Model-Based Design with
Simulink, HDL Coder, and Xilinx

System Generator for DSP

WHITE PAPER ~ '1 MathWorks:

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

Contents
8 g 016 T 670 3 R 3
REQUITEA SOTEWATE ..o 3

Setting Up the MATLAB Environment for HDL Code Generation
and Xilinx System Generator INtegration ... 4

Example 1: Design with Blocks from Both Simulink and Xilinx

System Generator fOr DISP ... 5
Preparing a Model for HDL Code Generationcccoiiiiiiiiiiiiiiiiiiiiiiiicicece 6
Creating a Xilinx System Generator SUDSYSTeIMooooiiiiiiiiiiiiiiiiicc 6
Matching POrt Data TYPES. ... 7
Setting Code Generation Options for Xilinx System Generator ..o, 8
Setting Code Generation Options for HDL Coderoooooiiiiiiiiiiiiiiiiiiiiiiiiicciciccc, 9
GeNErating HDL. ..o 10
Generating HDL Test Bench and Simulation Scripts ..., 10

Example 2: Generate a Xilinx System Generator for DSP Black

Box Block from @ MATLAB HDL DE@SIGI ... n
Creating a New Folder and Copying Relevant Files ... 1
SImMUlAting the DESIZIo 12
Creating a New Project from the Command Line ..., 12
Generating a Xilinx System Generator for DSP Black BOX ... 12
Running Fixed-Point Conversion and Generating Code...................c.ooiiiiiiiiiiiii, 13
Examining the Generated Model and Configuration File.................oiii 13
Deleting the Temporary Files.ooiiiiiiiiii e 15

Further REAING ..o 15

WHITE PAPER) MathWorks’

Introduction

MATLAB® and Simulink® for Model-Based Design provide signal, image, and video processing engi-
neers with a development platform that spans design, modeling, simulation, code generation, and
implementation. Engineers who use Model-Based Design to target FPGAs or ASICs can design and
simulate systems with MATLAB, Simulink, and Stateflow® and then generate bit-true, cycle-accurate,
synthesizable Verilog® and VHDL® code using HDL Coder™.

Alternatively, engineers who specifically target Xilinx® FPGAs can use a Xilinx library of bit- and
cycle-true blocks to build a model in Simulink. They can then use Xilinx System Generator for DSP™,
a plug-in to Simulink code generation software, to automatically generate synthesizable hardware
description language (HDL) code mapped to pre-optimized Xilinx algorithms.

Table 1 summarizes the complementary features and benefits of HDL Coder and System Generator.

Used independently, each approach provides an effective FPGA design flow. Some projects, however,
benefit from a mixture of approaches — a workflow that combines the native Simulink workflow,
device- independent code, and code readability offered by HDL Coder, with the Xilinx FPGA-specific
features and optimizations offered by Xilinx System Generator.

This paper describes two workflows. In the first, the design is created with blocks from both
Simulink and System Generator for DSP. In the second, a Xilinx System Generator for DSP Black Box
is generated from a MATLAB HDL design.

Prior experience with MATLAB, Simulink, and Xilinx System Generator will help you make the most
of the examples in this paper.

Required Software

The example models described in this paper are from two examples included with HDL Coder:
“Using Xilinx System Generator for DSP with HDL Coder” and “Generate Xilinx System Generator
for DSP Black Box from MATLAB HDL Design”.

Simulation and code generation from the models have been tested with the following versions of the
software:

« MATLAB (R2015b)

o Simulink

o HDL Coder

o« MATLAB® Coder™

« Fixed-Point Designer™

 Xilinx Vivado® System Edition Design Suite 2014.4

WHITE PAPER | 3) MathWorks'

WHITE

PAPER

Feature HDL Coder | System Benefit
Generator
MATLAB to HDL X Rapidly prototype algorithmic MATLAB
Floating- to Fixed-Point X Shorten design cycles
Conversion
Design exploration X Rapidly explore hardware solution space
Software and hardware code X Partition algorithms between processors
generation and hardware
Accessto Simulink block X Rapidly assemble system models using
library existing blocks
Support for native Simulink X Easily migrate from system modelto
blocks hardware
Automatictest generation X Werify hardware against system models
Transaction Level Model X Supportsystem level modeling
{TLM) component generation
Readahble, traceable HDL code X Streamline standards compliance and
reporting
Access Xilinx IP in Simulink X Generate implementations optimized for
Xilinx targets
Hardware co-simulation X Verify hardware implementations on Xilinx
development boards
Analog data acquisition X Werify algorithms to real world analog data
Hardware deployment X Deploy designs in hardware without FPGA

design experience

Table 1. HDL Coder and System Generator complementary features and benefits.

