
2005-01-1357

Measuring Productivity and Quality in Model-Based Design

Arvind Hosagrahara
Technical Consultant (The MathWorks, Inc.)

Paul Smith

Managing Consultant (The MathWorks, Inc.)

Copyright © 2004 SAE International

ABSTRACT

Accurate measurements of productivity and quality are
essential for balancing workload, creating predictable
schedules and budgets, and controlling quality.
Traditional software development processes include
well-established methods for measuring productivity and
quality. These include Lines of Code (LOC). With the
introduction of Model-Based Design, organizations
require a different measure of the software development
process.

INTRODUCTION

A measure of the size of a software application, LOC is
the foundation for productivity measurements (LOC/unit
work) and quality measurements, such as defect
densities (defects/LOC).

With the introduction of Model-Based Design,
organizations require a different measure of the software
development process. For example, Model-based
Design enables automatic code generation from
graphical models. This means that the average engineer
can produce remarkably more LOC per unit time than is
possible with hand coding, with virtually no software
coding defects. While these productivity gains are
grounded in real process improvements, new metrics are
required to properly instrument and measure those
improvements.

The automatic capture of process metrics in a modern
development process increases data accuracy and
overall productivity. Practical experience has shown that
an organization quickly learns to "manage" metrics
captured manually to produce mandated improvements,
often without improving the underlying process.
Additionally, requiring developers to manually capture a
comprehensive set of process metrics can burden and
distract them from their primary work. Model-Based
Design offers the capability to automatically extract
metrics, minimizing cost, time to market, and avoidance
of quality-related issues.

This article describes an automatic, noninvasive
measurement technique for gathering accurate metrics.
We describe specific measurements that should be
captured when using Model-Based Design and introduce
a free tool that can capture these process metrics in the
Simulink® and Stateflow® environment.

OVERVIEW OF MODEL-BASED DESIGN

At the heart of Model-Based Design are Simulink
models, graphical, hierarchical, executable block
diagram representations of the physical system, the
environment, and algorithm behavior (a control or signal
processing and communications application).

The models provide:

• A behavioral description of the embedded software—
the physical objects and environment upon which it
acts

• An executable specification that can be tested using
simulation to ensure that it meets all functional
requirements

• A tool that enables the design team to communicate
information about the design

• A specification from which real-time software code
can be automatically generated for testing,
prototyping and embedded implementation

• Automatically generated code that can be used by
itself or integrated with other code to form the
complete embedded application

Model-Based Design enables design engineers to
quickly evaluate multiple design options by testing and
optimizing their algorithms in the modeling environment
before they deploy them as an embedded system,
reducing design time and development and
implementation costs.

Because the design engineer is working in a simulation
environment, design iterations are often much faster and
more flexible. Design options are validated and tested by
tracking the behavior of the design via simulated tests.
Once the system is optimized and performance meets
expectations, the model is used to build a hardware-
based real-time prototyping system for testing.

When the design meets specifications, the Simulink
model can be used to generate production-quality code
using Real-time Workshop® and Real-Time Workshop
Embedded Coder. This stage often involves a rigorous
test process before final system deployment.

The engineering process followed by many modern
control system development organizations can be
described through the “V” design and development
diagram shown in Figure 1.

System
Design

System

Test

System

Test

Field

Deployment

Field

Deployment
Exchange models

with customers

Design

Validation

Embedded

S/W

Embedded

S/W

Unit TestUnit TestReal-Time

Prototype

HIL Plant
Simulator

Figure 1. The design "V" process.

The “V” is a two-dimensional view of a development
process in which the x-axis represents time and the y-
axis, abstraction. As you move down the left-hand side of
the V you add more detail to the design, with
implementation at the vertex. As you move up the right-
hand side of the V, you reach increasing levels of
integration and test, culminating in a working product.
Formal process measurements are required at each step
of the “V” design cycle.

With Model-Based Design, a project that could take
months to complete using a traditional development
process iterates through the various phases of the “V”
process in hours or days. This increase in efficiency
enables the rapid evolution of designs and promotes a
spiral development method or one where rapid iterations
occur, zeroing in on the final design solution.

The diagram in Figure 2 shows the major process
elements used in Model-Based Design. These elements
can be mapped onto the “V,” a waterfall process model
[2, 3], or any other development process.

Figure 2. Major elements of Model-Based Design.

TRADITIONAL EMBEDDED SOFTWARE
METRICS

Most organizations that work in a C or C++ embedded
software development environment use a variety of tools
to measure effort and productivity. These include LOC,
used with the popular Constructive Cost Model(s)
(COCOMO) [4]. Other common metrics include the
change in LOC from one design iteration to the next,
computational complexity, and time spent per design
task. These metrics are usually collected manually or
semi-automatically.

An organization that uses a traditional design approach
will typically measure the following:

SYSTEM DESIGN

• Time required to produce each design iteration

• Total number of design iterations required

• Number of defects introduced

• Time required to repair design defects

• Number of functional requirements

• Number of functional test scenarios

• Objective measures of design size and complexity

DESIGN VALIDATION

• Time required to produce each design iteration

• Number of defects introduced

• Time required to repair design defects

• Number of test scenarios simulations run

• Time required to run each test scenario simulation

• Total number of design iterations required

EMBEDDED SOFTWARE

• Number of System Lines of Code (SLOC or LOC)

• Time required to generate code or implement
functionality (Time/LOC)

• Defects introduced per LOC

• Time required to repair each software defect
UNIT TEST

• Number of test cases

• Time required to prepare each test case

• Number of defects detected in each test case

• Time required to run each test case

• Time required to repair each defect

• Defect detection and removal efficiency

SYSTEM TEST

• Time required to execute each test case

• Number of defects detected in each test case

• Time required to repair each defect

• Defect detection and removal efficiency

FIELD DEPLOYMENT

• Number of defects detected

• Time or cost to fix each defect

• Measurements in Model-Based Design

With Model-Based Design, traditional metrics can result
in misleading conclusions. For example, code is
generated automatically, producing thousands of LOC in
minutes. As a result, using LOC to measure design effort
and time invested can produce a misleading result. To
measure process efficiencies accurately, metrics
systems must emphasize upstream design activities in
the modeling environment.

For example, in Model-Based Design, a task such as
switching the structure of a controller from a PID loop to
a feed-forward network typically takes a few mouse
clicks in a model. (In a traditional process, the software
designer would need to rework large sections of code, a
time-consuming and error-prone operation.) This small
change in the modeling environment could result in the
modification of several thousand lines of generated code,
skewing productivity and quality metrics while failing to
capture the actual time or effort invested in making the
modification.

For certain processes, such as the Design for Six Sigma
(DFSS), performance measurement depends on the
ability to quantitatively track and manage projects (both
individually and collectively) [5]. When Model-Based
Design is employed in a DFSS project to meet
productivity and quality objectives, it is essential to
accurately measure the actual effort required [6].

Model-Based Design uses the following measurements
of process efficiency and productivity:

• Development time schedules and performance
against those schedules

• Modeling development resource requirements and
associated costs

• Model size, complexity, and functionality

• Model quality

• Size of the automatically generated code

• Simulation speed and overall time spent simulating
models

• Collecting structural coverage metrics directly from
the model

Development Time Schedules

Model-Based Design requires specific measurements of
each item in a development plan. Project managers set
development schedules at the outset of a project and
track them using one of several commercially available
tools. Once the project is initiated, the developers must
link schedule requirements to actual progress. In Model-
Based Design, they can do this by linking specific model
components to line items in a schedule and maintaining
and reporting status in the form of percent complete or
some other objective measure. Simulink provides
documented and open APIs that enable users to develop
interfaces and extensions for tracking these types of
items

Modeling Development Resource Requirements

To predict modeling resource requirements, the project
manager must estimate both the size of the model
required and modeling productivity. Such estimates
depend on a historical account of modeling efforts and
rates of development. Project complexity also affects
resource requirements and overall productivity. In Model-
Based Design, two metrics are used to obtain these
measurements:

Objective measure of model content—can include model
block counts and the numbers of signals, layers in the
hierarchy, block parameters, states, masked blocks and
mask parameters, state transition diagrams, events, and
specific types of blocks. A weighted sum of all these
measures is useful in measuring overall content.

Time required to produce content—must be estimated or
measured by the engineers doing the work.

Model Complexity

The key to making a practical measurement process
work is to design a mechanism for computing and
measuring complexity and then keep that metric stable
throughout the project. It is tempting to continually refine
a complexity measurement to get the “right” or “best”
metric, but evolution of this measure will result in
different measurements for the same model, leading to
schedule and resource allocation errors. At the end of
each project, it is appropriate to review and refine the
measurement system, as long as one can go back into
the historical record and make new measurements on
previously archived blocks of functionality.

Model Quality

Model quality is measured by defect densities, which
must be calculated by the engineers who track design
performance and functionality. This can take the form of
number of defects detected per unit time or defects per

unit size of the model. Automation of this measure
enables an organization to implement advanced
automated testing procedures.

Code Size

Traditional tools can be used to measure the size of
automatically generated code. This metric is important
only during the transition to Model-Based Design, to
demonstrate the effectiveness of Model-Based Design to
product development managers. It is also relevant when
operating in a memory-space-constrained target.
Modeling effort can be linked to LOC to highlight the
productivity gains achieved over traditional hand coding.
Code size and modeling effort measurements should be
presented together to show productivity metrics.

Simulation Speed and Structural Coverage

To enable accurate objective measurements, simulation
speed should be measured and a ratio between model
size or complexity (or both) and absolute speed should
be reported, together with platform-specific parameters
such as CPU type and speed and RAM space.

Additionally, an objective measure of the total time spent
simulating models should be captured to ensure
thorough model execution. Project managers will soon
question why models are being created, if they are not
being used to simulate alternative designs or validation
and verification scenarios, or for advanced tuning and
optimization of controls. If batch simulations are used for
validation and verification, this must also be noted, as the
engineers participate only in the set-up and post analysis
of the results.

The Simulink Accelerator, a Simulink companion product
for accelerating and optimizing model performance, can
collect performance data while simulating the model. The
resulting simulation profile report shows how much time
Simulink takes to execute each simulation method,
highlighting efforts to optimize model simulation speed.

Structural coverage metrics collected at the model level
are an important measure of the quality and
completeness of the test cases being developed, and
provide ideas for algorithm optimization. Simulink
Verification and Validation, another Simulink companion
product, provides a measure of cyclomatic complexity, a
measure of the structural complexity of the model. It
approximates the McCabe complexity measure [2, 7] for
code generated from the model.

The final section of this article describes a custom tool
that was designed to measure the time and effort spent
modeling with Simulink and Stateflow. The tool was built
based on an aggregation of customer process
measurement requirements, using MathWorks products.

THE MODELING METRIC TOOL

Several process measurement techniques are standard
in the embedded systems development community.
These include Practical Software and System
Measurement (PSM) [8] and Software Engineering
Measurement and Analysis (SEMA) [9]. They are used to
feed a variety of process management techniques, such
as Six Sigma initiatives and the Capability Maturity Model
for Software (SW- CMM or CMMI).

In Model-Based Design, gathering accurate metrics is
essential to process improvement. A high-level graphical
design environment such as Simulink or Stateflow lets
you automatically gather accurate measurements that
accurately reflect the effort invested in algorithm design.
The automated measurement of these metrics minimizes
human error and ensures meaningful, usable, and stable
results.

The Modeling Metric Tool is a graphical user interface
(GUI) that enables you to quantitatively measure the
content of a Simulink and Stateflow model and
incorporate these metrics into a development process
measurement system. A detailed description of the tool
is provided in the user manual, part of the download
package available on MATLAB Central.

The Modeling Metric Tool supports:

• Model-Based Design in Simulink and Stateflow

• Structural modeling features, such as libraries and
charts

• Automated capture of input activity and time spent
on various tasks

• Automated analysis and documentation of captured
metrics

It provides the following functionality:

• Enables customization of the tool and metrics for
different applications and projects

• Supports Simulink and Stateflow with no other
product dependencies

• Works with semi-complete models (that do not
simulate)

• Works with models with incomplete library linkage
information (broken links or partial components of
large models)

• Supports custom masked blocks

• Extracts in-depth measurement of the Stateflow
content

• Reports details of hand-written custom code
included with Stateflow

• Enables quantitative capture of all input activity for
the automatic measurement of person-effort in
developing the model

• Generates reports and analysis plots

One of the most important measurements that the tool
provides is the measurement of the model functional
content. This set of metrics, when combined with metrics
from the task time tracker and the journal, gives a

detailed picture of the productivity and effort involved in
developing a model.

CONCLUSION

Measuring content, effort, and time in Model-Based
Design poses new challenges. The techniques and
metrics described in this article and demonstrated in the
Modeling Metric Tool can help capture these
measurements and can be used as an integral part of
any process improvement cycle.

REFERENCES

1. The MathWorks Inc. (2004), A Model-Based Design
Approach . Retrieved June 22, 2004 from
www.mathworks.com/applications/controldesign/des
cription/index.html

2. Stephen R. Schach, "The Waterfall Model,"
Software Engineering , Richard D. Irwin Inc. and
Aksen Associates Inc (1990).

3. W. W. Royce, "Managing the development of large
software systems: Concepts and Techniques,"
Proceedings of WestCon (August 1970).

4. B. Boehm, Software Engineering Economics ,
Prentice Hall (1981).

5. Michael Harry Ph.D. and Richard Schroeder, Six
Sigma , DoubleDay Publications (2000).

6. Forest W. Breyfogle III , Implementing Six Sigma,
Smarter Solutions using Statistical Methods - 2nd
Ed , © John Wiley and Sons (2003).

7. T. J. McCabe, "A Complexity Measure," IEEE
Transactions on Software Engineering SE-2,
(December 1976).

8. Practical Software and System Measurement, A
Foundation for Objective Project Management ,
Retrieved June 22, 2004 from
www.psmsc.com/Default.asp.

9. Carnegie Mellon Software Engineering Institute,
Software Engineering Measurement and Analysis
(SEMA). Retrieved June 22, 2004 from
www.sei.cmu.edu/sema/welcome.html.

CONTACT

Arvind Hosagrahara and Paul Smith work in the
Consulting Services Group at The MathWorks, Inc.
They can be reached at:

arvind.hosagrahara@mathworks.com
paul.smith@mathworks.com

