
The Magazine for the MATLAB® and Simulink® Community

MathWorksNews&Notes

Deep Learning for
Computer Vision

Generating C Code
from MATLAB

Sensor Fusion for
Scania AEBS

 Internet of Things Cleve’s Laboratory

ALSO IN THIS ISSUE

Power Electronics for
a More Electric Aircraft

120,000
�Questions answered
on MATLAB Answers

25,000
Downloadable files
on File Exchange

3000
Posts on MATLAB

and Simulink blogs

2000
Problem sets and
games on Cody

mathworks.com/matlabcentral

Tap into the knowledge and experience of thousands of community members.
Find or contribute downloadable code, technical tips, and answers.

MATLAB CENTRAL
TURNS FIFTEEN!

MATLAB SPEAKS
WIRELESS
DESIGN
You can simulate, prototype, and
verify wireless systems right in
MATLAB. Learn how today’s MATLAB
supports RF, LTE, WLAN, and 5G
development and SDR hardware.

mathworks.com/wireless

http://mathworks.com/matlabcentral
http://mathworks.com/wireless

4	� MATLAB and Simulink in the World: Physical

Modeling

30	� Cleve’s Corner: Introducing Cleve’s Laboratory

34	� Tech Spotlight: Smart Devices and Analytics Spur

Innovation in the Internet of Things

36	� Third-Party Products: Solutions for Image

Acquisition and Computer Vision

The cover shows a rendering of a commercial aircraft, highlighting the THSA (trimmable
horizontal stabiliser actuator). On a more electric aircraft, mechanical actuators are replaced with
all-electric actuators, reducing weight, improving reliability, and minimizing environmental
impact. The article on page 6 describes how engineers in Microsemi’s Aviation Center of Excellence
developed a power core module (PCM) for a more electric aircraft. The PCM controls the electric
motors used in primary flight control actuation and landing gear systems.

d e p a r t m e n t s

about the cover

f e a t u r e s

6	� Real-Time Simulation and Testing of Power Electronics on a More Electric Aircraft
	� Model-Based Design enables Microsemi to develop power control modules that can perform reliably for 50,000 to

150,000 hours of flight and under a wide range of failure conditions.

10	� Developing and Verifying Sensor Fusion Methods for Advanced Emergency
Braking Systems on Scania Trucks and Buses

	� Scania’s AEBS alerts the driver of an imminent collision and automatically applies the brake if the driver doesn’t
respond.

14	� HS Bochum Students Design and Build a Motor Controller for an E-Longboard
with Model-Based Design

	� “When the company learned of Kevin’s success with the e-longboard, they hired him on the spot.”

18	� Creating Computer Vision and Machine Learning Algorithms That Can Analyze
Works of Art

	� Using MATLAB and a database of thousands of paintings, Rutgers University researchers discovered that an
algorithm could classify a painting as easily as a non-expert human.

22	 Deep Learning for Computer Vision with MATLAB
	� An object detection and recognition example shows how easy it is to use MATLAB for deep learning, even if you’re

new to computer vision algorithms and neural networks.

26	 The Joy of Generating C Code with MATLAB
	� Generate efficient, readable C code with this three-step workflow—and explore successful applications of

generated code by companies such as Delphi and Baker Hughes.

©2016 The MathWorks, Inc.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks
for a list of additional trademarks. Other product or brand names may be trademarks or registered trade-
marks of their respective holders.

Production Staff
L. Bai, J. Mespelli, A. Pollack

Editorial Board
T. Andraczek, S. Gage, C. Hayhurst,
M. Hirsch, S. Lehman, D. Lluch,
M. Maher, A. May, C. Moler,
M. Mulligan, L. Shure, J. Tung

Contributors and Reviewers
J. Abraham, J. Andersson, A. Bergmann,
G. Bourdon, M. Carone, B. Chou,
K. Cohan, S. DeLand, D. Doherty,
A. Elgammal, T. Erkkinen, J. Friedman,
T. Gerke, A. Himmeldorf, K. Hyman,
W. Jin, T. Jones, J. Kelly, T. Kush, J. Lerche,
V. Leung, C. Lin, K. Lorenc, R. Mawrey,
T. McKay, S. Miller, S. Myschik,
A. Nehemiah, S. O’Donnell, B. Patel,
P. Pilotte, S. Prasanna, R. Purser, G. Reith,
R. Rovner, G. Sandmann, H. Scharler,
F. Smith, B. Tannenbaum, A. Thé,
G. Thomas, S. Velilla, M. Vetsch, E. Wetjen

Subscribe
mathworks.com/subscribe

Comments
mathworks.com/contact

Find Us Online

Made in the U.S.

Printed on 30% post-
consumer waste materials

Managing Editor
Linda Webb

Editor
Rosemary Oxenford

Art Director

Robert Davison

Graphic Designer

Chris Roth

Technical Writer
Jack Wilber

Production Editor
Julie Cornell

Printer
DS Graphics

MathWorksNews&Notes
10 14

18 22

30

http://www.mathworks.com/trademarks
http://www.mathworks.com/subscribe

http://www.mathworks.com/contact
https://www.facebook.com/MATLAB
http://www.twitter.com/MATLAB
http://www.linkedin.com/company/the-mathworks_2
https://plus.google.com/+matlab

4 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 5MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

Physical Modeling

enabled them to test the system under conditions that would be dif-
ficult or unsafe to test at sea.
mathworks.com/dcns

GasTOPS
Developing propulsion control algorithms for the
USS Makin Island
The USS Makin Island is an 850-foot-long, twin-shaft amphibious as-
sault ship in active service with the U.S. Navy. It uses a hybrid-electric
propulsion system with gas turbines for high-speed travel and elec-
tric motors for low-speed operation. Using Simulink and Simscape,
GasTOPS engineers developed models of the propulsion system, in-
cluding submodels for the hull, propellers, shafting, gearboxes, motors,
generators, and gas turbines. For the electrical plant, they modeled six
diesel generators, eight transformers, numerous smart breakers, and
the distribution system, as well as electric motors and other loads. They
performed simulations to evaluate the system response to short cir-
cuits, generator failures, and various fault conditions.
mathworks.com/gastops

METSO
Developing a controller for an energy-saving digital
hydraulic system for papermaking equipment
In industrial papermaking equipment, the calender rolls must be pre-
cisely controlled to ensure smoothness and glossiness in the paper.

AIRBUS
Developing a fuel management system for the
A380 aircraft
The Airbus A380 is the largest commercial aircraft currently in
operation. Its 11 fuel tanks enable nonstop flights of more than
8000 miles. Airbus engineers modeled the control logic for the
A380’s fuel management system in Simulink and Stateflow®. This
model defines modes of operation on the ground (including refuel,
defuel, and ground transfer) and in flight (including center of gravity
control, load alleviation, and fuel jettison). The team developed
a parameterized plant model of the tanks, pumps, and valves, and
incorporated relays and other elements of the electrical power system
with Simscape. Engineers can reconfigure this model to represent
fuel systems for any Airbus aircraft.
mathworks.com/airbus

DCNS
Modeling and simulating a helicopter handling system
The SAMAHE® handling system can transfer a 10-ton helicopter be-
tween a hangar and a navy ship’s flight deck in less than two minutes.
It operates safely in waves up to 6 meters high, and can be configured
for use on a variety of ships, from corvettes to frigates. Working in
Simulink and Simscape, DCNS built a three-dimensional mechani-
cal model of the system model comprising the handling system, heli-
copter, and ship. DCNS ran more than 1200 simulations for various
helicopter mass configurations, center of gravity locations, and posi-
tions, as well as ship motion and wind conditions. The simulations

The pressure at the nip—the line of contact between rolls—must be
within 0.2 bar of its set value. Metso developed a digital hydraulic
system that consumes 98% less energy and is more reliable than the
proportional hydraulic systems traditionally used for nip control. The
team used Simulink and Simscape to model the control system, digi-
tal valves, the mechanical frame supporting the calender, and other
elements of the equipment. By simulating the hydraulic systems and
controls with the model, they could quickly explore fault conditions,
valve configurations, and other design options.
mathworks.com/metso

SANDIA NATIONAL LABORATORIES
Simulating microgrid and photovoltaic systems
As part of Hawaii’s Clean Energy Initiative, a 1.2 megawatt photo-
voltaic solar farm was installed on Lanai, an island served by Maui
Electric Company. Maui Electric partnered with Sandia National
Laboratories to evaluate the battery capacity and control systems re-
quired for reliable operation. Sandia developed a model of the Lanai
microgrid using Simulink and Simscape Power Systems™, and con-
ducted simulations to assess various configuration and control op-
tions. Initial estimates for the Lanai system included a 700 kilowatt-
hour battery. The Simulink simulations demonstrated that a battery
about half that size would be sufficient.
mathworks.com/sandia

VINTECC
PLC system development for a multi-axle harvesting
machine
With a 780hp engine driving three independent rear axles and two
independent wheels on the front axle, the JPS Mega Star harvester
can collect and haul 100 tons of produce in a single load. Vintecc de-
veloped the harvester’s complex control system. Using Simscape they
modeled tire and vehicle body elements; hydraulic pumps, motors,
and cylinders; powertrain components; and mechanical linkages.

They developed algorithms for each controller using Stateflow charts
to manage execution modes and Simulink PID Controller blocks to
control the harvester’s hydraulic and mechanical systems. To verify
the traction control, axle alignment, cruise control, auto-reverse, and
other functions, they ran model-in-the-loop simulations of the con-
troller and plant models.
mathworks.com/vintecc

VOLVO CONSTRUCTION EQUIPMENT
Streamlining product development with a real-time,
human-in-the-loop simulator
Volvo Construction Equipment’s Virtual Machine Simulator
(VMS) gives construction machine operators realistic visual, audi-
tory, and motion feedback during simulation, enabling engineers to
evaluate new designs before a prototype is built. The Volvo CE team
used Simscape to model the physical system, with 3D mechanical
models of the boom, arm, and bucket connected to hydraulic cir-
cuits containing control and relief valves, a swing motor, and other
components. Integrating this model with models of the engine and
control system in Simulink resulted in a multidomain model of the
complete machine that supported control design tasks and real-
time simulations in the VMS.
mathworks.com/volvo

MATLAB AND SIMULINK IN THE WORLD

LEARN MORE

Physical Modeling Solutions
mathworks.com/physical-modeling

User Stories
mathworks.com/user-stories

Engineers in the automotive, aerospace, manufacturing, and other industries use Simulink® and Simscape™ to assemble
system-level models that include the control system and span mechanical, electrical, and other physical domains. By
simulating the plant model and the controller in a single environment, they optimize system-level performance and test their
designs under scenarios that would be difficult, expensive, or unsafe to test on physical prototypes.

http://mathworks.com/dcns
http://mathworks.com/gastops
http://mathworks.com/airbus
http://mathworks.com/metso
http://mathworks.com/sandia
http://mathworks.com/vintecc
http://mathworks.com/volvo
http://mathworks.com/physical-modeling
http://mathworks.com/user-stories

6 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 7MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

To meet these requirements, the Microsemi
Aviation Center of Excellence is developing a
line of Intelligent Power Solutions™ (IPS) based
on a power core module (PCM) designed
and tested with MATLAB® and Simulink®.
Model-Based Design has enabled us to push
our design to the limits because we can simu-
late failures, optimize performance, and lower
risk by conducting real-time reliability tests
of motor drive hardware and control software
early in the development process.

IN TODAY’S AIRCRAFT, HYDRAULIC AND PNEUMATIC ACTUATION
systems are increasingly being replaced by electrical systems. Actuators for primary flight control surfaces,

as well as actuators in landing gear, braking systems, and fuel delivery systems, are now driven by power

electronics. The electric motors that drive these actuators need to be small, light, and inexpensive. They also

need to perform reliably for 50,000–150,000 hours of normal flight operation and under a wide range of

failure conditions.

Real-Time Simulation and Testing of Power
Electronics on a More Electric Aircraft
By Shane O’Donnell, Microsemi

FIGURE 1. Architectural diagram of the power core module within the larger power electrical control unit.

Modeling the PCM and Running
Closed-Loop Simulations
A complete power electrical control unit
consists of functions for pulse width modu-
lation (PWM) control, data conversion, and
communications; filtering and protection; a
three-phase permanent magnet synchronous
motor (PMSM) drive; a control module; and
a monitoring module (Figure 1). The motor
current, motor speed, and actuator position
are fed into the monitoring module, and the

control module uses this information to di-
rect the PCM to speed the motor up or slow it
down. Because this was a new design, we had
to develop the PCM without having working
versions of the monitoring module or control
module available to test it.

We modeled the PCM in Simulink, us-
ing Simscape Power Systems™ and Simscape
Electronics™ to model the three-phase PMSM
drive and electronic components and the con-
trol and monitoring modules. We then ran

8 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 9MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

FIGURE 4. Plots showing power dissipation over time for an IGBT 3-phase bridge (top) and
SiC MOSFET 3-phase bridge (bottom).

closed-loop simulations to characterize the
system’s electrical and mechanical behavior.

Next, we deployed the three models to a
Spartan-6 FPGA in the Speedgoat target sys-
tem using Simulink Coder™ and Simulink
Real-Time™ (Figure 2). The modules com-
municate through a low-voltage differential
signaling (LVDS) interface. In one test setup,

What We Learned
Through our extensive modeling and simula-
tions, we established that units equipped with
motor drives based on silicon carbide (SiC)
MOSFETs operate at a temperature approxi-
mately 40° Celsius lower than similar units
with IGBTs.

Because active cooling is not possible with
today’s smaller and lighter hardware designs,
managing the temperature of the device while
in operation is vital to ensuring that it will func-

tion reliably for 150,000 flight hours. Simula-
tions also showed that power dissipation with
IGBTs is considerably higher than with SiC
MOSFETs (Figure 4). These insights informed
our design decisions for the PCM and point to
SiC MOSFETS as an enabling technology as the
industry moves towards increased fly-by-wire
controls in the more electric aircraft (MEA).

Simulink, Simulink Real-Time, and
Speedgoat target hardware have enabled us to
demonstrate the application-specific reliabil-

both the PCM controller and the other mod-
ules were run on the target hardware for real-
time tests. In a different setup, we deployed our
controller to a production ProASIC3 FPGA on
the PCM and ran hardware-in-the-loop tests
with the target hardware system performing
the functions of the control and monitoring
modules. We tested normal operation using
both test setups. We also tested the controller’s
response to several fault conditions to perform
failure mode, effects, and criticality analysis.

Testing Real-World Flight Profiles
Under Real-World Conditions
To demonstrate the PCM under realistic
flight profiles, we developed Simulink and
Stateflow® models that translate flight char-
acteristics into electrical and mechanical re-
quirements for an actuation system. As the
aircraft proceeds through the typical phases
of a flight—taxiing, taking off, climbing,
cruising, descending, approaching, and land-

ing—the motor current demands for an aile-
ron actuator, for example, vary significantly.
Simulations that we ran using our Simulink
and Stateflow mission and flight profile mod-
els enabled us to accurately estimate motor
current demands for ailerons and other com-
ponents on specific aircraft (Figure 3).

For our reliability tests, we generated air-
craft-specific motor current demands based
on the flight profile simulation results. We use
environmental chambers that vary the pres-
sure and temperature. For example, the ambi-
ent temperature in Boston is much lower than
that of Dubai in summer, and our tests must
take that into account. With the environmen-
tal chambers, we can expose the systems to
temperatures of -55° Celsius and pressures of
less than 0.2 bar. Long-term reliability tests
representative of 150,000 flight hours require
careful monitoring and thorough analysis of
the results. We conduct this monitoring and
data analysis in MATLAB.

FIGURE 3. A plot of motor current for a typical
flight mission of a single-aisle aircraft.

ity of our early designs without installing the
units on an actual aircraft. With Model-Based
Design, we can do continuous validation and
verification without waiting until all aspects of
the power electrical control unit are developed.

The feedback we’ve received from our cus-
tomers has been very positive. With our real-
time simulation results, we are confident that
we can meet the PCM’s reliability targets as
we continue to reduce the unit’s size, weight,
and cost. ■

LEARN MORE

Real-Time Simulation and Testing with
Simulink Real-Time 39:57
mathworks.com/video-100956

Concurrent Execution with Simulink Real-Time
and Multicore Target Hardware
mathworks.com/concurrent-execution

FIGURE 2. The Speedgoat setup with prototype PCM hardware.

http://mathworks.com/video-100956
http://mathworks.com/concurrent-execution

10 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 11MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

L ike other advanced driver assistance sys-
tems (ADAS), an AEBS uses input from sen-
sors to screen the environment. When a colli-
sion is imminent, the system warns the driver
with an audio alarm. If the driver does not re-
spond, it applies a warning brake. If the driver
still does not respond, the system applies the
brakes fully to avoid the collision (Figures 1a
and 1b). The AEBS also provides “brake as-
sist”: When the driver brakes, but with insuf-
ficient force to avoid a collision, the system
calculates and then applies the required extra
braking force.

AEBS uses both radar and camera sen-
sors mounted on the front of the vehicle to
scan for objects in the area ahead. The sys-
tem leverages the particular strengths of each
sensor to gain a more precise environment
model. Radar sensors excel at determining
an object’s range, relative velocity, and solid-
ity but are less able to determine its shape or
lateral position. A system using radar alone
would find it difficult to distinguish a car
parked at the side of the road from one in the
driver’s lane. Cameras, on the other hand, can
pinpoint an object’s size and lateral position
but do not detect range well and are unable
to assess density (a dense cloud may be per-
ceived as a solid object).

My colleagues and I built a sensor fusion
system that matches and merges data from
both sensors into a single object. The system
uses four weighted properties—longitudinal
speed and position and lateral speed and po-
sition—to calculate the probability that both
sensors have detected the same object. Once
the sensor fusion system has identified an ob-
ject in the host vehicle’s path, it passes the ob-

ject’s position and the vehicle’s projected path
to the AEBS, which determines when to alert
the driver or engage the brakes.

Our group had previously used Model-
Based Design to develop an adaptive cruise
control system using radar technology, but
we had never before developed a sensor fu-
sion system. Because it was a new design, we
knew we would need a readable, understand-
able architecture to visualize signal flow. We
also anticipated many design iterations, so we

wanted an easy way to visualize results and
debug our designs. In addition, we wanted
to save time by generating code, but the code
had to be efficient, as the CPU load on our
electronics control unit (ECU) was already
about 60% when we started the sensor fu-
sion project. Lastly, we needed to thoroughly
verify our design—our plan was to run simu-
lations based on more than 1.5 million kilo-
meters’ worth of sensor data. Model-Based
Design met all these requirements.

REAR-END COLLISIONS ARE THE MOST COMMON TYPE OF ACCIDENT

for freight-carrying trucks and other heavy vehicles. To reduce the risk of rear-end collisions, in 2015 the EU

mandated advanced emergency braking systems (AEBS) for all new vehicles.

