integer overflow/underflow

 Float overflow

 De-referencing through null or out-of-bounds pointer

 Usage (read or dereference) of a non-initialized pointer

 Shift amount in 0..31 (0..63) and left operand of left shift is negative

 Wrong type for argument passed to a function pointer

 Wrong number of arguments passed to a function pointer

 Wrong return type of a function or a function pointer

 Wrong return type of an arithmetic function

 Non null this-pointer (C++ application only)

 Positive array size (C++ application only)

 Incorrect typeid argument (C++ application only)

 Incorrect dynamic_cast on pointer (C++ application only)

 Incorrect dynamic_cast on reference (C++ application only)

 Invalid pointer to member (C++ application only)

 Call of pure virtual function (C++ application only)

 Incorrect type for this-pointer (C++ application only)

SQR-210 For each kind of runtime error the supplier shall justify the method and the
process applied during the development phase to ensure the error’s absence

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 19/28

3.7. Non terminating function calls and loops

SQR-220 The supplier shall justify the method and the process applied during the
development phase to ensure the absence of non terminating calls and loops

Note: if the code intentionally contains:

 Non terminating loops like „while(1)‟ or „for(;;)‟

 Non terminating of calls like „exit‟, „stop‟, „My_Non_Returning_Function‟

these should be justified.

3.8. Unreachable branches

SQR-230 The supplier shall demonstrate that files do not contain any unjustified dead
code branches

Note: all defensive code and dead code intentionally contained in the application shall be justified.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 20/28

3.9. Potential runtime errors

SQR-240 The supplier shall demonstrate that for all files within a module, a review of
potential runtime errors with review coverage level 1 (lowest) has been
performed and that potential errors which have not been corrected are
justified.
See second column in table below.

SQR-250 The supplier shall demonstrate that for all files within a module, a review of
potential runtime errors with review coverage level 2 (medium) has been
performed and that potential errors which have not been corrected are
justified.
See third column in table below.

SQR-260 The supplier shall demonstrate that for all files within a module, a review of
potential runtime errors with review coverage level 3 (highest) has been
performed and that potential errors which have not been corrected are
justified.
See last column in table below.

For each SQR, the supplier shall at least reach the following objectives
identified in corresponding columns:

Potential runtime error SQR-240 SQR-250 SQR-260

Out-of-bounds array access 80% 90% 100%

Division by zero 80% 90% 100%

Read access to local non-initialized data 80% 90% 100%

Read access to non local non-initialized data 60% 70% 80%

Function returning non initialized value 80% 90% 100%

Integer overflow/underflow 60% 80% 100%

Float overflow 60% 80% 100%

De-referencing through null or out-of-bounds pointers 60% 70% 80%

Usage (read or dereference) of a non-initialized pointer 60% 70% 80%

Shift amount in 0..31 (0.63) and left operand of left shift is
negative

80% 90% 100%

Wrong type for argument passed to a function pointer 60% 80% 100%

Wrong number of arguments passed to a function pointer 60% 80% 100%

Wrong return type of a function or a function pointer 60% 80% 100%

Wrong return type for arithmetic functions 60% 80% 100%

Non null this-pointer (C++ application only) 50% 70% 90%

Positive array size (C++ application only) 50% 70% 90%

Incorrect typeid argument (C++ application only) 50% 70% 90%

Incorrect dynamic_cast on pointer (C++ application only) 50% 70% 90%

Incorrect dynamic_cast on reference (C++ application only) 50% 70% 90%

Invalid pointer to member (C++ application only) 50% 70% 90%

Call of pure virtual function (C++ application only) 50% 70% 90%

Incorrect type for this-pointer (C++ application only) 50% 70% 90%

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 21/28

3.10. Dataflow Analysis

SQR-270 The supplier shall provide for each module the data flow analysis results

This shall contain at least:

 Component call tree

 Dictionary containing read/write accesses to global variables

 List of shared variables and their associated concurrent access protection (if any)

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 22/28

4. REQUIREMENT MAPPING WITH ISO 26262-6:2011

4.1. Purpose and scope

This section describes a possible way to fulfill some ISO 26262 objectives at the software level.

It provides guidance for compliance with methods defined by ISO 26262. It describes how and in
which detail to comply with ISO requirements, includes methods to verify code, and traces with ISO
26262 tables and paragraphs.

4.2. Summary

The table below summarizes the proposed mapped sections or tables of ISO 26262 with SQR groups.
It also summarizes in the comment column what the SQO document can help achieving in context of
the ISO 26262 verification process.