Setting Up the MATLAB Environment for HDL Code Generation and Xilinx
System Generator Integration

Before you can begin working on your model, you need to ensure that the MATLAB environment is

aware of System Generator and that System Generator is configured to work with MATLAB.

| 4

",\‘ MathWorks

The System Generator MATLAB Configurator is installed as part of the Vivado Design Suite package
(Figure 1). You’ll need to run this to make System Generator aware of the version of MATLAB you

plan to use.

-

2 Select a MATLAE installation for Systern Generator Wivado =@ =]

Choose MATLAE for System Generator Vivado

MATLAR Yersion Status Location
[4.\ R2015b Mot Configured Ch\Prograrn Files\MATLABVR2015k_spkg
[@. R2015b 52 Configured ChProgram Files\MATLABYR2015h

Find MATLAE | | Remove Apply ok || Heb

Figure 1. MATLAB Configurator window.

Note that you need to run the Configurator only once, prior to the first use of a model containing

System Generator elements.

Your MATLAB environment also needs to be made aware of the ISE Design Suite installation. This is
accomplished through the hdlsetuptoolpath command in MATLAB. The command below shows the
typical path for a Windows PC ISE installation.

>> hdlsetuptoolpath (‘ToolName’,’Xilinx Vivado’,’ToolPath’,’ c:\
Xilinx\Vivado\2014.4\bin\vivado.bat’);

Note that hdlsetuptoolpath changes the system path and system environment variables for the current
MATLAB session only. To execute the hdlsetuptoolpath command automatically when MATLAB
starts, add it to your startup.m script.

Example 1: Design with Blocks from Both Simulink and Xilinx System
Generator for DSP

The example model (hdlcoder_slsysgen.slx) performs image filtering. The top level of the design con-
tains two subsystems, one implemented with Xilinx blocks and the other with Simulink blocks
(Figure 2). Because they are designed for synthesis on Xilinx devices, Xilinx blocks will yield an opti-
mized implementation of this 5x5 image filter on a Xilinx FPGA. Users can also explore various opti-
mizations through HDL Coder on the Simulink part of the design.

WHITE PAPER | 5) MathWorks'

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

grayScaleSignal In1 out1 filteredimage
Data Type Converson

= SlandSysGen]

Out1 In1
Qut2 In2
O —»m out3 »in3 Out1
In1 Outl
Outd
Xilinx System Generator Subsystem Simuiink Subsystem

Figure 2. Simulink model of an image filtering system (hdlcoder_slsysgen.slx/.

Preparing a Model for HDL Code Generation

In a typical development workflow, engineers model and simulate a design in Simulink, completing
multiple iterations to identify and eliminate design problems in preparation for implementation.
Before using Simulink HDL Coder and Xilinx System Generator to generate code, however, you must
prepare the model by:

+ Creating a Xilinx System Generator subsystem
o Matching port data types
o Setting code generation options for Xilinx System Generator

« Setting code generation options for HDL Coder

Creating a Xilinx System Generator Subsystem
To create a Xilinx System Generator subsystem:

1. Put all the Xilinx blocks in one subsystem. (In general, you can create multiple System Generator
subsystems, and all Xilinx blocks must be contained in these subsystems. For this example, you

will use a single System Generator subsystem.)

2. . Ensure the subsystem’s Architecture parameter is set to Module, which is the default value. (See
Figure 7 for more on this setting.)

3. Place a System Generator token at the top level of the subsystem (Figure 3). You can have a subsys-
tem hierarchy in a Xilinx System Generator Subsystem, but there must be a System Generator token
at the top level of the hierarchy.