Developing and Verifying Sensor Fusion
Methods for Advanced Emergency Braking
Systems on Scania Trucks and Buses
By Jonny Andersson, Scania

FIGURE 1A. AEBS overview.

FIGURE 1B. A typical AEBS scenario: truck with AEBS installed approaching a slow-moving vehicle.

12 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 13MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

FIGURE 4. A controlled road test of the
AEBS software. The trapezoidal object
between the two vehicles is a “soft target,”
designed to resemble a vehicle, that is used
to “fool” the radar and the camera.

Building the Sensor Fusion System
We began by partitioning the system de-
sign into functional units, such as object
matching and projected path placement,
and building a separate Simulink® block
for each unit. The result was a clear soft-
ware architecture with well-defined in-
terfaces (Figure 2). We wrote MATLAB®
code for the track association, to compute
variances, calculate weighted probabilities,
and perform other tasks that are easier to
implement with a script than with blocks,
and incorporated this code into our Simulink
model with MATLAB Function blocks. These
algorithm blocks made it easy for team mem-

fic patterns, and driver behaviors. It would be
impractical as well as unsafe to test the AEBS
directly under these conditions. Instead, we
used a simulation-based workflow. We began
by gathering data from a fleet of trucks. We
decided to collect all data available on the
ECU—not just data from the radar and cam-
era used for sensor fusion—as well as images
from a separate reference camera.

Using this fleet test data we ran simula-
tions to identify interesting driving scenari-
os—scenarios in which the AEBS intervened
to warn the driver or engage the brakes, and
scenarios in which the system could have in-
tervened but did not—for example, when the
driver pressed the horn and braked simulta-
neously, swerved, or braked sharply. Focus-
ing on these scenarios, we then analyzed the
performance of the AEBS to identify areas in
which we could improve the design.

We needed to resimulate every time we
updated the AEBS software. However, with
more than 80 terabytes of real traffic data
logged over more than 1.5 million of kilo-
meters of driving, it took several days to run
a single simulation.

To accelerate the simulations, we built
an emulator using code generated from our
Simulink models with Embedded Coder. The
emulator reads and writes the same MAT-
files as our Simulink model but runs simula-
tions 150 times faster. To further speed up
simulations, we wrote MATLAB scripts that
run simulations on multiple computers in

our department as well as on dedicated multi-
processor servers, where we ran up to 300
simulations in parallel. With this setup, we
cut the time needed to simulate all 1.5 million
kilometers to just 12 hours. When we identi-
fied a new interesting scenario in the emu-
lator, we reran the simulation in Simulink
to analyze it in depth.

Identifying and classifying potentially in-
teresting scenarios in terabytes of data was
a tedious and time-consuming task, so we
developed the Situation Classification As-
sistant Module, a MATLAB based tool that
automates that part of the process (Figure
5). The tool generated a list of events from
the simulations, such as collision warnings,
warning brakes, and full brakes initiated by
the system, as well as hard brakes and sharp
turns initiated by the driver. We could then
compare these lists for any two versions of
our software.

The ability to perform extensive simula-
tions enhanced the robustness and safety of
the AEBS function and production code im-
plementation for the ECU. It also enabled us
to make changes more quickly. We had con-
fidence in those changes because we were us-
ing all the available data in our simulations
to test thousands of scenarios.

bers to merge their algorithms and integrate
them with the control system.

To debug and refine our initial design, we
ran simulations using recorded radar sen-
sor data, corresponding camera images, and
other vehicle sensor data. During debug-
ging we found it useful to visualize the sen-
sor data alongside a camera view from the
front of the vehicle. We built a visualization
tool in MATLAB that displays sensor fusion
data synchronized with a web camera view
of the surrounding traffic (Figure 3). Taking
advantage of the object-oriented program-
ming capabilities of MATLAB, the tool uses
a MATLAB class to represent each object de-

tected by any sensor and the unified object
perceived by the sensor fusion system. These
MATLAB objects enabled us to quickly step
forward and backward in time as we visual-
ized the data.

We used the same tool during road tests to
visualize live data coming in from the vehicle
network (Figure 4).

Implementing the System and
Optimizing Performance
To deploy the sensor fusion system to the ECU,
we generated C code from our Simulink model
with Embedded Coder®. With code genera-
tion, we were able to get to an implementation
quickly, as well as avoid coding errors. Most of
the ECU processor’s resources were allocated
to maintenance functions—monitoring dash-
board alerts, physical estimations, data gate-
way, adaptive cruise control, and so on. As a
result, we needed to optimize our initial design
to increase its efficiency.

In order to get the most performance
out of the generated code, we worked with
the MathWorks pilot team, who helped us
optimize the code generated from MATLAB
Coder. To further reduce the processing load
we divided the model into separate parts that
were executed on alternating cycles. For ex-
ample, instead of running calculations for
stationary and moving objects on every cycle,
we ran them on alternating cycles. We real-
ized that the processor was bogged down by
the trigonometric functions our system was
calling. To alleviate this problem, we wrote
trigonometric approximation functions in C
and called them from a MATLAB Function
block. These modifications not only increased
the efficiency of the sensor fusion code, they
also enabled the AEBS software to react faster,
which is vital when vehicles are traveling at
highway speeds and every millisecond counts.

Verifying and Refining the Design
We tested the design in-vehicle on a closed
course, but we needed to know how the sys-
tem would react in real-world driving scenar-
ios, such as different weather conditions, traf-

FIGURE 3. Sensor visualization tool developed in MATLAB.

FIGURE 5. The Situation Classification Assistant Module, a MATLAB based tool for processing
logged ECU data and automatically identifying situations relevant to emergency braking.

Deploying the Generated Code in
Production ADAS
Most Scania trucks and buses are now
equipped with AEBS running production code
generated from Simulink models and verified
via extensive simulations. We have reused our
sensor fusion system design in Scania’s adap-
tive cruise control system, and there are now
more than 100,000 units on the road. ■

LEARN MORE

Radar System Modeling and Simulation for
Automotive Advanced Driver Assistance
Systems 26:00
mathworks.com/video-107121

Cost and Benefit of Model-Based
Development of Automotive Software—
Results of a Global Study 30:30
mathworks.com/video-92771

Model-Based Approach to Resource-Efficient
Object Fusion for an Autonomous Braking
System 21:21
mathworks.com/video-108103

FIGURE 2. Simulink model of the sensor fusion system showing independent functional blocks.

http://mathworks.com/video-107121
http://mathworks.com/video-92771
http://mathworks.com/video-108103

14 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 15MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

Kevin Leiffels and Raphael-David
Volmering designed and built the e-long-
board as a final project for my course on
electric drives and field-oriented control
(vector control). Powered by two indepen-
dent brushless DC motors (BLDCs), the
longboard can carry a rider up to 25 km
(15.5 miles) with a top speed of more than
40 km/hour (25 mph).

The Value of Hands-On Projects
with Model-Based Design
Students acquire a much deeper understand-
ing of engineering concepts by completing
hands-on projects than by listening to a lec-
ture. Even students who get excellent grades
on tests don’t truly understand concepts such
as field-oriented control for electric motors
until they have applied those concepts in the
real world.

Model-Based Design enables students to
tackle meaningful projects in the limited time
available. For example, in a single semester
Raphael completed the e-longboard’s printed
circuit board design while Kevin designed,
implemented, and tested the controller. Kevin
generated more than 15,000 lines of code—
much more code than he could have written
by hand in one semester.

HS Bochum’s acquisition of a Total Aca-
demic Headcount (TAH) license was a ma-
jor milestone for the university and a boon
to my course. The students are free to use
MATLAB® and Simulink® on assignments
both inside and outside the lab. This flex-

ibility is highly motivating. MATLAB and
Simulink are industry standard tools, and the
students know that to develop the skills re-
quired in industry they need more practice
with the tools than they can get just by work-
ing in the lab. The TAH license also makes
my job easier because I no longer have to
keep track of individual licenses.

Establishing Project Requirements
For all student projects I establish a set of basic
requirements and then let the students come
up with their own ideas. The e-longboard proj-
ect had to include a power device, two separate
motors that are not mechanically connected,
and a DSP on which the field-oriented control
is implemented (Figure 1). The control part
of the project must be challenging but simple
enough for a student to complete in a single
semester. Each student must use Model-Based

Design. In my view, Model-Based Design is the
state of the art for control system development
because it enables early and thorough verifica-
tion of the design, low implementation costs,
portability to multiple hardware platforms,
and short development times.

Before Model-Based Design became a
requirement, the students did not learn as
much about how real engineering projects
are conducted. For example, they would
often start with a prepackaged third-party
motor controller, hack a few lines of C code
together to get the motor spinning, and then
move directly to constructing the rest of the
system for trial-and-error testing. When
they were done they would find out that the
system did not meet their power demands
or satisfy all the real-time requirements.
Because they had not verified their designs
via simulation, they only discovered these

WHEN I SAW MY GRADUATE STUDENTS COMPETING TO SEE WHO
could maintain the highest average speed on the electric motor-powered skateboard they had built, I knew

that I had achieved my two most important goals for their project. Not only had they gained a deep under-

standing of Model-Based Design, they also had a great deal of fun doing so.

HS Bochum Students Design and Build
a Motor Controller for an E-Longboard
with Model-Based Design
By Dr. Arno Bergmann, Bochum University of Applied Sciences (HS Bochum)

FIGURE 1. The underside of the e-longboard showing two BLDC motors on the left.

16 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 17MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

FIGURE 3. The e-longboard printed circuit.

problems when it was too late to do anything
about them.

