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Physical Modeling

enabled them to test the system under conditions that would be dif-
ficult or unsafe to test at sea.
mathworks.com/dcns

GasTOPS
Developing propulsion control algorithms for the  
USS Makin Island 
The USS Makin Island is an 850-foot-long, twin-shaft amphibious as-
sault ship in active service with the U.S. Navy. It uses a hybrid-electric 
propulsion system with gas turbines for high-speed travel and elec-
tric motors for low-speed operation. Using Simulink and Simscape,  
GasTOPS engineers developed models of the propulsion system, in-
cluding submodels for the hull, propellers, shafting, gearboxes, motors, 
generators, and gas turbines. For the electrical plant, they modeled six 
diesel generators, eight transformers, numerous smart breakers, and 
the distribution system, as well as electric motors and other loads. They 
performed simulations to evaluate the system response to short cir-
cuits, generator failures, and various fault conditions. 
mathworks.com/gastops 

METSO
Developing a controller for an energy-saving digital 
hydraulic system for papermaking equipment 
In industrial papermaking equipment, the calender rolls must be pre-
cisely controlled to ensure smoothness and glossiness in the paper. 

AIRBUS
Developing a fuel management system for the  
A380 aircraft
The Airbus A380 is the largest commercial aircraft currently in 
operation. Its 11 fuel tanks enable nonstop flights of more than 
8000 miles. Airbus engineers modeled the control logic for the 
A380’s fuel management system in Simulink and Stateflow®. This 
model defines modes of operation on the ground (including refuel, 
defuel, and ground transfer) and in flight (including center of gravity 
control, load alleviation, and fuel jettison). The team developed 
a parameterized plant model of the tanks, pumps, and valves, and 
incorporated relays and other elements of the electrical power system 
with Simscape. Engineers can reconfigure this model to represent 
fuel systems for any Airbus aircraft.
mathworks.com/airbus

DCNS
Modeling and simulating a helicopter handling system 
The SAMAHE® handling system can transfer a 10-ton helicopter be-
tween a hangar and a navy ship’s flight deck in less than two minutes. 
It operates safely in waves up to 6 meters high, and can be configured 
for use on a variety of ships, from corvettes to frigates. Working in 
Simulink and Simscape, DCNS built a three-dimensional mechani-
cal model of the system model comprising the handling system, heli-
copter, and ship. DCNS ran more than 1200 simulations for various 
helicopter mass configurations, center of gravity locations, and posi-
tions, as well as ship motion and wind conditions. The simulations 

The pressure at the nip—the line of contact between rolls—must be 
within 0.2 bar of its set value. Metso developed a digital hydraulic 
system that consumes 98% less energy and is more reliable than the 
proportional hydraulic systems traditionally used for nip control. The 
team used Simulink and Simscape to model the control system, digi-
tal valves, the mechanical frame supporting the calender, and other 
elements of the equipment. By simulating the hydraulic systems and 
controls with the model, they could quickly explore fault conditions, 
valve configurations, and other design options.
mathworks.com/metso

SANDIA NATIONAL LABORATORIES
Simulating microgrid and photovoltaic systems 
As part of Hawaii’s Clean Energy Initiative, a 1.2 megawatt photo-
voltaic solar farm was installed on Lanai, an island served by Maui 
Electric Company. Maui Electric partnered with Sandia National 
Laboratories to evaluate the battery capacity and control systems re-
quired for reliable operation. Sandia developed a model of the Lanai 
microgrid using Simulink and Simscape Power Systems™, and con-
ducted simulations to assess various configuration and control op-
tions. Initial estimates for the Lanai system included a 700 kilowatt-
hour battery. The Simulink simulations demonstrated that a battery 
about half that size would be sufficient.
mathworks.com/sandia

VINTECC
PLC system development for a multi-axle harvesting 
machine
With a 780hp engine driving three independent rear axles and two 
independent wheels on the front axle, the JPS Mega Star harvester 
can collect and haul 100 tons of produce in a single load. Vintecc de-
veloped the harvester’s complex control system. Using Simscape they 
modeled tire and vehicle body elements; hydraulic pumps, motors, 
and cylinders; powertrain components; and mechanical linkages. 

They developed algorithms for each controller using Stateflow charts 
to manage execution modes and Simulink PID Controller blocks to 
control the harvester’s hydraulic and mechanical systems. To verify 
the traction control, axle alignment, cruise control, auto-reverse, and 
other functions, they ran model-in-the-loop simulations of the con-
troller and plant models. 
mathworks.com/vintecc

VOLVO CONSTRUCTION EQUIPMENT
Streamlining product development with a real-time, 
human-in-the-loop simulator 
Volvo Construction Equipment’s Virtual Machine Simulator 
(VMS) gives construction machine operators realistic visual, audi-
tory, and motion feedback during simulation, enabling engineers to 
evaluate new designs before a prototype is built. The Volvo CE team 
used Simscape to model the physical system, with 3D mechanical 
models of the boom, arm, and bucket connected to hydraulic cir-
cuits containing control and relief valves, a swing motor, and other 
components. Integrating this model with models of the engine and 
control system in Simulink resulted in a multidomain model of the 
complete machine that supported control design tasks and real-
time simulations in the VMS. 
mathworks.com/volvo

MATLAB AND SIMULINK IN THE WORLD

LEARN MORE

Physical Modeling Solutions
mathworks.com/physical-modeling

User Stories
mathworks.com/user-stories

Engineers in the automotive, aerospace, manufacturing, and other industries use Simulink® and Simscape™ to assemble 
system-level models that include the control system and span mechanical, electrical, and other physical domains. By 
simulating the plant model and the controller in a single environment, they optimize system-level performance and test their 
designs under scenarios that would be difficult, expensive, or unsafe to test on physical prototypes.
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To meet these requirements, the Microsemi 
Aviation Center of Excellence is developing a 
line of Intelligent Power Solutions™ (IPS) based 
on a power core module (PCM) designed 
and tested with MATLAB® and Simulink®.  
Model-Based Design has enabled us to push 
our design to the limits because we can simu-
late failures, optimize performance, and lower 
risk by conducting real-time reliability tests 
of motor drive hardware and control software 
early in the development process.

IN TODAY’S AIRCRAFT, HYDRAULIC AND PNEUMATIC ACTUATION 
systems are increasingly being replaced by electrical systems. Actuators for primary flight control surfaces, 

as well as actuators in landing gear, braking systems, and fuel delivery systems, are now driven by power 

electronics. The electric motors that drive these actuators need to be small, light, and inexpensive. They also 

need to perform reliably for 50,000–150,000 hours of normal flight operation and under a wide range of 

failure conditions.

Real-Time Simulation and Testing of Power 
Electronics on a More Electric Aircraft
By Shane O’Donnell, Microsemi

FIGURE 1. Architectural diagram of the power core module within the larger power electrical control unit.

Modeling the PCM and Running 
Closed-Loop Simulations
A complete power electrical control unit 
consists of functions for pulse width modu-
lation (PWM) control, data conversion, and 
communications; filtering and protection; a 
three-phase permanent magnet synchronous 
motor (PMSM) drive; a control module; and 
a monitoring module (Figure 1). The motor 
current, motor speed, and actuator position 
are fed into the monitoring module, and the 

control module uses this information to di-
rect the PCM to speed the motor up or slow it 
down. Because this was a new design, we had 
to develop the PCM without having working 
versions of the monitoring module or control 
module available to test it.

We modeled the PCM in Simulink, us-
ing Simscape Power Systems™ and Simscape 
Electronics™ to model the three-phase PMSM 
drive and electronic components and the con-
trol and monitoring modules. We then ran 
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FIGURE 4. Plots showing power dissipation over time for an IGBT 3-phase bridge (top) and 
SiC MOSFET 3-phase bridge (bottom).

closed-loop simulations to characterize the 
system’s electrical and mechanical behavior.

Next, we deployed the three models to a 
Spartan-6 FPGA in the Speedgoat target sys-
tem using Simulink Coder™ and Simulink 
Real-Time™ (Figure 2). The modules com-
municate through a low-voltage differential 
signaling (LVDS) interface. In one test setup, 

What We Learned
Through our extensive modeling and simula-
tions, we established that units equipped with 
motor drives based on silicon carbide (SiC) 
MOSFETs operate at a temperature approxi-
mately 40° Celsius lower than similar units 
with IGBTs.

Because active cooling is not possible with 
today’s smaller and lighter hardware designs, 
managing the temperature of the device while 
in operation is vital to ensuring that it will func-

tion reliably for 150,000 flight hours. Simula-
tions also showed that power dissipation with 
IGBTs is considerably higher than with SiC 
MOSFETs (Figure 4). These insights informed 
our design decisions for the PCM and point to 
SiC MOSFETS as an enabling technology as the 
industry moves towards increased fly-by-wire 
controls in the more electric aircraft (MEA).

Simulink, Simulink Real-Time, and  
Speedgoat target hardware have enabled us to 
demonstrate the application-specific reliabil-

both the PCM controller and the other mod-
ules were run on the target hardware for real-
time tests. In a different setup, we deployed our 
controller to a production ProASIC3 FPGA on 
the PCM and ran hardware-in-the-loop tests 
with the target hardware system performing 
the functions of the control and monitoring 
modules. We tested normal operation using 
both test setups. We also tested the controller’s 
response to several fault conditions to perform 
failure mode, effects, and criticality analysis.

Testing Real-World Flight Profiles 
Under Real-World Conditions
To demonstrate the PCM under realistic 
flight profiles, we developed Simulink and 
Stateflow® models that translate flight char-
acteristics into electrical and mechanical re-
quirements for an actuation system. As the 
aircraft proceeds through the typical phases 
of a flight—taxiing, taking off, climbing, 
cruising, descending, approaching, and land-

ing—the motor current demands for an aile-
ron actuator, for example, vary significantly. 
Simulations that we ran using our Simulink 
and Stateflow mission and flight profile mod-
els enabled us to accurately estimate motor 
current demands for ailerons and other com-
ponents on specific aircraft (Figure 3).  

For our reliability tests, we generated air-
craft-specific motor current demands based 
on the flight profile simulation results. We use 
environmental chambers that vary the pres-
sure and temperature. For example, the ambi-
ent temperature in Boston is much lower than 
that of Dubai in summer, and our tests must 
take that into account. With the environmen-
tal chambers, we can expose the systems to 
temperatures of -55° Celsius and pressures of 
less than 0.2 bar. Long-term reliability tests 
representative of 150,000 flight hours require 
careful monitoring and thorough analysis of 
the results. We conduct this monitoring and 
data analysis in MATLAB.

FIGURE 3. A plot of motor current for a typical 
flight mission of a single-aisle aircraft.

ity of our early designs without installing the 
units on an actual aircraft. With Model-Based 
Design, we can do continuous validation and 
verification without waiting until all aspects of 
the power electrical control unit are developed.

The feedback we’ve received from our cus-
tomers has been very positive. With our real-
time simulation results, we are confident that 
we can meet the PCM’s reliability targets as 
we continue to reduce the unit’s size, weight, 
and cost. ■

LEARN MORE

Real-Time Simulation and Testing with 
Simulink Real-Time  39:57
mathworks.com/video-100956

Concurrent Execution with Simulink Real-Time 
and Multicore Target Hardware
mathworks.com/concurrent-execution

FIGURE 2. The Speedgoat setup with prototype PCM hardware.

http://mathworks.com/video-100956 
http://mathworks.com/concurrent-execution
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L ike other advanced driver assistance sys-
tems (ADAS), an AEBS uses input from sen-
sors to screen the environment. When a colli-
sion is imminent, the system warns the driver 
with an audio alarm. If the driver does not re-
spond, it applies a warning brake. If the driver 
still does not respond, the system applies the 
brakes fully to avoid the collision (Figures 1a 
and 1b). The AEBS also provides “brake as-
sist”: When the driver brakes, but with insuf-
ficient force to avoid a collision, the system 
calculates and then applies the required extra 
braking force. 

AEBS uses both radar and camera sen-
sors mounted on the front of the vehicle to 
scan for objects in the area ahead. The sys-
tem leverages the particular strengths of each 
sensor to gain a more precise environment 
model. Radar sensors excel at determining 
an object’s range, relative velocity, and solid-
ity but are less able to determine its shape or 
lateral position. A system using radar alone 
would find it difficult to distinguish a car 
parked at the side of the road from one in the 
driver’s lane. Cameras, on the other hand, can 
pinpoint an object’s size and lateral position 
but do not detect range well and are unable 
to assess density (a dense cloud may be per-
ceived as a solid object). 

My colleagues and I built a sensor fusion 
system that matches and merges data from 
both sensors into a single object. The system 
uses four weighted properties—longitudinal 
speed and position and lateral speed and po-
sition—to calculate the probability that both 
sensors have detected the same object. Once 
the sensor fusion system has identified an ob-
ject in the host vehicle’s path, it passes the ob-

ject’s position and the vehicle’s projected path 
to the AEBS, which determines when to alert 
the driver or engage the brakes.

Our group had previously used Model-
Based Design to develop an adaptive cruise 
control system using radar technology, but 
we had never before developed a sensor fu-
sion system. Because it was a new design, we 
knew we would need a readable, understand-
able architecture to visualize signal flow. We 
also anticipated many design iterations, so we 

wanted an easy way to visualize results and 
debug our designs. In addition, we wanted 
to save time by generating code, but the code 
had to be efficient, as the CPU load on our 
electronics control unit (ECU) was already 
about 60% when we started the sensor fu-
sion project. Lastly, we needed to thoroughly 
verify our design—our plan was to run simu-
lations based on more than 1.5 million kilo-
meters’ worth of sensor data. Model-Based 
Design met all these requirements.

REAR-END COLLISIONS ARE THE MOST COMMON TYPE OF ACCIDENT 

for freight-carrying trucks and other heavy vehicles. To reduce the risk of rear-end collisions, in 2015 the EU 

mandated advanced emergency braking systems (AEBS) for all new vehicles.

Developing and Verifying Sensor Fusion 
Methods for Advanced Emergency Braking 
Systems on Scania Trucks and Buses
By Jonny Andersson, Scania

FIGURE 1A. AEBS overview.

FIGURE 1B. A typical AEBS scenario: truck with AEBS installed approaching a slow-moving vehicle. 
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FIGURE 4. A controlled road test of the 
AEBS software. The trapezoidal object 
between the two vehicles is a “soft target,” 
designed to resemble a vehicle, that is used 
to “fool” the radar and the camera. 

Building the Sensor Fusion System
We began by partitioning the system de-
sign into functional units, such as object 
matching and projected path placement, 
and building a separate Simulink® block 
for each unit. The result was a clear soft-
ware architecture with well-defined in-
terfaces (Figure 2). We wrote MATLAB®  
code for the track association, to compute 
variances, calculate weighted probabilities, 
and perform other tasks that are easier to 
implement with a script than with blocks, 
and incorporated this code into our Simulink 
model with MATLAB Function blocks. These 
algorithm blocks made it easy for team mem-

fic patterns, and driver behaviors. It would be 
impractical as well as unsafe to test the AEBS 
directly under these conditions. Instead, we 
used a simulation-based workflow. We began 
by gathering data from a fleet of trucks. We 
decided to collect all data available on the 
ECU—not just data from the radar and cam-
era used for sensor fusion—as well as images 
from a separate reference camera.

Using this fleet test data we ran simula-
tions to identify interesting driving scenari-
os—scenarios in which the AEBS intervened 
to warn the driver or engage the brakes, and 
scenarios in which the system could have in-
tervened but did not—for example, when the 
driver pressed the horn and braked simulta-
neously, swerved, or braked sharply. Focus-
ing on these scenarios, we then analyzed the 
performance of the AEBS to identify areas in 
which we could improve the design. 

We needed to resimulate every time we 
updated the AEBS software. However, with 
more than 80 terabytes of real traffic data 
logged over more than 1.5 million of kilo-
meters of driving, it took several days to run 
a single simulation.  

To accelerate the simulations, we built 
an emulator using code generated from our 
Simulink models with Embedded Coder. The 
emulator reads and writes the same MAT-
files as our Simulink model but runs simula-
tions 150 times faster. To further speed up 
simulations, we wrote MATLAB scripts that 
run simulations on multiple computers in 

our department as well as on dedicated multi- 
processor servers, where we ran up to 300 
simulations in parallel. With this setup, we 
cut the time needed to simulate all 1.5 million 
kilometers to just 12 hours. When we identi-
fied a new interesting scenario in the emu-
lator, we reran the simulation in Simulink  
to analyze it in depth.

Identifying and classifying potentially in-
teresting scenarios in terabytes of data was 
a tedious and time-consuming task, so we 
developed the Situation Classification As-
sistant Module, a MATLAB based tool that 
automates that part of the process (Figure 
5). The tool generated a list of events from 
the simulations, such as collision warnings, 
warning brakes, and full brakes initiated by 
the system, as well as hard brakes and sharp 
turns initiated by the driver. We could then 
compare these lists for any two versions of 
our software. 

The ability to perform extensive simula-
tions enhanced the robustness and safety of 
the AEBS function and production code im-
plementation for the ECU. It also enabled us 
to make changes more quickly. We had con-
fidence in those changes because we were us-
ing all the available data in our simulations 
to test thousands of scenarios.

bers to merge their algorithms and integrate 
them with the control system. 

To debug and refine our initial design, we 
ran simulations using recorded radar sen-
sor data, corresponding camera images, and 
other vehicle sensor data. During debug-
ging we found it useful to visualize the sen-
sor data alongside a camera view from the 
front of the vehicle. We built a visualization 
tool in MATLAB that displays sensor fusion 
data synchronized with a web camera view 
of the surrounding traffic (Figure 3). Taking 
advantage of the object-oriented program-
ming capabilities of MATLAB, the tool uses 
a MATLAB class to represent each object de-

tected by any sensor and the unified object 
perceived by the sensor fusion system. These 
MATLAB objects enabled us to quickly step 
forward and backward in time as we visual-
ized the data. 

We used the same tool during road tests to 
visualize live data coming in from the vehicle 
network (Figure 4).

Implementing the System and  
Optimizing Performance 
To deploy the sensor fusion system to the ECU, 
we generated C code from our Simulink model 
with Embedded Coder®. With code genera-
tion, we were able to get to an implementation 
quickly, as well as avoid coding errors. Most of 
the ECU processor’s resources were allocated 
to maintenance functions—monitoring dash-
board alerts, physical estimations, data gate-
way, adaptive cruise control, and so on. As a 
result, we needed to optimize our initial design 
to increase its efficiency. 

In order to get the most performance 
out of the generated code, we worked with  
the MathWorks pilot team, who helped us 
optimize the code generated from MATLAB 
Coder. To further reduce the processing load 
we divided the model into separate parts that 
were executed on alternating cycles. For ex-
ample, instead of running calculations for 
stationary and moving objects on every cycle, 
we ran them on alternating cycles. We real-
ized that the processor was bogged down by 
the trigonometric functions our system was 
calling. To alleviate this problem, we wrote 
trigonometric approximation functions in C 
and called them from a MATLAB Function 
block. These modifications not only increased 
the efficiency of the sensor fusion code, they 
also enabled the AEBS software to react faster, 
which is vital when vehicles are traveling at 
highway speeds and every millisecond counts. 

Verifying and Refining the Design 
We tested the design in-vehicle on a closed 
course, but we needed to know how the sys-
tem would react in real-world driving scenar-
ios, such as different weather conditions, traf-

FIGURE 3. Sensor visualization tool developed in MATLAB. 

FIGURE 5. The Situation Classification Assistant Module, a MATLAB based tool for processing 
logged ECU data and automatically identifying situations relevant to emergency braking.

Deploying the Generated Code in 
Production ADAS
Most Scania trucks and buses are now 
equipped with AEBS running production code 
generated from Simulink models and verified 
via extensive simulations. We have reused our 
sensor fusion system design in Scania’s adap-
tive cruise control system, and there are now 
more than 100,000 units on the road. ■

LEARN MORE

Radar System Modeling and Simulation for 
Automotive Advanced Driver Assistance 
Systems 26:00
mathworks.com/video-107121

Cost and Benefit of Model-Based 
Development of Automotive Software—
Results of a Global Study 30:30
mathworks.com/video-92771

Model-Based Approach to Resource-Efficient 
Object Fusion for an Autonomous Braking 
System 21:21
mathworks.com/video-108103

FIGURE 2. Simulink model of the sensor fusion system showing independent functional blocks.

http://mathworks.com/video-107121
http://mathworks.com/video-92771 
http://mathworks.com/video-108103 
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Kevin Leiffels and Raphael-David  
Volmering designed and built the e-long-
board as a final project for my course on 
electric drives and field-oriented control 
(vector control). Powered by two indepen-
dent brushless DC motors (BLDCs), the 
longboard can carry a rider up to 25 km 
(15.5 miles) with a top speed of more than 
40 km/hour (25 mph).

The Value of Hands-On Projects 
with Model-Based Design
Students acquire a much deeper understand-
ing of engineering concepts by completing 
hands-on projects than by listening to a lec-
ture. Even students who get excellent grades 
on tests don’t truly understand concepts such 
as field-oriented control for electric motors 
until they have applied those concepts in the 
real world.

Model-Based Design enables students to 
tackle meaningful projects in the limited time 
available. For example, in a single semester 
Raphael completed the e-longboard’s printed 
circuit board design while Kevin designed, 
implemented, and tested the controller. Kevin 
generated more than 15,000 lines of code—
much more code than he could have written 
by hand in one semester.

HS Bochum’s acquisition of a Total Aca-
demic Headcount (TAH) license was a ma-
jor milestone for the university and a boon 
to my course. The students are free to use  
MATLAB® and Simulink® on assignments 
both inside and outside the lab. This flex-

ibility is highly motivating. MATLAB and  
Simulink are industry standard tools, and the 
students know that to develop the skills re-
quired in industry they need more practice 
with the tools than they can get just by work-
ing in the lab. The TAH license also makes 
my job easier because I no longer have to 
keep track of individual licenses.

Establishing Project Requirements
For all student projects I establish a set of basic 
requirements and then let the students come 
up with their own ideas. The e-longboard proj-
ect had to include a power device, two separate 
motors that are not mechanically connected, 
and a DSP on which the field-oriented control 
is implemented (Figure 1). The control part 
of the project must be challenging but simple 
enough for a student to complete in a single 
semester. Each student must use Model-Based 

Design. In my view, Model-Based Design is the 
state of the art for control system development 
because it enables early and thorough verifica-
tion of the design, low implementation costs, 
portability to multiple hardware platforms, 
and short development times.

Before Model-Based Design became a 
requirement, the students did not learn as 
much about how real engineering projects 
are conducted. For example, they would 
often start with a prepackaged third-party 
motor controller, hack a few lines of C code 
together to get the motor spinning, and then 
move directly to constructing the rest of the 
system for trial-and-error testing. When 
they were done they would find out that the 
system did not meet their power demands 
or satisfy all the real-time requirements. 
Because they had not verified their designs 
via simulation, they only discovered these 

WHEN I SAW MY GRADUATE STUDENTS COMPETING TO SEE WHO 
could maintain the highest average speed on the electric motor-powered skateboard they had built, I knew 

that I had achieved my two most important goals for their project. Not only had they gained a deep under-

standing of Model-Based Design, they also had a great deal of fun doing so.

HS Bochum Students Design and Build  
a Motor Controller for an E-Longboard  
with Model-Based Design
By Dr. Arno Bergmann, Bochum University of Applied Sciences (HS Bochum)

FIGURE 1. The underside of the e-longboard showing two BLDC motors on the left.
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FIGURE 3. The e-longboard printed circuit.

problems when it was too late to do anything 
about them.

Supplementing the basic project require-
ments, the students included several require-
ments specific to the e-longboard. In addition 
to specifying a minimum range for a single 
battery charge, these requirements defined a 
maximum braking distance and a minimum 
hill grade that the e-longboard would need to 
be able to climb.

Designing and Implementing  
the Controller 
A principal design challenge in field-oriented 
control is maintaining a 90° angle between 
the rotor and stator field in the motor. In ad-
dition to minimizing changes of the magnetic 
flux to enable fast transient responses, main-
taining this angle maximizes motor torque 
for a given current. Kevin used Hall sensors 

board’s range. It wasn’t long before the stu-
dents were competing to see who could 
deplete the batteries fastest by maintaining 
the top average speed. Following test runs, 
Kevin post-processed metrics captured dur-
ing the runs. To visualize the e-longboard’s 
speed response, for example, he created a 
combined graph of desired speed and actual 
speed in MATLAB (Figure 4). 

Next Steps for the Student and  
the Course 
When Kevin completed his studies at HS 
Bochum he began working for an engi-
neering company that uses Model-Based  

Design. When the company learned of  
Kevin’s success with the e-longboard they 
hired him on the spot.

One of the most valuable lessons Kevin 
learned is the importance of verifying require-
ments as thoroughly as possible via modeling 
and simulation before the actual implementa-
tion. The company that he now works for will 
be supporting our upcoming use of Simulink 
Verification and Validation™ because they, 
too, are seeking to verify requirements at ear-
lier stages in development.

I am planning a few changes for the 
next group of students taking the field-
oriented controls course. I will still re-

quire hands-on projects with Model-Based 
Design, and I will be encouraging more 
students to build an enhanced version 
of the e-longboard. Next year’s version 
of the course will place a stronger em-
phasis on requirements, logical modes, 
and physical modeling using Simulink  
Verification and Validation, Stateflow®, and 
Simscape Power Systems, respectively.

I plan to use the board to inspire next year’s 
students. I will bring the board to class and 
let the students take a test drive outside to stir 
their interest before they head to the lab to 
begin their own projects using Model-Based 
Design and field-oriented control. ■

to measure rotor position, which is a key in-
put to both the field-oriented control and the 
board’s speed control loop.

Kevin based his controller design on an 
example field-oriented control project from a 
MathWorks webinar. The example included a 
Simulink model for controlling the speed and 
torque of a three-phase permanent magnet 
synchronous machine (PMSM), which was 
modeled using Simscape Power Systems™ 
(Figure 2). We found the example to be a good 
implementation of field-oriented control.

After downloading the example project 
from mathworks.com, Kevin modified the 
parameters for the e-longboard, removed 
unneeded parts, and added features. After 
running simulations in Simulink, Kevin used 
Embedded Coder® to generate C code for 
the board’s TI F28069 microcontroller. At 
that point, he began evaluating the real-time 

response of the system to see if it met the real-
time requirements he had established.

Kevin and Raphael worked largely on 
their own, meeting me once a week so that I 
could monitor their progress. On this proj-
ect, Kevin applied and expanded the basic 
knowledge of Model-Based Design with 
MATLAB and Simulink that he had ac-
quired in earlier control design electives at HS  
Bochum. He relied on technical support from 
MathWorks to resolve any technical issues that 
he encountered, and that enabled him to work 
with surprisingly little assistance from me.

Once the printed circuit board was ready 
(Figure 3) and the rest of the e-longboard had 
been constructed, Kevin and his classmates 
began testing the board in and around the HS 
Bochum campus.

Kevin rode around a nearby lake—a 
distance of more than 25 km—to test the 

FIGURE 2. Simulink model for simulating field-oriented control with a permanent magnet synchronous machine.

FIGURE 4. Plot of desired speed (pink) and actual speed (yellow) showing how closely the 
two matched during a test run.

LEARN MORE

Simulation of FOC Using PMSM Model
mathworks.com/foc-pmsm

MATLAB and Simulink in the World: 
The MATLAB Enabled Campus
mathworks.com/miw-tah
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My colleagues and I at the Art and 
Artificial Intelligence Laboratory at Rutgers  
University explored this question using  
MATLAB®, Statistics and Machine Learning  
Toolbox™, and a database of thousands of 
paintings from the past six centuries. We also 
addressed two other intriguing questions about 
the capabilities and limitations of AI algo-
rithms: whether they can identify which paint-
ings have had the greatest influence on later art-
ists, and whether they can measure a painting’s 
creativity using only its visual features.

Extracting Visual Features for  
Classifying Paintings
We wanted to develop algorithms capable of 
classifying large groups of paintings by style 
(for example, as Cubist, Impressionist, Ab-
stract Expressionist, or Baroque), genre (for 
example, landscape, portrait, or still life), and 
artist. One requirement for this classification 
is the ability to recognize color, composition, 
texture, perspective, subject matter, and other 
visual features. A second is the ability to select 
those visual features that best indicate simi-
larities between paintings.

Working with MATLAB and Image  
Processing Toolbox™, we developed algo-
rithms to extract the visual features of a paint-
ing. The feature extraction algorithm is fairly 
common in computer vision, and straight-
forward to implement. The more challenging 
task was finding the best machine learning 

techniques. We began by testing support vec-
tor machines (SVMs) and other classification 
algorithms in Statistics and Machine Learning 
Toolbox to identify visual features that are use-
ful in style classification. In MATLAB, we then 
applied distance metric learning techniques to 
weight the features and thereby improve the 
algorithm’s ability to classify paintings.

The algorithms we developed classified the 
styles of paintings in our database with 60% 
accuracy, where chance performance would 
have been about 2%. While art historians can 
perform this task with much more than 60% 

accuracy, the algorithm outperforms typical 
non-expert humans.

Using Machine Learning to Uncover 
Artistic Influences
Once we had algorithms that could reliably 
identify similarities between pairs of paintings, 
we were ready to tackle our next challenge: us-
ing machine learning to reveal artistic influ-
ences. Our hypothesis was that visual features 
useful for style classification (a supervised 
learning problem) could also be used to deter-
mine influences (an unsupervised problem).  

WHEN YOU STUDY A PAINTING, CHANCES ARE THAT YOU CAN  
make several inferences about it. In addition to understanding the subject matter, for example, you may 

be able to classify it by period, style, and artist. Could a computer algorithm “understand” a painting well 

enough to perform these classification tasks as easily as a human being?

Creating Computer Vision and  
Machine Learning Algorithms That  
Can Analyze Works of Art
By Ahmed Elgammal, Rutgers University

FIGURE 1. Left: Diego Velázquez’s “Portrait of Pope Innocent X.” Right: Francis Bacon’s 
“Study After Velázquez’s Portrait of Pope Innocent X.”
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Art historians develop theories of artistic 
influence based on how the artists worked, 
traveled, or trained with contemporaries. Our 
MATLAB based machine learning algorithms 
used only visual elements and dates of com-
position. We hypothesized that an algorithm 
that took into account objects and symbols 
in the painting would be more effective than 
one that relied on low-level features such as 
color and texture. With this in mind, we used 
classification algorithms that were trained on 
Google images to identify specific objects.

We tested the algorithms on more than 
1700 paintings from 66 different artists work-
ing over a span of 550 years. The algorithm 
readily identified the influence of Diego 
Velazquez’s “Portrait of Pope Innocent X” on 
Francis Bacon’s “Study After Velazquez’s Por-
trait of Pope Innocent X” (Figure 1).

The similarities in composition and subject 
matter between these two paintings are easy 
even for a layman to spot, but the algorithm 
also produced results that surprised the art 
historians we worked with. For example, our 
algorithm identified “Bazille’s Studio; 9 rue 
de la Condamine,” painted by French Impres-

To perform a basic validation of our al-
gorithm, we changed the date on specific 
works of art, effectively shifting them back-
wards or forwards in time. In these “time 
machine” experiments, we saw significant 
creativity score increases for Impressionist 
art moved back to the 1600s and significant 
reductions for Baroque paintings moved 
forward to the 1900s. The algorithms cor-
rectly perceived that what was creative 300 
years ago is not creative today, and that 
something that is creative now would have 
been much more creative if introduced far 
in the past.

A Scalable and Extensible 
Framework for Arts Research 
Humans have the innate perceptual skills to 
classify art, and they excel at identifying simi-

larities in pairs of paintings, but they lack the 
time and patience to apply these skills objec-
tively to thousands or millions of paintings. 
Handling tasks at this scale is where comput-
ers come into their own. By developing ma-
chine learning algorithms that have percep-
tual capabilities similar to humans, our goal is 
to provide art historians with tools to navigate 
vast databases of images.

The framework we developed in MATLAB 
for identifying similarities and measuring 
creativity is not confined to art. It could be 
applied to literature, music, or virtually any 
other creative domain, as long as the indi-
vidual works can be encoded in a way that is 
accessible to the algorithms.

For now, however, our focus remains on the 
visual arts. We are interested not only in en-
suring that machine learning algorithms pro-

sionist Frederic Bazille in 1870, as a possible 
influence on Norman Rockwell’s “Shuffleton’s 
Barbershop,” completed 80 years later (Figure 
2). Although the paintings might not look simi-
lar at first glance, a closer examination reveals 
similarities in composition and subject matter, 
including the heaters in the lower right of each 
work, the group of three men in the center, and 
the chairs and triangular spaces in the lower left.

In our data set, the algorithms correctly 
identified 60% of the 55 influences recog-
nized by art historians, suggesting that vi-
sual similarity alone provides sufficient in-
formation for algorithms (and possibly for 
humans) to determine many influences.

Measuring Creativity by Solving a 
Network Centrality Problem 
Recently, our research has focused on develop-
ing algorithms to measure creativity in art. We 
based this project on a widely used definition 
that identifies an object as creative if it is both 
novel and influential. In these terms, a creative 
painting will be unlike the paintings that came 
before it (novel), but similar to those that came 
after it (influential).

In addressing this problem, we once again 
saw an opportunity to apply our MATLAB al-
gorithms for identifying similarities between 
paintings. In MATLAB we created a network 
in which the vertices are paintings and each 
edge represents the similarity between the 
two paintings at its vertices. Through a se-
ries of transformations on this network we 
saw that making inferences about creativity 
from such a graph is a network centrality 
problem, which can be solved efficiently us-
ing MATLAB.

We tested our creativity algorithms on 
two data sets containing more than 62,000 
paintings. The algorithm gave high scores to 
several works recognized by art historians as 
both novel and influential, including some of 
the works shown in Figure 3. Ranking even 
higher than Pablo Picasso’s “Young Ladies 
of Avignon” (1907) in the same period were 
several paintings by Kazimir Malevich. This 
result initially surprised me, as I knew little 
about Malevich’s work. I have since learned 
that he was the founder of the Suprematism 
movement, one of the earliest developments 
in abstract art. 

FIGURE 3. Computed creativity scores (y-axis) for paintings from 1400 to 2000 (x-axis), showing selected highest scoring paintings for 
individual periods.

duce good results but also in how they arrive 
at those results. In this area, too, MATLAB  
is a tremendous advantage because it provides 
many ways to quickly and easily visualize re-
sults. These visualizations enable us to un-
derstand the results and use them to inform 
ongoing AI research. ■
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FIGURE 2. Left: Frederic Bazille’s “Bazille’s Studio; 9 rue de la Condamine.” Right: Norman Rockwell’s “Shuffleton’s Barbershop.” Yellow circles 
indicate similar objects, red lines indicate similar composition, and the blue rectangle indicates a similar structural element.
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In traditional machine learning, feature selection is a time-con-
suming manual process. Feature extraction usually involves process-
ing each image with one or more image processing operations, such 
as calculating gradient to extract the discriminative information 
from each image.

Enter deep learning. Deep learning algorithms can learn features, 
representations, and tasks directly from images, text, and sound, elimi-
nating the need for manual feature selection.

Using a simple object detection and recognition example, this ar-
ticle illustrates how easy it is to use MATLAB® for deep learning, even 
without extensive knowledge of advanced computer vision algorithms 
or neural networks. 

Getting Started
The goal in this example is to train an algorithm to detect a pet in a 
video and correctly label the pet as a cat or a dog. We’ll be using a 
convolutional neural network (CNN), a specific type of deep learn-
ing algorithm that can both perform classification and extract features 
from raw images.

To build the object detection and recognition algorithm in MATLAB, 
all we need is a pre-trained CNN and some dog and cat images. We’ll use 
the CNN to extract discriminative features from the images, and then 
use a MATLAB app to train a machine learning algorithm to discrimi-
nate between cats and dogs. 

Importing a CNN Classifier
We begin by downloading a CNN classifier pretrained on ImageNet, a 
database containing over 1.2 million labeled high-resolution images in 
1000 categories. In this example we’ll be using the AlexNet architecture. 

�websave('\networks\imagenet-caffe-alex.mat',...

�    'http://www.vlfeat.org/matconvnet/models/beta16/

�                         imagenet-caffe-alex.mat');

We import the network into MATLAB as a SeriesNetwork using 
Neural Network Toolbox, and display the architecture of the CNN. The 
SeriesNetwork object represents the CNN.

�% Load MatConvNet network into a SeriesNetwork

�convnet = helperImportMatConvNet(cnnFullMatFile);

�% View the CNN architecture

convnet.Layers

We’ve stored the images in separate cat and dog folders under a parent 
called pet_images. The advantage of using this folder structure is that 
the MATLAB imageDatastore we create will be able to automatically 
read and manage image locations and class labels. (imageDatastore 
is a repository for collections of data that are too large to fit in memory.)

We initialize an imageDatastore to access the images in MATLAB. 

%% Set up image data

dataFolder = ' \data\PetImages';

categories = {'Cat', 'Dog'};

�imds = imageDatastore(fullfile(dataFolder, ... 

�    categories), 'LabelSource', 'foldernames');

We then select a subset of the data that gives us an equal number of 
dog and cat images.

tbl = countEachLabel(imds)

%% Use the smallest overlap set

minSetCount = min(tbl{:,2});

�% Use splitEachLabel method to trim the set.

�imds = splitEachLabel(imds, minSetCount, ...

�    'randomize');

�% Notice that each set now has exactly the same

% number of images.

countEachLabel(imds)

Since the AlexNet network was trained on 227x227-pixel images, we 
have to resize all our training images to the same resolution. The following 
code allows us to read and process images from the imageDatastore 
at the same time. 

%% Pre-process Images For CNN

% Set the ImageDatastore ReadFcn

�imds.ReadFcn = @(filename)readAndPreprocessImage...

�    (filename);

�%% Divide data into training and testing sets

�[trainingSet, testSet] = splitEachLabel(imds, ...

�    0.3, 'randomize');

We use the readAndPreprocessImage function to resize the im-
ages to 227x227 pixels.

�function Iout = readAndPreprocessImage(filename)

I = imread(filename);

�% Some images may be grayscale. Replicate the image 

% 3 times to create an RGB image.

if  ismatrix(I)

    I = cat(3,I,I,I);

end

�% Resize the image as required for the CNN.

Iout = imresize(I, [227 227]);

end

Performing Feature Extraction 
We want to use this new dataset with the pretrained AlexNet CNN. 
CNNs can learn to extract generic features that can be used to train a 

 COMPUTER VISION ENGINEERS HAVE USED MACHINE LEARNING 

techniques for decades to detect objects of interest in images and to classify or identify categories of objects. 

They extract features representing points, regions, or objects of interest and then use those features to train a 

model to classify or learn patterns in the image data.

Deep Learning for Computer 
Vision with MATLAB
By Avinash Nehemiah and Valerie Leung, MathWorks

FIGURE 2. Visualization of first layer filter weights. 

FIGURE 1. Workflow for using a pre-trained CNN to extract features for a new task. 
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new classifier to solve a different problem—in our case, classifying cats 
and dogs (Figure 1).

We pass the training data through the CNN and use the activa-
tions method to extract features at a particular layer in the network. 
Like other neural networks, CNNs are formed using interconnected lay-
ers of nonlinear processing elements, or neurons. Input and output lay-
ers connect to input and output signals, and hidden layers provide non-
linear complexity that gives a neural network its computational capacity.

While each layer of a CNN produces a response to an input image, 
only a few layers are suitable for image feature extraction. There is no 
exact formula for identifying these layers. The best approach is to sim-
ply try a few different layers and see how well they work.  

The layers at the beginning of the network capture basic image fea-
tures, such as edges and blobs. To see this, we visualize the network 
filter weights from the first convolutional layer (Figure 2). 

�% Get the network weights for the second 

% convolutional layer

w1 = convnet.Layers(2).Weights;

�% Scale and resize the weights for visualization

w1 = mat2gray(w1);

w1 = imresize(w1,5); 

�% Display a montage of network weights. There are 96 

% individual sets of weights in the first layer.

figure

montage(w1)

�title('First convolutional layer weights')

Notice that the first layer of the network has learned filters for cap-
turing blob and edge features. These “primitive” features are then pro-
cessed by deeper network layers, which combine the early features to 
form higher-level image features. These higher-level features are better 
suited for recognition tasks because they combine all the primitive fea-
tures into a richer image representation. You can easily extract features 
from one of the deeper layers using the activations method.

The layer right before the classification layer fc7 is a good place to 
start. We extract training features using that layer.

featureLayer = 'fc7';

�trainingFeatures = activations(convnet, ...

�    trainingSet, featureLayer, �'MiniBatchSize', ...

�    32, 'OutputAs', 'columns');

Training an SVM Classifier Using the Extracted  
Features
We’re now ready to train a “shallow” classifier with the features extract-
ed in the previous step. Note that the original network was trained to 
classify 1000 object categories. The “shallow” classifier will be trained 
to solve the specific dogs vs. cats problem. 

The Classification Learner app in Statistics and Machine Learning Tool-
box™ lets us train and compare multiple models interactively (Figure 3). 
Alternatively, we could train the classifier in our MATLAB script. 

We split the data into two sets, one for training and one for 
testing. Next, we train a support vector machine (SVM) classifier 
using the extracted features by calling the fitcsvm function using 
trainingFeatures as the input or predictors and trainingLabels 
as the output or response values. We will cross-validate the classifier on 
the test data to determine its validation accuracy, an unbiased estimate 
of how the classifier would perform on new data.

�%% Train a classifier using extracted features 

�trainingLabels = trainingSet.Labels;

�% Here I train a linear support vector machine 

% (SVM) classifier.

�svmmdl = fitcsvm(trainingFeatures ,trainingLabels);

�% Perform cross-validation and check accuracy

�cvmdl = crossval(svmmdl,'KFold',10);

�fprintf('kFold CV accuracy: %2.2f\n',...

�    1-cvmdl.kfoldLoss)

We can now use the svmmdl classifier to classify an image as a cat or 
a dog (Figure 4).

Performing Object Detection
In most images and video frames, there is a lot going on. For example, in 
addition to a dog, there could be a tree, or a flock of pigeons, or a raccoon 
chasing the dog. Even a reliable image classifier will only work well if we 
can locate the object of interest, crop the object, and then feed it to the 
classifier—in other words, if we can perform object detection.

For object detection we will use a technique called optical flow, 
which uses the motion of pixels in a video from frame to frame. Figure 
5 shows a single frame of video with the motion vectors overlaid.

The next step in the detection process is to separate out pixels that 
are moving and then use the Image Region Analyzer app to analyze the 
connected components in the binary image to filter out noise caused 
by the motion of the camera. The output of the app is a MATLAB  
function that can locate the pet in the field of view (Figure 6).

We now have all the pieces we need to build a pet detection and 
recognition system (Figure 7). The system can:
•  �Detect the location of the pet in new images using optical flow 
•  �Crop the pet from the image and extract features using a pretrained 

CNN
•  �Classify the features using the SVM classifier we trained to deter-

mine if the pet is a cat or a dog 
In this article we used an existing deep learning network to solve 

a different task.  You can use the same techniques to solve your own 
image classification problem—for example, classifying types of cars in 
videos for traffic flow analysis, identifying tumors in mass spectrom-
etry data for cancer research, or identifying individuals by their facial 
features for security systems. ■
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mathworks.com/fx-57116

FIGURE 3. Classification Learner app. 

FIGURE 4. Result of using the trained pet classifier on an image of a cat. 

FIGURE 5. A single frame of video showing the motion vectors overlaid.

FIGURE 6. Image Region Analyzer app.

FIGURE 7. Accurately classified cats and dogs.
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This article addresses these concerns 
head-on. It provides tips and best practices for 
working with MATLAB Coder™, as well as in-
dustry examples of successful applications of 
generated code by companies such as Delphi,  
Baker Hughes, iSonea, and dorsaVi.

Comparing MATLAB and C Code:  
A Multiplication Example
The simple MATLAB function below multi-
plies two inputs.

function c = myMult(a, b)

% Multiply two inputs

c = a * b;

Given scalar inputs, MATLAB Coder gen-
erates the following C code:

#include "myMult.h"

double myMult(double a, double b)

{

   return a * b;

}

As you can see, the generated code maps 
clearly back to the MATLAB code.

The same piece of MATLAB code, when 
given two matrix inputs, generates three nest-
ed for-loops in C:

#include "myMult.h"

�void myMult(const double a[12], 

const double b[20], double c[15])

{

   int i0;

   int i1;

   int i2;

   for (i0 = 0; i0 < 3; i0++) {

      �for (i1 = 0; i1 < 5; i1++) 

{

         �c[i0 + 3 * i1] = 0.0;

        � �for (i2 = 0; i2 < 4; 

i2++) {

          � � �c[i0 + 3 * i1] += 

a[i0 + 3 * i2] * b[i2 

+ (i1 << 2)];

         }

      }

   }

}

Recommended Three-Step Iterative 
Workflow 
The simple function shown above can be 
implemented in a single step. But for more 
substantial projects, we recommend a struc-
tured approach using a three-step iterative 
workflow (Figure 1).
1. �Prepare your algorithm for code genera-

tion. Examine and modify the MATLAB 

code to introduce implementation consid-
erations needed for low-level C code, and 
use the MATLAB language and functions 
that support code generation.

2. �Test the MATLAB code’s readiness for code 
generation using default settings. Check for 
run-time errors by generating and execut-
ing a MEX file. If successful, move to the 
next step. If not, repeat step 1 until you can 
generate a MEX function.

3. �Generate C code or keep the MEX function 
from step 2. You can iterate on the MATLAB 
code to optimize either the generated C code 
(for look and feel, memory, and speed) or 
the MEX function (for performance).
The MATLAB Coder app guides you 

through this iterative process while enabling 
you to stay within the MATLAB environ-
ment. It analyzes your MATLAB code to 
propose data types and sizes for your inputs. 
It tests whether your MATLAB code is ready 
for code generation by generating a MEX 
function, then executes the MEX function to 
check for run-time errors (Figure 2). Equiv-
alent command-line functions provide the 
same functionality so you can generate code 
as part of a script or function.

Implementation Constraints
As you prepare your MATLAB algorithm for 
code generation, you need to take account of 
implementation constraints resulting from 

the differences between MATLAB and C 
code. These include:
• �Memory allocation. In MATLAB, memory 

allocation is automatic. In C code, memory 
allocation is manual—it is either allocated 
statically (using static), dynamically (us-
ing malloc), or on the stack (using local 
variables).  

• �Array-based language. MATLAB provides a 
rich set of array operations that allow con-
cise coding of numerical algorithms. C code 
requires explicit for-loops to express the 
same algorithms.

• �Dynamic typing. MATLAB automati-
cally determines the data types and sizes 
as your code runs. C requires explicit type  

ENGINEERS HAVE TRANSLATED LOW-LEVEL LANGUAGES LIKE C  
into machine code for decades using compilers. But is it possible to translate a high-level language like 

MATLAB® to C using coders? Most engineers would agree that it’s possible in theory—but does it work 

in practice? Is the generated code readable or spaghetti? Efficient or bloated? Fast or slow? And does it 

support industrial workflows, or just R&D?

The Joy of Generating C Code 
from MATLAB
By Bill Chou, MathWorks

FIGURE 1. Three-step iterative workflow for generating code.

FIGURE 2. Left: Automated checks for features and functions not supported for code generation. Right: Automated analysis and proposal for input data 
type and sizes.
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Industry Success Stories 
• �dorsaVi generated C++ code from motion analysis algorithms and 

compiled it into a DLL, which was then integrated into their C# ap-

plication running on a PC that analyzes the athlete’s movements to 

diagnose injury.

• �Baker Hughes’ Dynamics & Telemetry group generated a DLL from 

sequence prediction algorithms and integrated it into surface de-

coding software running on a PC that enables downhole data to be 

decoded quickly and reliably during drilling operations.

• �Delphi generated C code for an automotive radar sensor alignment 

algorithm and compiled it for an ARM10 processor.

• �VivaQuant generated fixed-point C code from heart rhythm monitor-

ing algorithms and compiled it for an ARM Cortex-M processor.

• �Respiri generated C code from acoustic respiratory monitoring al-

gorithms and compiled it for an iPhone app, an Android™ app, 

and cloud-based server software.

declarations on all variables and functions.
• �Polymorphism. MATLAB functions can 

support many different input types, while C 
requires fixed type declarations. At the top 
level, you must specify the intended C func-
tion declaration.  
Let’s take a closer look at polymorphism. 

Polymorphism can give a single line of 
MATLAB code different meanings depend-
ing on your inputs. For example, the func-
tion shown in Figure 3 could mean scalar 
multiplication, dot product, or matrix mul-
tiplication. In addition, your inputs could 
be of different data types (logical, integer, 
floating-point, fixed-point), and they could 
be real or complex numbers. 

MATLAB is a powerful algorithm 
development environment precisely 
because you don’t need to worry about 
implementation details as you create 
algorithms. However, for the equivalent C 
code, you have to specify what operations 
mean. For example, the line of MATLAB 
code shown above could be translated into 
this single line of C code that returns B*C: 

double foo(double b, double c)

{

   return b * c;

}

Or, it could be translated into 11 lines of C 
code with three for-loops that multiply two 
matrices:

�void myMult(const double a[12], 

const double b[20], double c[15])

{

  int i0;

  int i1;

  int i2;

  for (i0 = 0; i0 < 3; i0++) {

    for (i1 = 0; i1 < 5; i1++) {

      c[i0 + 3 * i1] = 0.0;

      for (i2 = 0; i2 < 4; i2++) {

        �c[i0 + 3 * i1] += a[i0 + 

3 * i2] * b[i2 + (i1 << 

2)];

      }

    }

  }

}

Working with the Generated Code: 
Four Use Cases
Once you have generated readable and por-
table C/C++ code from MATLAB algorithms 
using MATLAB Coder, you have several op-
tions for using it. For example:
• �Integrate your MATLAB algorithms as 

source code or libraries into a larger software 
project such as custom simulators or software 
packages running on PCs and servers.

• �Implement and verify your MATLAB al-
gorithms on embedded processors such as 
ARM® processors and mobile devices.

• �Prototype your MATLAB algorithms as a 
standalone executable on PCs.

• �Accelerate computationally intensive por-

tions of your MATLAB code by generat-
ing a MEX function that calls the com-
piled C/C++ code.

Multicore-Capable Code Generation 
and Other Optimization Methods
In MATLAB, for-loops whose iterations are 
independent of each other can be run in par-
allel simply by replacing for with parfor.   
MATLAB Coder uses the Open Multipro-
cessing (OpenMP) application interface to 
support shared-memory, multicore code 
generation from parfor-loops.  OpenMP is 
supported by many C compilers (for example, 
Microsoft® Visual Studio® Professional).

for (i1 = 0; i1 < 3; i1++) {

  �sz[i1] = (unsigned int)

originalImage->size[i1];

}

N = sz[0];

M = sz[1];

�normalizer = (L - 1.0) / 

((double)sz[0] * (double)sz[1]);

#pragma omp parallel for \

 �num_threads(omp_get_max_threads()\

 �) private(s,r,planeHist_data,\

loop_ub,i3,y,x,j,d0,u0)

�for (plane = 0; plane < 3; 

plane++) {

  loop_ub = originalHist_size[1];

  �for (i3 = 0; i3 < loop_ub; 

i3++) {

    �planeHist_data[i3] = 

originalHist_data[plane + 

originalHist_size[0] * i3];

  }

You can use MATLAB Coder with  
Embedded  Coder® to further optimize 
code efficiency and customize the gener-
ated code. Embedded Coder provides op-
timizations for fine-grained control of the 
generated code’s functions, files, and data. 
For example, you can use storage classes to 
control the declaration and definition of a 
global variable in the generated code, and 
use code generation templates to custom-
ize banners and comments in the generated 
code. Embedded Coder also improves code 
efficiency by using code replacement librar-
ies, which replace certain operators and 
functions with implementations optimized 
for popular processors like ARM Cortex®-A 
and ARM Cortex-M.

Testing the Generated Code
As you develop your MATLAB algorithm, you 
can create unit tests to verify that the algorithm 
produces the results you expect. Tests written 
using the MATLAB unit testing framework 
can be reused to verify that the generated 
code behaves the same way as your MATLAB  
algorithm. With Embedded Coder you can 
reuse the unit tests in combination with 
software-in-the-loop (SIL) and processor- 
in-the-loop (PIL) tests on the generated 
standalone code or library.

An Automated Workflow
MATLAB Coder enables an automated work-
flow for translating MATLAB algorithms into 
C code.  With this workflow you spend less 
time writing and debugging low-level C code 
and more time developing, testing, and tun-
ing designs. By maintaining one golden ref-
erence in MATLAB, including the algorithm 
and test benches, you can propagate algorith-
mic changes to your C code more quickly. Au-
tomated tools like the MATLAB unit testing 

framework and the Embedded Coder SIL and 
PIL testing framework let you test both the 
MATLAB code and the C code thoroughly 
and systematically. Whether you are imple-
menting designs running on traditional PCs, 
web servers, mobile devices, or embedded 
processors, MATLAB Coder will help you 
get from MATLAB to C code faster and with 
fewer manual translation errors. ■

LEARN MORE

Generating C Code from MATLAB  
(download) 
mathworks.com/fx-56270

MATLAB and C/C++ Resources
mathworks.com/matlab-c

Supported Language and Functions for 
MATLAB Coder
mathworks.com/coder-language

FIGURE 3. Polymorphism example.

http://mathworks.com/fx-56270 
http://mathworks.com/matlab-c 
http://mathworks.com/coder-language
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Introducing Cleve’s Laboratory
By Cleve Moler, MathWorks

In this Cleve’s Corner I want to give you a sneak preview of the 
experiments in “Cleve’s Laboratory.” I launched the laboratory to col-
lect much of the work I have done over the last several years in one 
place. The experiments come from my two ebooks, my blog, Cleve’s 
Corner columns in MathWorks News & Notes, and new work. 

Each experiment centers on an interactive “app” that allows ex-
perimenters to try out the ideas for themselves. Several of the ex-

periments, including hello_world, klock, and biorhythms, are 
designed to introduce newcomers to MATLAB®.

The figure below shows snapshots of the graphical entry pages. 
Even these are live pages driven by MATLAB. The wave in the 
first icon moves every time you open the page. The clock reads 
the correct time. The Sudoku puzzle changes. The double pen-
dulum swings.

CLEVE’S CORNER

logo_wave. The MathWorks logo is the solution to the wave equa-
tion, a foundation of mathematical physics. MathWorks is the only 
company in the world whose logo is the solution to a partial differ-
ential equation. This program demonstrates the vibration of a mem-
brane stretched over an L-shaped region. 

lifex. This is a version of John Conway's Game of Life. "Life" is 
a cellular automaton that involves life and death in an infinite rect-
angular, 2D, cellular universe. The lifex program accesses the Life 
Lexicon, a historical collection of nearly 500 starting populations 
available online. It uses sparse matrix operations and an elegant, one-
line implementation of Conway’s rules for evolution in this universe. 
The icon shows Bill Gosper’s glider gun, which emits a continuous 
stream of 5-element agents that move across the space. 

fern. The fern is a self-similar fractal. It was invented by Michael 
Barnsley, and is described in his book Fractals Everywhere. Each leaf 
is similar in structure to the larger fern and contains a miniature copy 
of yet another leaf. The fern program keeps running until the stop 
button is toggled. 

fibonacci. This program is based on Fibonacci's rabbit pen. A 
man puts a pair of rabbits in a place surrounded on all sides by a wall. 
How many pairs of rabbits can be produced from that pair in a year if 
it is supposed that every month each pair begets a new pair that from 
the second month on becomes productive? Today, the solution to this 
problem is known as the Fibonacci sequence, or Fibonacci numbers.

pdeapp. This program demonstrates finite difference methods for 
solving model problems for four partial differential equations involving 
Laplace’s operator: the Poisson equation, the heat equation, the wave 
equation, and an eigenvalue equation. The regions are a square, an L-
shape, an H-shape, a disc, an annulus, and a pair of isospectral drums. 

flame. This is an example of a stiff ordinary differential equation. 
flame(r0) specifies the initial radius is r0. Default r0 = .02. A ball 
of fire grows until its radius is just large enough for all the oxygen 
available through the surface to be consumed by combustion in the 
interior. The equation for the radius is rdot = r^2 - r^3. The problem 
becomes stiff as the radius approaches its limiting value.

T puzzle image courtesy of Shop New Zealand www.shopnewzealand.co.nz © Shop New Zealand
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CLEVE’S CORNER

eigsvdapp. With this program you can watch how MATLAB han-
dles three different matrix eigenvalue problems: the eigenvalues of a 
nonsymmetric matrix, the eigenvalues of a symmetric matrix, and 
the singular values of any matrix. Watch the reduction to Hessen-
berg, tridiagonal, or bidiagonal form, then the QR iteration to obtain 
Schur or diagonal form.

walker. This model, developed by Nikolaus Troje, is a five-term 
Fourier series with vector-valued coefficients that are the principal 
components for data obtained in motion-capture experiments in-
volving subjects wearing reflective markers and walking on a tread-
mill. The components, also known as “postures” or “eigenwalkers,” 
correspond to the subject’s movements. The postures are also classi-
fied by gender. 

waterwave. A 2D shallow water model with reflexive boundary 
conditions. A random water drop initiates gravity waves. The surface 
plot displays height colored by momentum. The solution is computed 
by the Lax-Wendroff finite difference method. The plot title shows 
simulated time and total variation. 

orbits. The orbits program solves Newton’s equations governing 
the gravitational attraction among several bodies. When the number 
of bodies is equal to nine, this is the solar system with one sun and 
eight planets.

censusapp. This experiment is older than MATLAB—it started 
as an exercise in Computer Methods for Mathematical Computa-
tions, by Forsythe, Malcolm and Moler, published in 1977. The data 
comes from the decennial census of the U.S., 1900–2010. The task 
is to extrapolate population data beyond 2010.  Today’s MATLAB 
makes it easier to vary the parameters and see the results, but the 
underlying mathematical principle is unchanged: Using polynomi-
als of even modest degree to predict the future by extrapolating 
data is a risky business.

mandelbrot. This program invites you to explore the Mandelbrot 
fractal. You can use the mouse to select a region, zoom in on any re-
gion, increase the grid size, increase the iteration depth, and change 
the color map.

predprey. In this classic model, one species grows exponentially 
while the other decays exponentially in the absence of the other. 
The model is nonlinear, but the solutions are periodic. Dragging the 
red dot changes the equilibrium point. Dragging the blue-green dot 
changes the initial conditions.

durerperm. The icon shows Durer's magic square. To permute the 
square, click on two different rows or columns. Is the result still a 
magic square?

golden_spiral. In this program you can see a continuously ex-
panding sequence of golden rectangles and inscribed quarter circles.

tumbling_box. If you throw a rectangular box in the air with a 
twist, you can make it tumble stably about its longest or shortest axis.  
But if three sides of the box are of different lengths, you cannot make 
it tumble about its middle-sized axis. The Euler differential equations 
for the angular momenta about the three principal axes have two 
stable critical points and one unstable critical point.

waves. This program demonstrates the wave equation in 1D 
and 2D space dimensions. Solutions are expressed as time-varying 
weighted sums of the first four eigenfunctions. The 1D domain is an 
interval. The 2D domains include a square, a disc, a three-quarter 
circular sector, and the L-shaped union of three squares. With po-
lar coordinates, the eigenfunctions of the disc and the sector involve 
Bessel functions. 

tictactoe. This program combines three games that initially ap-
pear to be unrelated: Pick15, TicTacToe, and Magic3. In Pick15, the 
object is to generate a total of 15 using exactly three digits, where 
each digit can be chosen only once. TicTacToe follows the traditional 
game, but replaces X’s and O’s with blue and green. The object is to 
get three in a row, column, or diagonal. Magic3 superimposes a mag-
ic square of order three on TicTacToe to show that Pic15 is actually 
the same game.

t_puzzle. I first saw this wooden T puzzle at Puzzling World in  
Wanaka, New Zealand. The underlying mathematics involves ge-
ometry, trigonometry, and arithmetic with complex numbers. The 
t_puzzle program demonstrates some useful programming tech-
niques. The four pieces all have the same width but different heights. 
It turns out that they can be arranged to form a capital “T” as well as 
an arrow and a rhombus. ■

LEARN MORE

Cleve's Laboratory App 
(download)
mathworks.com/cleves-lab

Cleve’s Corner Blog 
blogs.mathworks.com/cleve

Cleve’s Corner Collection
mathworks.com/cleves-corner

http://mathworks.com/cleves-lab 
http://blogs.mathworks.com/cleve 
http://mathworks.com/cleves-corner 
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Smart Devices and Analytics Spur Innovation 
in the Internet of Things
By Eric Wetjen, MathWorks

The Internet of Things (IoT) is a rapidly evolving space in which 
virtually any smart hardware device—a mobile phone, a pacemaker, 
a wearable fitness sensor, even a refrigerator—can be connected to 
the internet to generate and receive data. 

Combining internet-connected devices with cloud computing, 
machine learning, and other data analytics approaches is enabling 
products and solutions that are transforming the way we live and 
work. Today, for example, thanks to the Internet of Things:
• �A doctor can remotely monitor how often a patient’s pacemaker fires.
• Athletes can measure how many calories they burn during a run.
• Farmers can optimize irrigation of crops.
• �Building managers can save electricity by optimizing controls for 

HVAC equipment.
• �Asthma sufferers can manage their condition by using a mobile phone 

app to monitor their wheezing levels. 
• �Automakers are close to developing a driverless car capable of autono-

mously navigating through city streets.