WHITE PAPER | 6 ’\ MathWorks:

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

Figure 3. The image processing system's Xilinx System Generator subsystem.

You can use the following MATLAB command to open the System Generator subsystem in the exam-

ple model.

>> open system(‘hdlcoder slsysgen/SLandSysGen/Xilinx System Gener-—
ator Subsystem’);

Matching Port Data Types

In each Xilinx System Generator subsystem, you must connect input and output ports directly to
Gateway In and Gateway Out blocks.

Gateway In blocks must not do non-trivial data type conversion. For example, a Gateway In block
can convert between uint8 and UFix_8_0, but changing data sign, word length, or fraction length is
not allowed (Figure 4).

uint8 D2 UFix 8 0 D2
In

In1

Figure 4. A Gateway In block with matching data types.

WHITE PAPER | 7 : MathWorks:

In Gateway Out blocks, the Propagate Data Type To Output option must be selected (Figure 5).

Doutl (ilime Gateway Out) ===

Gateway out block, Converts Riline Fixed-point or floating-point type
inputs inko ouputs of type Simulink integer, single, double, ar fixed-
point,

Hardware notes: In hardware these blocks become top level output
ports or are discarded, depending on how they are configured.

Basic Implementation

Cukput Type

Propagate data bype to output

Translate into output port

Matrix size
Mumber of rows 1 Number of columns 1
[oK] [Cancel] [Help] [Apply]

Figure 5. Configuration options for a Gateway Out block.

Setting Code Generation Options for Xilinx System Generator

With HDL Coder, multiple Xilinx System Generator subsystems can be used in a design, but all
Xilinx System Generator tokens must have the same port settings.

HDL Coder supports Xilinx System Generator code generation with the following settings only
(Figure 6):

o Compilation must be HDL Netlist.

o Hardware description language must be the same as Target Language setting in HDL Coder.
» Create testbench must be unchecked.

o Multirate implementation must be Clock Enables.

« Synthesis strategy must be Vivado Synthesis*.

« Implementation strategy must be Vivado Implementation Defaults*.

o Provide clock enable clear pin must be Checked.

WHITE PAPER | 8) MathWorks'

z] Systern Generator: m_m_g/DUT/sysgendut

o a

Compilation Clocking General

Compilation :

HOL Hetiist Setings .
Part:

Wirtex7 xcTv20008-11hg1761

Hardware description language : VHDL library :

“WHOL - | |xil_detauttli

Target directory :

Jinetlist
Synthesis strategy : Implementation strategy :

Yivado Synthesiz Defautts - Vivado Implemertation Defaults

Create interface document Create testhench Model upgrade. ..

lPerformanceTips] lGanerme] [Ok I l Aply] [Cancel I l Help]

Figure 6. Compilation options for the Xilinx System Generator token.

Note: The Multirate Implementation and Provide Clock Enable Clear Pin Settings are on a different

tab and are not shown in Figure 6.

You do not need to configure these settings yourself. HDL Coder will modify and restore these set-

tings on the Xilinx System Generator token during code generation.

Setting Code Generation Options for HDL Coder

In addition to the settings described above for HDL code generation, HDL Coder requires the
Architecture parameter of Xilinx System Generator subsystems to be set to Module (Figure 7). If
code generation is performed with HDL Workflow Advisor, the device settings for Workflow Advisor
and Xilinx System Generator tokens must be identical, as shown in Figures 6 and 8.

Implementation

Architecture Module

Implementation Parameters

ConstrainedOutputPipeline |D

DistributedPipelining |off |
FlattenHierarchy [inherit |
InputPipeline o
QutputPipeline o
SharingFactor o
StreamingFactor o

oK | gancel‘ Help Apply

Figure 7. Xilinx System Generator subsystem implementation parameters in HDL Coder.