The mapping with the ISO standard can be of two different kinds:

 Mapping with tables: the SQR can trace with some specific methods of the tables.

 Mapping with sections: the SQR can help address part of the requirements of the sections.

The proposed requirements which the document helps to fulfill are the following:

 Avoid non-deterministic, implementation-defined, or undefined behavior.

 Achieve non functional requirement such as software robustness.

 ISO 26262 section ISO ref SQR Comment

M
a

p
p

in
g

 w
it

h

ta
b

le
s

#5. Initiation of product
development at the
software level

• Table 1 • 140 to 190
• 270

The application of these SQRs can help support
the correctness of the design and implementation

#8. Software unit design
and implementation

• Table 8
• Table 9

• 50 to 80
• 140 to 200
• 220
• 240 to 270

The application of the SQO document enables to
comply with the requirements defined in table 8
and 9

M
a

p
p

in
g

 w
it

h
 s

e
c

ti
o

n
s

#9. Software unit testing • Section 9.4.3 • 200 to 270 The application of the SQO document enables to
reduce unit tests, such as

• absence of unintended functionality;
• robustness;

The example in §9.4.3.e mentions “absence of
inaccessible software”, which is covered by SQR-
230.
The note b of Table 10 mentions the need to
detect errors in case of “corrupting values of
variables”. This is covered by SQR-200 to SQR-
260 if full range is used for inputs of the
application

#10. Software
integration and testing

• Section
10.4.3

• 230 The application of the SQO document enables to
reduce integration and testing, such as

• Robustness
The example in §10.4.3.d mentions “absence of
inaccessible software”, which is covered by SQR-
230.

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 23/28

4.3. Details

Note 1: in this section, MISRA-C:2004 rules are provided as examples. The equivalent mapping is
available for C++ by looking at the MISRA-C++:2008 corresponding rules in section 3.5.

Note 2: all SQRs from column “Related SQRs” shall be applied to cover the corresponding ISO 26262
Method or Section.

4.3.1. Section 5: Initiation of product development at the software level

Table 1 – Topics to be covered by modeling and coding guidelines

Methods Related SQRs Comments

1a Enforcement of low
complexity

140, 150 One purpose of code metrics and their boundaries is to
ensure a low complexity of software

1b Use of a language subset 160, 170, 180,
190

Both MISRA subsets defined in paragraph 3.5 contain rules
ensuring the use of a subset of C and C++ languages.

For example: 12.10, 13.1, 14.4, 18.4, …

1c Enforcement of strong
typing

160, 170, 180,
190

Both MISRA subsets defined in paragraph 3.5 contain rules
ensuring a strong typing in C and C++ languages.

For example: 6.3, 8.12, 11.1, 16.7, 17.5, …

1d Use of defensive
implementation techniques

160, 170, 180,
190

Second MISRA subset defined in paragraph 3.5 contain
rules ensuring defensive programming in C and C++
languages.

For example: 14.10, 15.3, …

1e Use of established design
principles

160, 170

180, 190

Both MISRA subsets defined in paragraph 3.5 contain rules
ensuring the use of established design principles.

For example: 8.7, 16.2, 16.8, 17.5, …

1h Use of naming conventions 270 The Data Dictionary enables to review naming conventions
on global variables

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 24/28

4.3.2. Section 8: Software unit design and implementation

Table 8 – Design principle for software unit design and implementation

Methods Related SQR Comments

1a One entry and one exit
point in subprograms and
functions

160, 170 MISRA rule 14.7

1b No dynamic objects or
variables, or else online
test during their creation

160, 170 MISRA rule 20.4

1c Initialization of variables 200, 240, 250,
260

This measure of the table can be traced with the runtime
errors results, such as

 “Read access to local non-initialized data”

 “Read access to non local non-initialized data”

1d No multiple use of
variables names

160, 170 The enforcement of MISRA rule 5.2 help detect variables
with same name in nested scopes

1e Avoid global variables or
else justify their usage

160, 170,

180, 190,

270

 The Data Dictionary containing read/write accesses
to global variables provided during Dataflow analysis
can help in implementing this rule

 The enforcement of MISRA rules 8.11 and 8.7 can
help detect variables whose scope should not be
global

1f Limited use of pointers 160, 170,

180, 190

Both MISRA subsets defined in paragraph 3.5 contain rules
ensuring the use of established design principles.