Supplementing the basic project require-
ments, the students included several require-
ments specific to the e-longboard. In addition
to specifying a minimum range for a single
battery charge, these requirements defined a
maximum braking distance and a minimum
hill grade that the e-longboard would need to
be able to climb.

Designing and Implementing
the Controller
A principal design challenge in field-oriented
control is maintaining a 90° angle between
the rotor and stator field in the motor. In ad-
dition to minimizing changes of the magnetic
flux to enable fast transient responses, main-
taining this angle maximizes motor torque
for a given current. Kevin used Hall sensors

board’s range. It wasn’t long before the stu-
dents were competing to see who could
deplete the batteries fastest by maintaining
the top average speed. Following test runs,
Kevin post-processed metrics captured dur-
ing the runs. To visualize the e-longboard’s
speed response, for example, he created a
combined graph of desired speed and actual
speed in MATLAB (Figure 4).

Next Steps for the Student and
the Course
When Kevin completed his studies at HS
Bochum he began working for an engi-
neering company that uses Model-Based

Design. When the company learned of
Kevin’s success with the e-longboard they
hired him on the spot.

One of the most valuable lessons Kevin
learned is the importance of verifying require-
ments as thoroughly as possible via modeling
and simulation before the actual implementa-
tion. The company that he now works for will
be supporting our upcoming use of Simulink
Verification and Validation™ because they,
too, are seeking to verify requirements at ear-
lier stages in development.

I am planning a few changes for the
next group of students taking the field-
oriented controls course. I will still re-

quire hands-on projects with Model-Based
Design, and I will be encouraging more
students to build an enhanced version
of the e-longboard. Next year’s version
of the course will place a stronger em-
phasis on requirements, logical modes,
and physical modeling using Simulink
Verification and Validation, Stateflow®, and
Simscape Power Systems, respectively.

I plan to use the board to inspire next year’s
students. I will bring the board to class and
let the students take a test drive outside to stir
their interest before they head to the lab to
begin their own projects using Model-Based
Design and field-oriented control. ■

to measure rotor position, which is a key in-
put to both the field-oriented control and the
board’s speed control loop.

Kevin based his controller design on an
example field-oriented control project from a
MathWorks webinar. The example included a
Simulink model for controlling the speed and
torque of a three-phase permanent magnet
synchronous machine (PMSM), which was
modeled using Simscape Power Systems™
(Figure 2). We found the example to be a good
implementation of field-oriented control.

After downloading the example project
from mathworks.com, Kevin modified the
parameters for the e-longboard, removed
unneeded parts, and added features. After
running simulations in Simulink, Kevin used
Embedded Coder® to generate C code for
the board’s TI F28069 microcontroller. At
that point, he began evaluating the real-time

response of the system to see if it met the real-
time requirements he had established.

Kevin and Raphael worked largely on
their own, meeting me once a week so that I
could monitor their progress. On this proj-
ect, Kevin applied and expanded the basic
knowledge of Model-Based Design with
MATLAB and Simulink that he had ac-
quired in earlier control design electives at HS
Bochum. He relied on technical support from
MathWorks to resolve any technical issues that
he encountered, and that enabled him to work
with surprisingly little assistance from me.

Once the printed circuit board was ready
(Figure 3) and the rest of the e-longboard had
been constructed, Kevin and his classmates
began testing the board in and around the HS
Bochum campus.

Kevin rode around a nearby lake—a
distance of more than 25 km—to test the

FIGURE 2. Simulink model for simulating field-oriented control with a permanent magnet synchronous machine.

FIGURE 4. Plot of desired speed (pink) and actual speed (yellow) showing how closely the
two matched during a test run.

LEARN MORE

Simulation of FOC Using PMSM Model
mathworks.com/foc-pmsm

MATLAB and Simulink in the World:
The MATLAB Enabled Campus
mathworks.com/miw-tah

http://mathworks.com/foc-pmsm
http://mathworks.com/miw-tah

18 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 19MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

My colleagues and I at the Art and
Artificial Intelligence Laboratory at Rutgers
University explored this question using
MATLAB®, Statistics and Machine Learning
Toolbox™, and a database of thousands of
paintings from the past six centuries. We also
addressed two other intriguing questions about
the capabilities and limitations of AI algo-
rithms: whether they can identify which paint-
ings have had the greatest influence on later art-
ists, and whether they can measure a painting’s
creativity using only its visual features.

Extracting Visual Features for
Classifying Paintings
We wanted to develop algorithms capable of
classifying large groups of paintings by style
(for example, as Cubist, Impressionist, Ab-
stract Expressionist, or Baroque), genre (for
example, landscape, portrait, or still life), and
artist. One requirement for this classification
is the ability to recognize color, composition,
texture, perspective, subject matter, and other
visual features. A second is the ability to select
those visual features that best indicate simi-
larities between paintings.

Working with MATLAB and Image
Processing Toolbox™, we developed algo-
rithms to extract the visual features of a paint-
ing. The feature extraction algorithm is fairly
common in computer vision, and straight-
forward to implement. The more challenging
task was finding the best machine learning

techniques. We began by testing support vec-
tor machines (SVMs) and other classification
algorithms in Statistics and Machine Learning
Toolbox to identify visual features that are use-
ful in style classification. In MATLAB, we then
applied distance metric learning techniques to
weight the features and thereby improve the
algorithm’s ability to classify paintings.

The algorithms we developed classified the
styles of paintings in our database with 60%
accuracy, where chance performance would
have been about 2%. While art historians can
perform this task with much more than 60%

accuracy, the algorithm outperforms typical
non-expert humans.

Using Machine Learning to Uncover
Artistic Influences
Once we had algorithms that could reliably
identify similarities between pairs of paintings,
we were ready to tackle our next challenge: us-
ing machine learning to reveal artistic influ-
ences. Our hypothesis was that visual features
useful for style classification (a supervised
learning problem) could also be used to deter-
mine influences (an unsupervised problem).

WHEN YOU STUDY A PAINTING, CHANCES ARE THAT YOU CAN
make several inferences about it. In addition to understanding the subject matter, for example, you may

be able to classify it by period, style, and artist. Could a computer algorithm “understand” a painting well

enough to perform these classification tasks as easily as a human being?

Creating Computer Vision and
Machine Learning Algorithms That
Can Analyze Works of Art
By Ahmed Elgammal, Rutgers University

FIGURE 1. Left: Diego Velázquez’s “Portrait of Pope Innocent X.” Right: Francis Bacon’s
“Study After Velázquez’s Portrait of Pope Innocent X.”

20 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 21MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

Art historians develop theories of artistic
influence based on how the artists worked,
traveled, or trained with contemporaries. Our
MATLAB based machine learning algorithms
used only visual elements and dates of com-
position. We hypothesized that an algorithm
that took into account objects and symbols
in the painting would be more effective than
one that relied on low-level features such as
color and texture. With this in mind, we used
classification algorithms that were trained on
Google images to identify specific objects.

We tested the algorithms on more than
1700 paintings from 66 different artists work-
ing over a span of 550 years. The algorithm
readily identified the influence of Diego
Velazquez’s “Portrait of Pope Innocent X” on
Francis Bacon’s “Study After Velazquez’s Por-
trait of Pope Innocent X” (Figure 1).

The similarities in composition and subject
matter between these two paintings are easy
even for a layman to spot, but the algorithm
also produced results that surprised the art
historians we worked with. For example, our
algorithm identified “Bazille’s Studio; 9 rue
de la Condamine,” painted by French Impres-

To perform a basic validation of our al-
gorithm, we changed the date on specific
works of art, effectively shifting them back-
wards or forwards in time. In these “time
machine” experiments, we saw significant
creativity score increases for Impressionist
art moved back to the 1600s and significant
reductions for Baroque paintings moved
forward to the 1900s. The algorithms cor-
rectly perceived that what was creative 300
years ago is not creative today, and that
something that is creative now would have
been much more creative if introduced far
in the past.

A Scalable and Extensible
Framework for Arts Research
Humans have the innate perceptual skills to
classify art, and they excel at identifying simi-

larities in pairs of paintings, but they lack the
time and patience to apply these skills objec-
tively to thousands or millions of paintings.
Handling tasks at this scale is where comput-
ers come into their own. By developing ma-
chine learning algorithms that have percep-
tual capabilities similar to humans, our goal is
to provide art historians with tools to navigate
vast databases of images.

The framework we developed in MATLAB
for identifying similarities and measuring
creativity is not confined to art. It could be
applied to literature, music, or virtually any
other creative domain, as long as the indi-
vidual works can be encoded in a way that is
accessible to the algorithms.

For now, however, our focus remains on the
visual arts. We are interested not only in en-
suring that machine learning algorithms pro-

sionist Frederic Bazille in 1870, as a possible
influence on Norman Rockwell’s “Shuffleton’s
Barbershop,” completed 80 years later (Figure
2). Although the paintings might not look simi-
lar at first glance, a closer examination reveals
similarities in composition and subject matter,
including the heaters in the lower right of each
work, the group of three men in the center, and
the chairs and triangular spaces in the lower left.

In our data set, the algorithms correctly
identified 60% of the 55 influences recog-
nized by art historians, suggesting that vi-
sual similarity alone provides sufficient in-
formation for algorithms (and possibly for
humans) to determine many influences.

Measuring Creativity by Solving a
Network Centrality Problem
Recently, our research has focused on develop-
ing algorithms to measure creativity in art. We
based this project on a widely used definition
that identifies an object as creative if it is both
novel and influential. In these terms, a creative
painting will be unlike the paintings that came
before it (novel), but similar to those that came
after it (influential).

In addressing this problem, we once again
saw an opportunity to apply our MATLAB al-
gorithms for identifying similarities between
paintings. In MATLAB we created a network
in which the vertices are paintings and each
edge represents the similarity between the
two paintings at its vertices. Through a se-
ries of transformations on this network we
saw that making inferences about creativity
from such a graph is a network centrality
problem, which can be solved efficiently us-
ing MATLAB.

We tested our creativity algorithms on
two data sets containing more than 62,000
paintings. The algorithm gave high scores to
several works recognized by art historians as
both novel and influential, including some of
the works shown in Figure 3. Ranking even
higher than Pablo Picasso’s “Young Ladies
of Avignon” (1907) in the same period were
several paintings by Kazimir Malevich. This
result initially surprised me, as I knew little
about Malevich’s work. I have since learned
that he was the founder of the Suprematism
movement, one of the earliest developments
in abstract art.

FIGURE 3. Computed creativity scores (y-axis) for paintings from 1400 to 2000 (x-axis), showing selected highest scoring paintings for
individual periods.

duce good results but also in how they arrive
at those results. In this area, too, MATLAB
is a tremendous advantage because it provides
many ways to quickly and easily visualize re-
sults. These visualizations enable us to un-
derstand the results and use them to inform
ongoing AI research. ■

LEARN MORE

Machine Learning with MATLAB 41:26
mathworks.com/video-81984

Woods Hole Oceanographic Institution
Improves Underwater Imaging
mathworks.com/woods-hole

Applying Modern PDE Techniques to Digital
Image Restoration
mathworks.com/image-restoration

FIGURE 2. Left: Frederic Bazille’s “Bazille’s Studio; 9 rue de la Condamine.” Right: Norman Rockwell’s “Shuffleton’s Barbershop.” Yellow circles
indicate similar objects, red lines indicate similar composition, and the blue rectangle indicates a similar structural element.

http://mathworks.com/video-81984
http://mathworks.com/woods-hole
http://mathworks.com/image-restoration

22 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 23MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

In traditional machine learning, feature selection is a time-con-
suming manual process. Feature extraction usually involves process-
ing each image with one or more image processing operations, such
as calculating gradient to extract the discriminative information
from each image.

Enter deep learning. Deep learning algorithms can learn features,
representations, and tasks directly from images, text, and sound, elimi-
nating the need for manual feature selection.

Using a simple object detection and recognition example, this ar-
ticle illustrates how easy it is to use MATLAB® for deep learning, even
without extensive knowledge of advanced computer vision algorithms
or neural networks.

Getting Started
The goal in this example is to train an algorithm to detect a pet in a
video and correctly label the pet as a cat or a dog. We’ll be using a
convolutional neural network (CNN), a specific type of deep learn-
ing algorithm that can both perform classification and extract features
from raw images.

To build the object detection and recognition algorithm in MATLAB,
all we need is a pre-trained CNN and some dog and cat images. We’ll use
the CNN to extract discriminative features from the images, and then
use a MATLAB app to train a machine learning algorithm to discrimi-
nate between cats and dogs.

Importing a CNN Classifier
We begin by downloading a CNN classifier pretrained on ImageNet, a
database containing over 1.2 million labeled high-resolution images in
1000 categories. In this example we’ll be using the AlexNet architecture.

�websave('\networks\imagenet-caffe-alex.mat',...

� 'http://www.vlfeat.org/matconvnet/models/beta16/

� imagenet-caffe-alex.mat');

We import the network into MATLAB as a SeriesNetwork using
Neural Network Toolbox, and display the architecture of the CNN. The
SeriesNetwork object represents the CNN.

�% Load MatConvNet network into a SeriesNetwork

�convnet = helperImportMatConvNet(cnnFullMatFile);

�% View the CNN architecture

convnet.Layers

We’ve stored the images in separate cat and dog folders under a parent
called pet_images. The advantage of using this folder structure is that
the MATLAB imageDatastore we create will be able to automatically
read and manage image locations and class labels. (imageDatastore
is a repository for collections of data that are too large to fit in memory.)

We initialize an imageDatastore to access the images in MATLAB.

%% Set up image data

dataFolder = ' \data\PetImages';

categories = {'Cat', 'Dog'};

�imds = imageDatastore(fullfile(dataFolder, ...

� categories), 'LabelSource', 'foldernames');

We then select a subset of the data that gives us an equal number of
dog and cat images.

tbl = countEachLabel(imds)

%% Use the smallest overlap set

minSetCount = min(tbl{:,2});

�% Use splitEachLabel method to trim the set.

�imds = splitEachLabel(imds, minSetCount, ...

� 'randomize');

�% Notice that each set now has exactly the same

% number of images.

countEachLabel(imds)

Since the AlexNet network was trained on 227x227-pixel images, we
have to resize all our training images to the same resolution. The following
code allows us to read and process images from the imageDatastore
at the same time.

%% Pre-process Images For CNN

% Set the ImageDatastore ReadFcn

�imds.ReadFcn = @(filename)readAndPreprocessImage...

� (filename);

�%% Divide data into training and testing sets

�[trainingSet, testSet] = splitEachLabel(imds, ...

� 0.3, 'randomize');

We use the readAndPreprocessImage function to resize the im-
ages to 227x227 pixels.

�function Iout = readAndPreprocessImage(filename)

I = imread(filename);

�% Some images may be grayscale. Replicate the image

% 3 times to create an RGB image.

if ismatrix(I)

 I = cat(3,I,I,I);

end

�% Resize the image as required for the CNN.

Iout = imresize(I, [227 227]);

end

Performing Feature Extraction
We want to use this new dataset with the pretrained AlexNet CNN.
CNNs can learn to extract generic features that can be used to train a

 COMPUTER VISION ENGINEERS HAVE USED MACHINE LEARNING

techniques for decades to detect objects of interest in images and to classify or identify categories of objects.

They extract features representing points, regions, or objects of interest and then use those features to train a

model to classify or learn patterns in the image data.

Deep Learning for Computer
Vision with MATLAB
By Avinash Nehemiah and Valerie Leung, MathWorks

FIGURE 2. Visualization of first layer filter weights.

FIGURE 1. Workflow for using a pre-trained CNN to extract features for a new task.

24 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 25MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

new classifier to solve a different problem—in our case, classifying cats
and dogs (Figure 1).

We pass the training data through the CNN and use the activa-
tions method to extract features at a particular layer in the network.
Like other neural networks, CNNs are formed using interconnected lay-
ers of nonlinear processing elements, or neurons. Input and output lay-
ers connect to input and output signals, and hidden layers provide non-
linear complexity that gives a neural network its computational capacity.

While each layer of a CNN produces a response to an input image,
only a few layers are suitable for image feature extraction. There is no
exact formula for identifying these layers. The best approach is to sim-
ply try a few different layers and see how well they work.

The layers at the beginning of the network capture basic image fea-
tures, such as edges and blobs. To see this, we visualize the network
filter weights from the first convolutional layer (Figure 2).

�% Get the network weights for the second

% convolutional layer

w1 = convnet.Layers(2).Weights;

�% Scale and resize the weights for visualization

w1 = mat2gray(w1);

w1 = imresize(w1,5);

�% Display a montage of network weights. There are 96

% individual sets of weights in the first layer.

figure

montage(w1)

�title('First convolutional layer weights')

Notice that the first layer of the network has learned filters for cap-
turing blob and edge features. These “primitive” features are then pro-
cessed by deeper network layers, which combine the early features to
form higher-level image features. These higher-level features are better
suited for recognition tasks because they combine all the primitive fea-
tures into a richer image representation. You can easily extract features
from one of the deeper layers using the activations method.

The layer right before the classification layer fc7 is a good place to
start. We extract training features using that layer.

featureLayer = 'fc7';

�trainingFeatures = activations(convnet, ...

� trainingSet, featureLayer, �'MiniBatchSize', ...

� 32, 'OutputAs', 'columns');

Training an SVM Classifier Using the Extracted
Features
We’re now ready to train a “shallow” classifier with the features extract-
ed in the previous step. Note that the original network was trained to
classify 1000 object categories. The “shallow” classifier will be trained
to solve the specific dogs vs. cats problem.

The Classification Learner app in Statistics and Machine Learning Tool-
box™ lets us train and compare multiple models interactively (Figure 3).
Alternatively, we could train the classifier in our MATLAB script.

We split the data into two sets, one for training and one for
testing. Next, we train a support vector machine (SVM) classifier
using the extracted features by calling the fitcsvm function using
trainingFeatures as the input or predictors and trainingLabels
as the output or response values. We will cross-validate the classifier on
the test data to determine its validation accuracy, an unbiased estimate
of how the classifier would perform on new data.

�%% Train a classifier using extracted features

�trainingLabels = trainingSet.Labels;

�% Here I train a linear support vector machine

% (SVM) classifier.

�svmmdl = fitcsvm(trainingFeatures ,trainingLabels);

�% Perform cross-validation and check accuracy

�cvmdl = crossval(svmmdl,'KFold',10);

�fprintf('kFold CV accuracy: %2.2f\n',...

� 1-cvmdl.kfoldLoss)

We can now use the svmmdl classifier to classify an image as a cat or
a dog (Figure 4).

Performing Object Detection
In most images and video frames, there is a lot going on. For example, in
addition to a dog, there could be a tree, or a flock of pigeons, or a raccoon
chasing the dog. Even a reliable image classifier will only work well if we
can locate the object of interest, crop the object, and then feed it to the
classifier—in other words, if we can perform object detection.

For object detection we will use a technique called optical flow,
which uses the motion of pixels in a video from frame to frame. Figure
5 shows a single frame of video with the motion vectors overlaid.

The next step in the detection process is to separate out pixels that
are moving and then use the Image Region Analyzer app to analyze the
connected components in the binary image to filter out noise caused
by the motion of the camera. The output of the app is a MATLAB
function that can locate the pet in the field of view (Figure 6).

We now have all the pieces we need to build a pet detection and
recognition system (Figure 7). The system can:
• �Detect the location of the pet in new images using optical flow
• �Crop the pet from the image and extract features using a pretrained

CNN
• �Classify the features using the SVM classifier we trained to deter-

mine if the pet is a cat or a dog
In this article we used an existing deep learning network to solve

a different task. You can use the same techniques to solve your own
image classification problem—for example, classifying types of cars in
videos for traffic flow analysis, identifying tumors in mass spectrom-
etry data for cancer research, or identifying individuals by their facial
features for security systems. ■

LEARN MORE

Deep Learning for Computer Vision with MATLAB 36:50
mathworks.com/video-116080

Object Detection Example Code (download)
mathworks.com/fx-57116

FIGURE 3. Classification Learner app.

FIGURE 4. Result of using the trained pet classifier on an image of a cat.

FIGURE 5. A single frame of video showing the motion vectors overlaid.

FIGURE 6. Image Region Analyzer app.

FIGURE 7. Accurately classified cats and dogs.

http://mathworks.com/video-116080
http://mathworks.com/fx-57116
croth
Sticky Note
adjusted placement of image inside of box. Also adjusted space of caption from bottom edge of box.

26 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 27MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

This article addresses these concerns
head-on. It provides tips and best practices for
working with MATLAB Coder™, as well as in-
dustry examples of successful applications of
generated code by companies such as Delphi,
Baker Hughes, iSonea, and dorsaVi.

Comparing MATLAB and C Code:
A Multiplication Example
The simple MATLAB function below multi-
plies two inputs.

function c = myMult(a, b)

% Multiply two inputs

c = a * b;

Given scalar inputs, MATLAB Coder gen-
erates the following C code:

#include "myMult.h"

double myMult(double a, double b)

{

 return a * b;

}

As you can see, the generated code maps
clearly back to the MATLAB code.

The same piece of MATLAB code, when
given two matrix inputs, generates three nest-
ed for-loops in C:

#include "myMult.h"

�void myMult(const double a[12],

const double b[20], double c[15])

{

 int i0;

 int i1;

 int i2;

 for (i0 = 0; i0 < 3; i0++) {

 �for (i1 = 0; i1 < 5; i1++)

{

 �c[i0 + 3 * i1] = 0.0;

 � �for (i2 = 0; i2 < 4;

i2++) {

 � � �c[i0 + 3 * i1] +=

a[i0 + 3 * i2] * b[i2

+ (i1 << 2)];

 }

 }

 }

}

Recommended Three-Step Iterative
Workflow
The simple function shown above can be
implemented in a single step. But for more
substantial projects, we recommend a struc-
tured approach using a three-step iterative
workflow (Figure 1).
1. �Prepare your algorithm for code genera-

tion. Examine and modify the MATLAB

code to introduce implementation consid-
erations needed for low-level C code, and
use the MATLAB language and functions
that support code generation.

2. �Test the MATLAB code’s readiness for code
generation using default settings. Check for
run-time errors by generating and execut-
ing a MEX file. If successful, move to the
next step. If not, repeat step 1 until you can
generate a MEX function.

3. �Generate C code or keep the MEX function
from step 2. You can iterate on the MATLAB
code to optimize either the generated C code
(for look and feel, memory, and speed) or
the MEX function (for performance).
The MATLAB Coder app guides you

through this iterative process while enabling
you to stay within the MATLAB environ-
ment. It analyzes your MATLAB code to
propose data types and sizes for your inputs.
It tests whether your MATLAB code is ready
for code generation by generating a MEX
function, then executes the MEX function to
check for run-time errors (Figure 2). Equiv-
alent command-line functions provide the
same functionality so you can generate code
as part of a script or function.

Implementation Constraints
As you prepare your MATLAB algorithm for
code generation, you need to take account of
implementation constraints resulting from

the differences between MATLAB and C
code. These include:
• �Memory allocation. In MATLAB, memory

allocation is automatic. In C code, memory
allocation is manual—it is either allocated
statically (using static), dynamically (us-
ing malloc), or on the stack (using local
variables).

• �Array-based language. MATLAB provides a
rich set of array operations that allow con-
cise coding of numerical algorithms. C code
requires explicit for-loops to express the
same algorithms.

• �Dynamic typing. MATLAB automati-
cally determines the data types and sizes
as your code runs. C requires explicit type

ENGINEERS HAVE TRANSLATED LOW-LEVEL LANGUAGES LIKE C
into machine code for decades using compilers. But is it possible to translate a high-level language like

MATLAB® to C using coders? Most engineers would agree that it’s possible in theory—but does it work

in practice? Is the generated code readable or spaghetti? Efficient or bloated? Fast or slow? And does it

support industrial workflows, or just R&D?

The Joy of Generating C Code
from MATLAB
By Bill Chou, MathWorks

FIGURE 1. Three-step iterative workflow for generating code.

FIGURE 2. Left: Automated checks for features and functions not supported for code generation. Right: Automated analysis and proposal for input data
type and sizes.

28 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7 29MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

Industry Success Stories
• �dorsaVi generated C++ code from motion analysis algorithms and

compiled it into a DLL, which was then integrated into their C# ap-

plication running on a PC that analyzes the athlete’s movements to

diagnose injury.

• �Baker Hughes’ Dynamics & Telemetry group generated a DLL from

sequence prediction algorithms and integrated it into surface de-

coding software running on a PC that enables downhole data to be

decoded quickly and reliably during drilling operations.

• �Delphi generated C code for an automotive radar sensor alignment

algorithm and compiled it for an ARM10 processor.

• �VivaQuant generated fixed-point C code from heart rhythm monitor-

ing algorithms and compiled it for an ARM Cortex-M processor.

• �Respiri generated C code from acoustic respiratory monitoring al-

gorithms and compiled it for an iPhone app, an Android™ app,

and cloud-based server software.

declarations on all variables and functions.
• �Polymorphism. MATLAB functions can

support many different input types, while C
requires fixed type declarations. At the top
level, you must specify the intended C func-
tion declaration.
Let’s take a closer look at polymorphism.

Polymorphism can give a single line of
MATLAB code different meanings depend-
ing on your inputs. For example, the func-
tion shown in Figure 3 could mean scalar
multiplication, dot product, or matrix mul-
tiplication. In addition, your inputs could
be of different data types (logical, integer,
floating-point, fixed-point), and they could
be real or complex numbers.

MATLAB is a powerful algorithm
development environment precisely
because you don’t need to worry about
implementation details as you create
algorithms. However, for the equivalent C
code, you have to specify what operations
mean. For example, the line of MATLAB
code shown above could be translated into
this single line of C code that returns B*C:

double foo(double b, double c)

{

 return b * c;

}

Or, it could be translated into 11 lines of C
code with three for-loops that multiply two
matrices:

�void myMult(const double a[12],

const double b[20], double c[15])

{

 int i0;

 int i1;

 int i2;

 for (i0 = 0; i0 < 3; i0++) {

 for (i1 = 0; i1 < 5; i1++) {

 c[i0 + 3 * i1] = 0.0;

 for (i2 = 0; i2 < 4; i2++) {

 �c[i0 + 3 * i1] += a[i0 +

3 * i2] * b[i2 + (i1 <<

2)];

 }

 }

 }

}

Working with the Generated Code:
Four Use Cases
Once you have generated readable and por-
table C/C++ code from MATLAB algorithms
using MATLAB Coder, you have several op-
tions for using it. For example:
• �Integrate your MATLAB algorithms as

source code or libraries into a larger software
project such as custom simulators or software
packages running on PCs and servers.

• �Implement and verify your MATLAB al-
gorithms on embedded processors such as
ARM® processors and mobile devices.

• �Prototype your MATLAB algorithms as a
standalone executable on PCs.

• �Accelerate computationally intensive por-

tions of your MATLAB code by generat-
ing a MEX function that calls the com-
piled C/C++ code.

Multicore-Capable Code Generation
and Other Optimization Methods
In MATLAB, for-loops whose iterations are
independent of each other can be run in par-
allel simply by replacing for with parfor.
MATLAB Coder uses the Open Multipro-
cessing (OpenMP) application interface to
support shared-memory, multicore code
generation from parfor-loops. OpenMP is
supported by many C compilers (for example,
Microsoft® Visual Studio® Professional).

for (i1 = 0; i1 < 3; i1++) {

 �sz[i1] = (unsigned int)

originalImage->size[i1];

}

N = sz[0];

M = sz[1];

�normalizer = (L - 1.0) /

((double)sz[0] * (double)sz[1]);

#pragma omp parallel for \

 �num_threads(omp_get_max_threads()\

 �) private(s,r,planeHist_data,\

loop_ub,i3,y,x,j,d0,u0)

�for (plane = 0; plane < 3;

plane++) {

 loop_ub = originalHist_size[1];

 �for (i3 = 0; i3 < loop_ub;

i3++) {

 �planeHist_data[i3] =

originalHist_data[plane +

originalHist_size[0] * i3];

 }

You can use MATLAB Coder with
Embedded Coder® to further optimize
code efficiency and customize the gener-
ated code. Embedded Coder provides op-
timizations for fine-grained control of the
generated code’s functions, files, and data.
For example, you can use storage classes to
control the declaration and definition of a
global variable in the generated code, and
use code generation templates to custom-
ize banners and comments in the generated
code. Embedded Coder also improves code
efficiency by using code replacement librar-
ies, which replace certain operators and
functions with implementations optimized
for popular processors like ARM Cortex®-A
and ARM Cortex-M.

Testing the Generated Code
As you develop your MATLAB algorithm, you
can create unit tests to verify that the algorithm
produces the results you expect. Tests written
using the MATLAB unit testing framework
can be reused to verify that the generated
code behaves the same way as your MATLAB
algorithm. With Embedded Coder you can
reuse the unit tests in combination with
software-in-the-loop (SIL) and processor-
in-the-loop (PIL) tests on the generated
standalone code or library.

An Automated Workflow
MATLAB Coder enables an automated work-
flow for translating MATLAB algorithms into
C code. With this workflow you spend less
time writing and debugging low-level C code
and more time developing, testing, and tun-
ing designs. By maintaining one golden ref-
erence in MATLAB, including the algorithm
and test benches, you can propagate algorith-
mic changes to your C code more quickly. Au-
tomated tools like the MATLAB unit testing

framework and the Embedded Coder SIL and
PIL testing framework let you test both the
MATLAB code and the C code thoroughly
and systematically. Whether you are imple-
menting designs running on traditional PCs,
web servers, mobile devices, or embedded
processors, MATLAB Coder will help you
get from MATLAB to C code faster and with
fewer manual translation errors. ■

LEARN MORE

Generating C Code from MATLAB
(download)
mathworks.com/fx-56270

MATLAB and C/C++ Resources
mathworks.com/matlab-c

Supported Language and Functions for
MATLAB Coder
mathworks.com/coder-language

FIGURE 3. Polymorphism example.

http://mathworks.com/fx-56270
http://mathworks.com/matlab-c
http://mathworks.com/coder-language

30 31MathWorks News&Notes | 2 0 1 6 – 2 0 1 7MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

Introducing Cleve’s Laboratory
By Cleve Moler, MathWorks

In this Cleve’s Corner I want to give you a sneak preview of the
experiments in “Cleve’s Laboratory.” I launched the laboratory to col-
lect much of the work I have done over the last several years in one
place. The experiments come from my two ebooks, my blog, Cleve’s
Corner columns in MathWorks News & Notes, and new work.

Each experiment centers on an interactive “app” that allows ex-
perimenters to try out the ideas for themselves. Several of the ex-

periments, including hello_world, klock, and biorhythms, are
designed to introduce newcomers to MATLAB®.

The figure below shows snapshots of the graphical entry pages.
Even these are live pages driven by MATLAB. The wave in the
first icon moves every time you open the page. The clock reads
the correct time. The Sudoku puzzle changes. The double pen-
dulum swings.

CLEVE’S CORNER

logo_wave. The MathWorks logo is the solution to the wave equa-
tion, a foundation of mathematical physics. MathWorks is the only
company in the world whose logo is the solution to a partial differ-
ential equation. This program demonstrates the vibration of a mem-
brane stretched over an L-shaped region.

lifex. This is a version of John Conway's Game of Life. "Life" is
a cellular automaton that involves life and death in an infinite rect-
angular, 2D, cellular universe. The lifex program accesses the Life
Lexicon, a historical collection of nearly 500 starting populations
available online. It uses sparse matrix operations and an elegant, one-
line implementation of Conway’s rules for evolution in this universe.
The icon shows Bill Gosper’s glider gun, which emits a continuous
stream of 5-element agents that move across the space.

fern. The fern is a self-similar fractal. It was invented by Michael
Barnsley, and is described in his book Fractals Everywhere. Each leaf
is similar in structure to the larger fern and contains a miniature copy
of yet another leaf. The fern program keeps running until the stop
button is toggled.

fibonacci. This program is based on Fibonacci's rabbit pen. A
man puts a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if
it is supposed that every month each pair begets a new pair that from
the second month on becomes productive? Today, the solution to this
problem is known as the Fibonacci sequence, or Fibonacci numbers.

pdeapp. This program demonstrates finite difference methods for
solving model problems for four partial differential equations involving
Laplace’s operator: the Poisson equation, the heat equation, the wave
equation, and an eigenvalue equation. The regions are a square, an L-
shape, an H-shape, a disc, an annulus, and a pair of isospectral drums.

flame. This is an example of a stiff ordinary differential equation.
flame(r0) specifies the initial radius is r0. Default r0 = .02. A ball
of fire grows until its radius is just large enough for all the oxygen
available through the surface to be consumed by combustion in the
interior. The equation for the radius is rdot = r^2 - r^3. The problem
becomes stiff as the radius approaches its limiting value.

T puzzle image courtesy of Shop New Zealand www.shopnewzealand.co.nz © Shop New Zealand

croth
Sticky Note
Fixed issue with lines over folios

32 33MathWorks News&Notes | 2 0 1 6 – 2 0 1 7MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

CLEVE’S CORNER

eigsvdapp. With this program you can watch how MATLAB han-
dles three different matrix eigenvalue problems: the eigenvalues of a
nonsymmetric matrix, the eigenvalues of a symmetric matrix, and
the singular values of any matrix. Watch the reduction to Hessen-
berg, tridiagonal, or bidiagonal form, then the QR iteration to obtain
Schur or diagonal form.

walker. This model, developed by Nikolaus Troje, is a five-term
Fourier series with vector-valued coefficients that are the principal
components for data obtained in motion-capture experiments in-
volving subjects wearing reflective markers and walking on a tread-
mill. The components, also known as “postures” or “eigenwalkers,”
correspond to the subject’s movements. The postures are also classi-
fied by gender.

waterwave. A 2D shallow water model with reflexive boundary
conditions. A random water drop initiates gravity waves. The surface
plot displays height colored by momentum. The solution is computed
by the Lax-Wendroff finite difference method. The plot title shows
simulated time and total variation.

orbits. The orbits program solves Newton’s equations governing
the gravitational attraction among several bodies. When the number
of bodies is equal to nine, this is the solar system with one sun and
eight planets.

censusapp. This experiment is older than MATLAB—it started
as an exercise in Computer Methods for Mathematical Computa-
tions, by Forsythe, Malcolm and Moler, published in 1977. The data
comes from the decennial census of the U.S., 1900–2010. The task
is to extrapolate population data beyond 2010. Today’s MATLAB
makes it easier to vary the parameters and see the results, but the
underlying mathematical principle is unchanged: Using polynomi-
als of even modest degree to predict the future by extrapolating
data is a risky business.

mandelbrot. This program invites you to explore the Mandelbrot
fractal. You can use the mouse to select a region, zoom in on any re-
gion, increase the grid size, increase the iteration depth, and change
the color map.

predprey. In this classic model, one species grows exponentially
while the other decays exponentially in the absence of the other.
The model is nonlinear, but the solutions are periodic. Dragging the
red dot changes the equilibrium point. Dragging the blue-green dot
changes the initial conditions.

durerperm. The icon shows Durer's magic square. To permute the
square, click on two different rows or columns. Is the result still a
magic square?

golden_spiral. In this program you can see a continuously ex-
panding sequence of golden rectangles and inscribed quarter circles.

tumbling_box. If you throw a rectangular box in the air with a
twist, you can make it tumble stably about its longest or shortest axis.
But if three sides of the box are of different lengths, you cannot make
it tumble about its middle-sized axis. The Euler differential equations
for the angular momenta about the three principal axes have two
stable critical points and one unstable critical point.

waves. This program demonstrates the wave equation in 1D
and 2D space dimensions. Solutions are expressed as time-varying
weighted sums of the first four eigenfunctions. The 1D domain is an
interval. The 2D domains include a square, a disc, a three-quarter
circular sector, and the L-shaped union of three squares. With po-
lar coordinates, the eigenfunctions of the disc and the sector involve
Bessel functions.

tictactoe. This program combines three games that initially ap-
pear to be unrelated: Pick15, TicTacToe, and Magic3. In Pick15, the
object is to generate a total of 15 using exactly three digits, where
each digit can be chosen only once. TicTacToe follows the traditional
game, but replaces X’s and O’s with blue and green. The object is to
get three in a row, column, or diagonal. Magic3 superimposes a mag-
ic square of order three on TicTacToe to show that Pic15 is actually
the same game.

t_puzzle. I first saw this wooden T puzzle at Puzzling World in
Wanaka, New Zealand. The underlying mathematics involves ge-
ometry, trigonometry, and arithmetic with complex numbers. The
t_puzzle program demonstrates some useful programming tech-
niques. The four pieces all have the same width but different heights.
It turns out that they can be arranged to form a capital “T” as well as
an arrow and a rhombus. ■

LEARN MORE

Cleve's Laboratory App
(download)
mathworks.com/cleves-lab

Cleve’s Corner Blog
blogs.mathworks.com/cleve

Cleve’s Corner Collection
mathworks.com/cleves-corner

http://mathworks.com/cleves-lab
http://blogs.mathworks.com/cleve
http://mathworks.com/cleves-corner

34 35MathWorks News&Notes | 2 0 1 6 – 2 0 1 7MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

Smart Devices and Analytics Spur Innovation
in the Internet of Things
By Eric Wetjen, MathWorks

The Internet of Things (IoT) is a rapidly evolving space in which
virtually any smart hardware device—a mobile phone, a pacemaker,
a wearable fitness sensor, even a refrigerator—can be connected to
the internet to generate and receive data.