WHITE PAPER | 9) MathWorks'

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

(& HDL Workflow Advisor - m_m_g/DUT (=@ =]
Find: ML
= 1.1. Set Target Device and Synthesis Tool
4 11 HDL Workflow Advisor AR \nclate Ci)
nalysis (~Triggers late Diagram, -
2 15 1. Set Target E =Bl 2
5] ~L.1. Set Targst Device and Synthesis Tool Set Target Device and Synthesis Tool For HOL code generation
b I 2. Prepare Model For HOL Code Generation Input Parameters
-]
> 16 9. HDL Code Generatin Target workfiow: | Generic ASIC/FPGA o)
b I 4, FPGA Synthesis and Analysis
Target platform: Launch Board Manager
Synthesis tosl; [l Yivada v [Refresh |
Family: Virtex? + | Device: [xc7vxdast 3
Package: [ffa17s1 ~] speed: 2 PRk
Pt s
Set Target Library (For Floating-point synthesis suppart)
Run This Task
Result: | Mot Run
Click Run This Task.

sy

Figure 8. Tool and device options in HDL Workflow Advisor.

Generating HDL

You can generate HDL code from the configured model with the command line interface or with the

GUI, as with any other model. For this example model, the command to generate code is:

>> makehdl (‘hdlcoder slsysgen/SLandSysGen’);

Refer to the “HDL Code Generation from a Simulink Model” tutorial that ships with HDL Coder for

details on how to generate code using the GUL

Generating HDL Test Bench and Simulation Scripts

If you want to simulate the primitives used by HDL code from Xilinx System Generator, you must
compile Xilinx Simulation libraries with compile_simlib, a tool from Xilinx. For example, the fol-
lowing command compiles all libraries for all FPGA device families, for both VHDL and Verilog, and
for ModelSim® SE:

% compile simlib -s mti se -arch all

When generating simulation scripts, HDL Coder uses compile_simlib to locate the compiled libraries.
If compile_simlib fails to find the compiled libraries, HDL Coder gives a warning about incomplete
simulation scripts. You can manually provide the location of the compiled libraries location, using
the XilinxSimulatorLibPath option via the command line and adding the path information for your
compiled libraries (the default from the command line is the current directory you are in when run-
ning the script):

>> makehdltb (‘hdlcoder slsysgen/SLandSysGen’, V' XilinxSimulator-
LibPath’, ‘<user to insert path to compiled libraries>’);

WHITE PAPER | 10) MathWorks'

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

Alternatively, you can set it as a model parameter and generate a test bench:

>> hdlset param((‘hdlcoder slsysgen’, ‘' XilinxSimulatorLibPath’,
‘<user to insert path to compiled libraries>’);

>> makehdltb (‘hdlcoder slsysgen/SLandSysGen’) ;

Example 2: Generate a Xilinx System Generator for DSP Black Box Block from
a MATLAB HDL Design

After designing an algorithm in MATLAB for HDL code generation, you can integrate it into a larger
system as a Xilinx System Generator Black Box block. HDL Coder can generate the System Generator
Black Box block and configuration file from your MATLAB HDL design and place the generated
Black Box block in a Xilinx System Generator subsystem.

The MATLAB code (mlhdlc_fir.m) in this example implements a simple finite impulse response
(FIR) filter. The example also includes a MATLAB test bench (mlhdlc_fir_tb.m) that exercises the
filter.

To use this design and experiment with generating a Xilinx System Generator for DSP Black Box
block, the main steps are:

« Creating a New Folder and Copying Relevant Files
 Simulating the Design (optional)

o Creating a New Project

o Generating the Xilinx System Generator for DSP Black Box
o Running Fixed-Point Conversion and Generating Code

« Examining the Generated Model and Configuration File

o Deleting the Temporary Files

Creating a New Folder and Copying Relevant Files
Execute the following lines of code to copy the necessary example files into a temporary folder.

>> mlhdlc demo dir = fullfile(matlabroot, ‘toolbox’, ‘hdlcoder’,
‘hdlcoderdemos’, ‘matlabhdlcoderdemos’);

>> mlhdlc temp dir = [tempdir ‘mlhdlc fir’];

% Create a temporary folder and copy the MATLAB files

>> cd(tempdir) ;

>> [~, ~, ~] = rmdir (mlhdlc temp dir, ‘s’);

>> mkdir (mlhdlc temp dir);

>> cd(mlhdlc_ temp dir);

>> copyfile (fullfile (mlhdlc demo dir, design name), mlhdlc temp
dir);

>> copyfile (fullfile (mlhdlc demo dir, testbench name), mlhdlc temp
dir);

WHITE PAPER | 11) MathWorks'

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

Simulating the Design

It is a good idea to simulate the design with the test bench to make sure there are no runtime errors

before code generation. Use the following command to start the simulation:

>> mlhdlc fir tb

Creating a New Project from the Command Line
To create a new project, execute the following command:
>> coder -hdlcoder -new fir project

Next, add the mlhdlc_fir.m file to the project as the MATLAB Function and add mlhdlc_fir_tb.m as
the MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.

Generating a Xilinx System Generator for DSP Black Box

To generate a Xilinx System Generator Black Box from a MATLAB HDL design, you must first con-
figure Xilinx System Generator.

On the Advanced tab of the Workflow Advisor, select the Generate Xilinx System Generator Black
Box option (Figure 9).

) '@ HDL Code Generation <2> = = b

=] MATLAB HOL Coder Workflow Generate synthesizable HDL code from the fixed- point MATLAE code.
- Float-to-Fixed Workflow

------ Q Verify Floating-Faoint Desian

IS 0 Propose Fixed-Point Types ‘Advanced Coding Options

------ Q Cenerate Fixed-Point Code

Target ', Coding Styie ', Clocks & Ports | Test Bench ', Optimizations * Advanced | Sript Options |,

@ Verify Fixed-Foint Design REAM architecture ‘RAM with clock enable "
=[] MATLAB to HDL Workflow [Generate instantiable code for functions

IS 0 Code Ceneration

------ | Simulation and Verification Simulink Integration

= Synthesis and Analysis

------ [T Create Project
[Run Logic Synthesis Cenerate Xilinx System Cenerator Black Box (Simulink and Xilinx System Generator for DSF licenses are required)

------ 71 Run Place and Route

[[] Generate MATLAE Function Block Simulink license is required)

o) on

Figure 9. The Generate Xilinx System Generator Black Box code generation option.

To generate code compatible with a Xilinx System Generator Black Box block, set the following
options (Figure 10):

o Set Clock Input Port to clk

o Set Clock Enable Input Port to ce

o Set Drive Clock Enable At to DUT base rate

WHITE PAPER | 12 ! MathWorks:

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

WHITE

PAPER

J 10 HDL Code Generation <2>

£ [_| MATLAB HDL Cocler Workflow Generate synthesizable HDL code from the fixed-point MATLAB code.
=@ Float-to-Fixed Workflow

@ verify Floating-Point Design

@ Propose Fixed-Point Types Clocks

K G ite Fixed-Point Cod:
@ Generate et Coce|

- Verify Fixec-Point Design

Target | Coding Style * Clocks & Ports | Test Bench | Optimizations ', Advanced | Script Options |,

=[] MATLAE to HDL Worklaw Reset asserted level: Active-nigh ~
Cade Generation
L) Simulation and Verffication Reset input port [reset
-0 Synthesis and Analysis ra— o

[Create Project

- Run Logic Synthesis

Clock enatle input port: ¢

{7 Run Place and Route
Oversampling factor: T

I Drive clock enable at: |[DUT base rate =] I

Ports

Same as input type =

Input data type

Output data type:

Clock enabile output port: [ce_out

L][N

Figure 10. HDL code generation options.

Running Fixed-Point Conversion and Generating Code

Right-click the Code Generation step on the left and choose Run To Selected Task to run all the steps

from the beginning through HDL code generation.

Examining the Generated Model and Configuration File

After HDL code generation, a new model opens. It contains a subsystem named DUT at the top level.

The DUT subsystem has a Xilinx System Generator subsystem named SysGenSubSystem (Figure 11),

which contains:

« A Xilinx System Generator Black Box block
o A System Generator block

o Gateway In blocks

o Gateway Out blocks

2 mihdic_fir_FixPt_xsgbbx/DUT/SysGenSubSystem *
Fle Edit View Display Diagram Simulation Analysis Code Tools Help

E-E &8 « ¢l Ee-E 40P @ @@
Model Browser = [sy em
& Fal mihdic_fir FixPt xsgb @[5 mindic_fir_FixPt_xsgbbx » i DUT b [l SysGensubSystem | -
EN
] 1 ce_out
= (] a0
Int Cutt
reset ce_out
e Enke
indatabuf outdatabuf
"2 indatabut outdatabuf Out2
Black Box
System
Generator
| «
Ready [138% FixedStepDiscrete|

Figure 11. Xilinx System Generator subsystem containing a generated Black Box block.

13

) MathWorks

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

Notice that in addition to the data ports, there is a reset port on the Black Box interface. The other
common control signals clk (clock) and ce (clock enable) are handled differently. These two inputs
are registered to System Generator by the Black Box configuration file.

The configuration file (Figure 12) and your new model are saved in the same directory as the generat-
ed HDL code. You can open the configuration file by executing the following command:

>> edit (‘codegen/mlhdlc fir/hdlsrc/mlhdlc fir FixPt xsgbbxcfg.m’);

E O Editor - ftmp/mlhdic_fir/codegen/milhdlc_fir/hdlsrc/mlhdic_fir_FixPt_xsgbbxcfg.m

EDITOR PUELISH VIEW
EI‘:II:I 4 % = Print w Insen@,fxv & O D L@
=€ - Commemt 95 ‘s & CoTo =
Mew Open Save i Campnzre _.,/g B ir":l EH] ete Breakpoints Run Run and
- - » . Source Control Indent N . Find = - * Advance
FILE EDIT NAVIGATE [BREAKPOINTS
1
2 function mThdlc_fir_FixPt_xsgbbxcfglthis_block)
3 % Set target language
4 - this_block.setTopLevellLanguage(' VHDL');
5 % Set top entity name
6 - this_block.setEntityNane(' nThdlc_fir_Fi=<Ft');
7 Set the combinational flag
8 - this_block.tagAsConbinational;
9 % Set inport names
10 - this_block.addSinulinkInport(' reset');
11 - this_block.addSinulinkInport(' indatabuf');
12 % Set outport names and types
13 - this_block.addSinulinkOutport('

14 - ce_out_obj = this_block.port(’

15 - ce_out_obj.setType(' UFix_1_0');

16 - this_block.port{'ce_out').useHDLVector(false);

17 - this_block.addSinulinkOutport(' outdatabuf');

18 - outdatabuf_obj = this_block.port(' outdatabuf');

19 - outdatabuf_obj.setType('Fix_14_10');

20 % Set inport types and types are known

21 - if (this_block.inputTypesknown)

22 - if(this_block.port(' reset').width ~= 1)

23 = this_block.setError{'Input data type for port "reset” nust have wig
24 - end

25 - this_block.port({' reset').useHDLVector(false);

26 - if(this_block.port('indatabuf'). width ~= 14)

27 = this_block.setError('Input data type for port "indatabuf" must havd
28 - end

29 - end

Figure 12. Xilinx System Generator Black Box configuration file.

You can now use the generated Xilinx System Generator Black Box block and configuration file in a
larger system design.

WHITE PAPER 14) MathWorks

Model-Based Design with Simulink, HDL Coder, and Xilinx System Generator for DSP

Deleting the Temporary Files

When you are finished with this example, you can run the following commands to clean up the tem-
porary project folder.

>> mlhdlc demo dir = fullfile (matlabroot, ‘toolbox’, ‘hdlcoder’,
‘hdlcoderdemos’, ‘matlabhdlcoderdemos’);

>> mlhdlc temp dir = [tempdir ‘mlhdlc fir’];

>> clear mex;

>> cd (mlhdlc demo dir);

>> rmdir (mlhdlc temp dir, ‘s’);

Further Reading

For more HDL Coder videos and examples, visit http://www.mathworks.com/products/hdl-coder/
examples.html.

© 2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com /trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

WHITE PAPER | 15) MathWorks'

92077v01 11/15