For example: 11.1, 11.2, 11.3, 11.5, 16.7, 17.3, 17,4, 17.5,
17.6, …

200, 240, 250,
260

This measure of the table can be traced with the runtime
errors results, such as

 “De-referencing through null or out-of-bounds pointer
“

 “Usage (read or dereference) of a non-initialized
pointer”

 Function pointer with invalid dynamic arguments

1g No implicit type
conversions

160, 170, 180,
190

Both MISRA subsets defined in paragraph 3.5 contain rules
ensuring the use of established design principles.

For example: 11.1, 11.2, 11.3, 11.5

1h No hidden data flow or
control flow

160, 170 MISRA rule 5.2

1i No unconditional jumps 160, 170 MISRA rule 14.4

1j No recursions 140, 150

160, 170

MISRA rule 16.2

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 25/28

Table 9 - Methods for the verification of software unit design and implementation

Methods Related
SQR

Comments

1a Walk-through 200, 240 This measure of the table can be partially supported by
output of SQRs 200 and 240: as soon as the list of potential
runtime errors is produced, it can be walked through

1b Inspection 200, 240,
250, 260,
270

This measure of the table can be partially supported by
output of SQRs 200, 240 to 260 and 270. The code can be
inspected with a highlight of systematic and potential runtime
errors.

Data Dictionary and Call Tree of the component can also be
inspected to detect any issue.

1d Formal verification 200, 240,
250, 260

Absence of runtime errors such as divisions by zero or
overflows is an implicit specification of systems.

Proving their absence is part of proving the correctness of a
system against this implicit specification.

This method is partially covered, because C and C++ are not
formal notations.

1e Control flow analysis 110-120 This measure of the table can be partially provided by output
of SQR 110 – 120 (application level and file level
description)

Remark: as mentioned in note „c‟ of Table 9, this requirement
can be covered by using a method based on Formal
verification („1d‟) or Semantic code analysis („1h‟)

1f Data flow analysis 270 It is the aim of SQR 270

Remark: as mentioned in note „c‟ of Table 9, this requirement
can be covered by using a method based on Formal
verification („1d‟) or Semantic code analysis („1h‟)

1g Static code analysis 140,

160, 170,

180, 190

Complexity metrics and MISRA rules checking help to fulfill
this measure of the table

1h Semantic code analysis 70, 200,

240, 250,
260

Runtime error detection by Abstract Interpretation is a
Semantic Code Analysis, as defined by the note „d‟ of Table
9.

4.3.3. Section 9: Software unit testing

This section describes a possible way to fulfill the requirements defined in the section 9.4.3 of ISO 26262:

ISO unit testing objective

(“shall be applied to demonstrate that
the software units achieve: …”)

Related
SQR

Comments

d. confidence in the absence of
unintended functionality

230 Controlling the presence/absence of inaccessible pieces of
code will help to detect the presence/absence of unintended
functionality

200, 240,
250, 260

Covering these SQRs help to reduce undefined behaviors
which produce unintended functionalities.

For example unknown values produced by components, due
to data not initialized or out-of-bound array accesses.

Functional tests (unit and integration) can then be focused
on the functionality of the program

e. robustness 200, 240, Analysis and correction or justification of real/potential run-

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 26/28

250, 260 time errors will avoid some complex errors. It will help to
ensure the production of a robust code.

For example division by zero and dereferencing a NULL
pointer variable.

If SQR 200 to 260 are fulfilled, the applicant might consider focusing the software unit testing methods
listed in tables 10, 11 and 12 on the other objectives defined in section 9.4.3. These objectives are listed
below for information:

a. Compliance with the software unit design specification
b. Compliance with the specification of the hardware-software interface
c. The specified functionality (complement to previous activity)
f. Sufficient resources to support their functionality

4.3.4. Section 10: Software integration and testing

The application of the SQO document can help to demonstrate that the software components achieve the
following objective defined in the section 10.4.3 of the ISO 26262 standard:

d. robustness

Therefore the applicant might consider focusing the software integration testing methods listed in tables
13, 14 and 15 on the other objectives defined in section 10.4.3, if SQR 140 to 270 are fulfilled. These
objectives are listed below for information

a. compliance with the software architectural design
b. compliance with the specification of the hardware-software interface
c. the specified functionality
e. sufficient resources to support the functionality

4.4. Traceability SQO levels / ISO 26262 requirements

To ease the reading of the traceability matrix next page, the SQRs associated with each SQO level are
provided again in the following table:

SQO level SQRs

SQO-1 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170

SQO-2 Idem SQO-1, 200, 210, 220

SQO-3 Idem SQO-2, 230

SQO-4 Idem SQO-3, 240

SQO-5 Idem SQO-4, 180, 190, 250

SQO-6 Idem SQO-5, 260, 270

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 27/28

The following table lists which ISO 26262 requirements are covered for all SQO levels. It is also
mentioned if the requirement is not, fully or partially covered.