Inside an IoT System 
A typical IoT system works like this (Figure 1):

1. �A smart connected device produces sensor data and ultimately 
sends data to the cloud. These devices are often smart enough to 
run data-reduction algorithms on their embedded processors.

2. �An analytic IoT platform processes and stores the sensor data. It 
may integrate information from other sources, such as business 
systems. It analyzes and takes action on the incoming data. 

3. �A systems engineer or data scientist accesses the historical data 
from the cloud or the device and develops algorithms to prepro-
cess and analyze it. These algorithms may involve machine learn-
ing techniques for predicting future values of a sensor quantity or 
for classifying the sensor data. 

4. �The algorithm is deployed in the cloud or on a smart device, where 
it operates on incoming live data.

Creating an IoT System with MATLAB and Simulink
MATLAB® and Simulink® support IoT systems by helping you de-
velop and test smart connected devices, access and collect data in the 
cloud, and analyze sensor data. Let’s look at two examples. 

Example 1. A Traffic Monitor
Tired of sitting in traffic every time they drove home from work, two 
engineers decided to study traffic flow trends on the busy highway 
outside their building. They installed a webcam in an office overlook-
ing the highway and connected it to a Raspberry Pi™ board running 
a computer vision algorithm (Figure 2).

The data was collected in the cloud using ThingSpeak™, an analytic 
IoT platform that can run MATLAB code. 

TECH SPOTLIGHT

They built a Simulink block diagram that included a Median Filter 
block to clean up the image and a Blob Analysis block to identify cars 
in the image (Figure 3). They then wrote a custom block to count the 
cars, and sent the summary data to ThingSpeak. 

Before deploying the algorithm to the Raspberry Pi, they verified it 
using the video display in Simulink external mode (Figure 4). 

Once the data was in ThingSpeak, they used the MATLAB app 
integrated into ThingSpeak to create live visualizations of the traffic 
density in each direction for the previous 48 hours. These include a 
color-coded visualization (Figure 5) that categorizes the current state 
of the traffic (light = green, moderate = yellow, and heavy = red). 

Example 2. A Tide Gauge and Alert System
Getting your boat stuck in the mud is a distinct possibility without an 
accurate measure of water depth. Because tide predictions and real-
time water levels are not available for most bays and estuaries, one 
boater and MATLAB user built a low-cost, real-time tide gauge. He 
quickly learned that the timing and amplitude of tide levels is highly 
dependent on location. 

The key hardware components he used were an Arduino® Mega 
board, a SparkFun Electronics® cellular shield, and an ultrasonic 
range finder. The cellular shield provided the connection from the 
Arduino to the internet. The Arduino was used to read the data from 
the ultrasonic sensor.

ThingSpeak was used to collect and process the data in the cloud. 
The ultrasonic sensor reports distance in mm. To convert from dis-
tance to water depth, the boater set up a ThingSpeak TimeControl 
that runs MATLAB code to read the range data, convert it into water 

depth, and write the data to a new ThingSpeak channel. The result 
was an internet-connected tide gauge that can be viewed on a mobile 
phone or a web browser (Figure 6). 

The boater set up additional MATLAB code to detect tidal thresh-
olds. He then used the Twitter integration in ThingSpeak to send 
alerts when particular conditions were met.

As these examples show, analytics is a vital ingredient of the in-
novations occurring in IoT. With MATLAB and Simulink you can 
develop analytics that run on your smart devices or in the cloud. 
With ThingSpeak, you can easily collect data from your devices in 
the cloud. You can then use MATLAB to gain insight into the sensor 
data you have collected. ■

FIGURE 2. Webcam connected to a Raspberry Pi 2.

FIGURE 3. Simulink block diagram to find and count the cars.

FIGURE 5. Categorizing live traffic data in ThingSpeak.

FIGURE 4. Simulink external mode detection of cars during algorithm 
development phase.

FIGURE 1. A typical Internet of Things workflow.

FIGURE 6. ThingSpeak data collection and tide level display.

LEARN MORE

Developing Internet of Things Systems with MATLAB
mathworks.com/iot

ThingSpeak 
thingspeak.com

Traffic Monitor Data Visualizations
thingspeak.com/channels/38629

http://mathworks.com/iot 
http://www.thingspeak.com
http://thingspeak.com/channels/38629 
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Solutions for Image Acquisition 
and Computer Vision

Allied Vision FireWire and GigE 
Vision Cameras
Allied Vision offers high-performance IEEE-
1394 FireWire, GigE Vision®, and USB3 Vision  
compliant digital cameras for machine vi-
sion, computer vision, and other industrial or 
medical applications. Cameras include CCD 
and CMOS sensors ranging from VGA to 29 
megapixels. Image Acquisition Toolbox, with 
Allied Vision’s Vimba Software Development 
Kit (SDK), enables direct access to the cameras 
from MATLAB and Simulink.
alliedvision.com
 
Microsoft Kinect
Microsoft® Kinect® for Windows includes a 3D 
depth sensor and integrated RGB camera for 
applications such as robotics, kinesiology, 3D 
scene reconstruction, point-cloud processing, 
and skeletal tracking. Engineers can acquire 
3D data from Microsoft Kinect into MATLAB 
and Simulink using Image Acquisition Tool-
box and Computer Vision System Toolbox™.
developer.microsoft.com/kinect

Xilinx Zynq-7000  
All-Programmable SoC
The Xilinx® Zynq®-7000 All-Programmable 
SoC combines a dual-core ARM® Cortex®-A9 
with Xilinx 7-series FPGA logic on a single 
chip. As a result, users can integrate camera 
control and image processing functions in a 
single device while enabling hardware acceler-
ation of video analytics. Evaluation kits include 
hardware I/O, design tools, IP, and pre-verified 
reference designs. MATLAB, Simulink, HDL 
Coder®, Embedded Coder®, and Vision HDL 
Toolbox™ support the design and simulation of 
image processing applications and automated 
deployment to the Zynq device.
xilinx.com/zynq

FLIR Infrared Cameras
FLIR thermal and visible-light imaging sys-
tems are used in a wide variety of thermal im-
aging, situational awareness, and security ap-
plications. Using Image Acquisition Toolbox™, 
engineers can configure features of FLIR in-
frared cameras and stream fully temperature-
calibrated data directly into MATLAB for 
analysis, visualization, and modeling.
flir.com

3i SlideBook
SlideBook microscopy software enables sci-
entists to acquire and analyze image data 
across time, color, and specimen locations, 
with customizable experiment protocols and 
drivers for hundreds of research instruments. 
SlideBook supports data import/export with 
MATLAB, enabling users to call MATLAB 
to set variables and perform advanced image 
analysis, and extending SlideBook’s built-in 
image processing functions. MATLAB scripts 
can drive live cell experiments by determining 
regions for capture and photomanipulation.
intelligent-imaging.com

THIRD-PARTY PRODUCTS

LEARN MORE

Hardware Support
mathworks.com/hardware

Image Processing and Computer Vision
mathworks.com/solutions/image-video-processing

Third-Party Products and Services
mathworks.com/connections

MATLAB® and Simulink® provide a platform for engineers to explore images, develop computer vision algorithms, 

and evaluate implementation tradeoffs. Third-party imaging hardware enables them to acquire visible, thermal, depth, 

microscopy, and a range of other images. Engineers can analyze images, via live acquisition or by postprocessing 

in MATLAB, and then deploy computer vision applications such as object detection, tracking, and recognition onto 

embedded processors, FPGAs, multicore GPU systems, and other hardware.

mathworks.com/matlab-campus

WHAT IF EVERYONE 
ON CAMPUS HAD MATLAB?

JOB OPPORTUNITIES 

82% 
Fortune 100 companies with a MATLAB license

HANDS-ON LEARNING 

42,000 
Faculty and students using MATLAB to program hardware  

RESEARCH PRODUCTIVITY

1,970,000 
Google Scholar results referencing MATLAB 

“If you want to work at Google, make sure 
you can use MATLAB.”

Jonathan Rosenberg, Senior Vice President of 
Products, Google

“On multidisciplinary projects, students with  
quite different educational backgrounds  
can work together more easily because  

they are using the same tools.”

Professor Jakob Stoustrup, Aalborg University

“Our teams are here to do world-class research,  
and easy access to MATLAB enables them to be  

their most productive.”

Shailesh Shenoy, Director of Research Computing,  
Albert Einstein College of Medicine of Yeshiva University

More than 1 million students and 700 universities around the world—
including the top 10 ranked universities—have unlimited access to MATLAB and 

Simulink with a Total Academic Headcount (TAH) license.

http://alliedvision.com
http://developer.microsoft.com/kinect
http://xilinx.com/zynq
http://flir.com
http://intelligent-imaging.com
http://mathworks.com/hardware
http://mathworks.com/solutions/image-video-processing
http://mathworks.com/connections
http://mathworks.com/matlab-campus


MATLAB SPEAKS 

ARDUINO
so you don’t have to
You can design, build, test, and run a 
system—on Arduino, Raspberry Pi, LEGO, 
and more—without writing traditional code.

Download free MATLAB and Simulink 
hardware support packages at 
hardware.mathworks.com
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