Combining internet-connected devices with cloud computing,
machine learning, and other data analytics approaches is enabling
products and solutions that are transforming the way we live and
work. Today, for example, thanks to the Internet of Things:
• �A doctor can remotely monitor how often a patient’s pacemaker fires.
• Athletes can measure how many calories they burn during a run.
• Farmers can optimize irrigation of crops.
• �Building managers can save electricity by optimizing controls for

HVAC equipment.
• �Asthma sufferers can manage their condition by using a mobile phone

app to monitor their wheezing levels.
• �Automakers are close to developing a driverless car capable of autono-

mously navigating through city streets.

Inside an IoT System
A typical IoT system works like this (Figure 1):

1. �A smart connected device produces sensor data and ultimately
sends data to the cloud. These devices are often smart enough to
run data-reduction algorithms on their embedded processors.

2. �An analytic IoT platform processes and stores the sensor data. It
may integrate information from other sources, such as business
systems. It analyzes and takes action on the incoming data.

3. �A systems engineer or data scientist accesses the historical data
from the cloud or the device and develops algorithms to prepro-
cess and analyze it. These algorithms may involve machine learn-
ing techniques for predicting future values of a sensor quantity or
for classifying the sensor data.

4. �The algorithm is deployed in the cloud or on a smart device, where
it operates on incoming live data.

Creating an IoT System with MATLAB and Simulink
MATLAB® and Simulink® support IoT systems by helping you de-
velop and test smart connected devices, access and collect data in the
cloud, and analyze sensor data. Let’s look at two examples.

Example 1. A Traffic Monitor
Tired of sitting in traffic every time they drove home from work, two
engineers decided to study traffic flow trends on the busy highway
outside their building. They installed a webcam in an office overlook-
ing the highway and connected it to a Raspberry Pi™ board running
a computer vision algorithm (Figure 2).

The data was collected in the cloud using ThingSpeak™, an analytic
IoT platform that can run MATLAB code.

TECH SPOTLIGHT

They built a Simulink block diagram that included a Median Filter
block to clean up the image and a Blob Analysis block to identify cars
in the image (Figure 3). They then wrote a custom block to count the
cars, and sent the summary data to ThingSpeak.

Before deploying the algorithm to the Raspberry Pi, they verified it
using the video display in Simulink external mode (Figure 4).

Once the data was in ThingSpeak, they used the MATLAB app
integrated into ThingSpeak to create live visualizations of the traffic
density in each direction for the previous 48 hours. These include a
color-coded visualization (Figure 5) that categorizes the current state
of the traffic (light = green, moderate = yellow, and heavy = red).

Example 2. A Tide Gauge and Alert System
Getting your boat stuck in the mud is a distinct possibility without an
accurate measure of water depth. Because tide predictions and real-
time water levels are not available for most bays and estuaries, one
boater and MATLAB user built a low-cost, real-time tide gauge. He
quickly learned that the timing and amplitude of tide levels is highly
dependent on location.

The key hardware components he used were an Arduino® Mega
board, a SparkFun Electronics® cellular shield, and an ultrasonic
range finder. The cellular shield provided the connection from the
Arduino to the internet. The Arduino was used to read the data from
the ultrasonic sensor.

ThingSpeak was used to collect and process the data in the cloud.
The ultrasonic sensor reports distance in mm. To convert from dis-
tance to water depth, the boater set up a ThingSpeak TimeControl
that runs MATLAB code to read the range data, convert it into water

depth, and write the data to a new ThingSpeak channel. The result
was an internet-connected tide gauge that can be viewed on a mobile
phone or a web browser (Figure 6).

The boater set up additional MATLAB code to detect tidal thresh-
olds. He then used the Twitter integration in ThingSpeak to send
alerts when particular conditions were met.

As these examples show, analytics is a vital ingredient of the in-
novations occurring in IoT. With MATLAB and Simulink you can
develop analytics that run on your smart devices or in the cloud.
With ThingSpeak, you can easily collect data from your devices in
the cloud. You can then use MATLAB to gain insight into the sensor
data you have collected. ■

FIGURE 2. Webcam connected to a Raspberry Pi 2.

FIGURE 3. Simulink block diagram to find and count the cars.

FIGURE 5. Categorizing live traffic data in ThingSpeak.

FIGURE 4. Simulink external mode detection of cars during algorithm
development phase.

FIGURE 1. A typical Internet of Things workflow.

FIGURE 6. ThingSpeak data collection and tide level display.

LEARN MORE

Developing Internet of Things Systems with MATLAB
mathworks.com/iot

ThingSpeak
thingspeak.com

Traffic Monitor Data Visualizations
thingspeak.com/channels/38629

http://mathworks.com/iot
http://www.thingspeak.com
http://thingspeak.com/channels/38629

36 MathWorks News&Notes | 2 0 1 6 – 2 0 1 7

Solutions for Image Acquisition
and Computer Vision

Allied Vision FireWire and GigE
Vision Cameras
Allied Vision offers high-performance IEEE-
1394 FireWire, GigE Vision®, and USB3 Vision
compliant digital cameras for machine vi-
sion, computer vision, and other industrial or
medical applications. Cameras include CCD
and CMOS sensors ranging from VGA to 29
megapixels. Image Acquisition Toolbox, with
Allied Vision’s Vimba Software Development
Kit (SDK), enables direct access to the cameras
from MATLAB and Simulink.
alliedvision.com

Microsoft Kinect
Microsoft® Kinect® for Windows includes a 3D
depth sensor and integrated RGB camera for
applications such as robotics, kinesiology, 3D
scene reconstruction, point-cloud processing,
and skeletal tracking. Engineers can acquire
3D data from Microsoft Kinect into MATLAB
and Simulink using Image Acquisition Tool-
box and Computer Vision System Toolbox™.
developer.microsoft.com/kinect

Xilinx Zynq-7000
All-Programmable SoC
The Xilinx® Zynq®-7000 All-Programmable
SoC combines a dual-core ARM® Cortex®-A9
with Xilinx 7-series FPGA logic on a single
chip. As a result, users can integrate camera
control and image processing functions in a
single device while enabling hardware acceler-
ation of video analytics. Evaluation kits include
hardware I/O, design tools, IP, and pre-verified
reference designs. MATLAB, Simulink, HDL
Coder®, Embedded Coder®, and Vision HDL
Toolbox™ support the design and simulation of
image processing applications and automated
deployment to the Zynq device.
xilinx.com/zynq

FLIR Infrared Cameras
FLIR thermal and visible-light imaging sys-
tems are used in a wide variety of thermal im-
aging, situational awareness, and security ap-
plications. Using Image Acquisition Toolbox™,
engineers can configure features of FLIR in-
frared cameras and stream fully temperature-
calibrated data directly into MATLAB for
analysis, visualization, and modeling.
flir.com

3i SlideBook
SlideBook microscopy software enables sci-
entists to acquire and analyze image data
across time, color, and specimen locations,
with customizable experiment protocols and
drivers for hundreds of research instruments.
SlideBook supports data import/export with
MATLAB, enabling users to call MATLAB
to set variables and perform advanced image
analysis, and extending SlideBook’s built-in
image processing functions. MATLAB scripts
can drive live cell experiments by determining
regions for capture and photomanipulation.
intelligent-imaging.com

THIRD-PARTY PRODUCTS

LEARN MORE

Hardware Support
mathworks.com/hardware

Image Processing and Computer Vision
mathworks.com/solutions/image-video-processing

Third-Party Products and Services
mathworks.com/connections

MATLAB® and Simulink® provide a platform for engineers to explore images, develop computer vision algorithms,

and evaluate implementation tradeoffs. Third-party imaging hardware enables them to acquire visible, thermal, depth,

microscopy, and a range of other images. Engineers can analyze images, via live acquisition or by postprocessing

in MATLAB, and then deploy computer vision applications such as object detection, tracking, and recognition onto

embedded processors, FPGAs, multicore GPU systems, and other hardware.

mathworks.com/matlab-campus

WHAT IF EVERYONE
ON CAMPUS HAD MATLAB?

JOB OPPORTUNITIES

82%
Fortune 100 companies with a MATLAB license

HANDS-ON LEARNING

42,000
Faculty and students using MATLAB to program hardware

RESEARCH PRODUCTIVITY

1,970,000
Google Scholar results referencing MATLAB

“If you want to work at Google, make sure
you can use MATLAB.”

Jonathan Rosenberg, Senior Vice President of
Products, Google

“On multidisciplinary projects, students with
quite different educational backgrounds
can work together more easily because

they are using the same tools.”

Professor Jakob Stoustrup, Aalborg University

“Our teams are here to do world-class research,
and easy access to MATLAB enables them to be

their most productive.”

Shailesh Shenoy, Director of Research Computing,
Albert Einstein College of Medicine of Yeshiva University

More than 1 million students and 700 universities around the world—
including the top 10 ranked universities—have unlimited access to MATLAB and

Simulink with a Total Academic Headcount (TAH) license.

http://alliedvision.com
http://developer.microsoft.com/kinect
http://xilinx.com/zynq
http://flir.com
http://intelligent-imaging.com
http://mathworks.com/hardware
http://mathworks.com/solutions/image-video-processing
http://mathworks.com/connections
http://mathworks.com/matlab-campus

MATLAB SPEAKS

ARDUINO
so you don’t have to
You can design, build, test, and run a
system—on Arduino, Raspberry Pi, LEGO,
and more—without writing traditional code.

Download free MATLAB and Simulink
hardware support packages at
hardware.mathworks.com

92984v00 11/16

http://hardware.mathworks.com