ISO 26262 objective
SQO level

required

No/Partial/

Full

coverage
Table Method

Table 1

T
o

p
ic

s
 t
o

 b
e
 c

o
v
e

re
d

 b
y

m
o

d
e
lin

g
 a

n
d

 c
o

d
in

g

g
u

id
e
lin

e
s

1a Enforcement of low complexity SQO-1 Full

1b Use of language subsets SQO-5 Full

1c Enforcement of strong typing SQO-5 Full

1d Use of defensive implementation techniques SQO-5 Partial

1e Use of established design principles SQO-5 Partial

1f Use of unambiguous graphical representation N/A No

1g Use of style guides N/A No

1h Use of naming conventions SQO-6 Partial

Table 2 Notations for software architectural design N/A No

Table 3 Principles for software architectural design N/A No

Table 4 Mechanisms for error detection at the software architect. level N/A No

Table 5 Mechanisms for error handling at the software architectural level N/A No

Table 6 Methods for the verification of the software architectural design N/A No

Table 7 Notations for software unit design N/A No

Table 8

D
e
s
ig

n
 p

ri
n

c
ip

le
s
 f

o
r

s
o
ft

w
a
re

u
n

it
 d

e
s
ig

n
 a

n
d

 i
m

p
le

m
e

n
ta

ti
o
n

 1a One entry and one exit point in subprograms and functions SQO-1 Full

1b
No dynamic objects or variables, or else online test during
their creation

SQO-1 Partial

1c Initialization of variables SQO-6 Full

1d No multiple use of variables names SQO-1 Partial

1e Avoid global variables or else justify their usage SQO-6 Partial

1f Limited use of pointers SQO-6 Full

1g No implicit type conversions SQO-5 Full

1h No hidden data flow or control flow SQO-1 Partial

1i No unconditional jumps SQO-1 Full

1j No recursions SQO-1 Full

Table 9

M
e

th
o

d
s
 f
o

r
th

e

v
e

ri
fi
c
a
ti
o

n
 o

f
s
o

ft
w

a
re

u
n

it
 d

e
s
ig

n
 a

n
d

im
p

le
m

e
n

ta
ti
o

n

1a Walk-through SQO-4 Partial

1b Inspection SQO-6 Partial

1c Semi-formal verification N/A No

1d Formal verification SQO-6 Partial

1e Control flow analysis SQO-1 Partial

1f Data flow analysis SQO-6 Full

1g Static code analysis SQO-5 Full

1h Semantic code analysis SQO-6 Full

Table 10 Methods for software unit testing N/A No

Table 11 Methods for deriving test cases for software unit testing N/A No

Table 12 Structural coverage metrics at the software unit level N/A No

Table 13 Methods for software integration testing N/A No

Table 14 Methods for deriving test cases for software integration testing N/A No

Table 15 Structural coverage metrics at the software architectural level N/A No

Table 16 Test environments for conducting the software safety requirements verification N/A No

Software Quality Objectives

Software Quality Objectives for Source Code – Version 3.0 page 28/28

COTS: Commercial, off-the-shelf is a term for software or hardware, generally technology
or computer products, that are ready-made and available for sale, lease, or license to
the general public. They are often used as alternatives to in-house developments or
one-off government-funded developments. The use of COTS is being mandated
across many government and business programs, as they may offer significant
savings in procurement and maintenance. However, since COTS software
specifications are written by external sources, government agencies are sometimes
wary of these products because they fear that future changes to the product will not be
under their control.

Manufacturer: is a company that uses a component made by a second company in its own
product, or sells the product of the second company under its own brand. It constitutes
a federally-licensed entity required to warrant and/or guarantee their products, unlike
"aftermarket" which is not legally bound to a government-dictated level of liability.

HIS: Hersteller Inititiative Software. Initiative from German automotive manufacturers
(Audi, BMW Group, DaimlerChrysler, Porsche and Volkswagen) whose goal is the
production of agreed standards within the area of standard software modules for
networks, development of process maturity, software test, software tools and
programming of ECU‟s.

 HIS specifies a fundamental set of Software Metrics to be used in the evaluation of
software.

 See http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf

Supplier: automotive components manufacturer.

SQO: Software Quality Objectives

SQR: Software Quality Requirement

http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf

