
Information for Candidates

Test Format

The MathWorks Certified MATLAB Professional (MCMP) exam consists of two sections: 25 multiple-

choice questions and 8 performance-based problems. MATLAB access is not permitted during the

multiple-choice section of the exam. The performance-based problem section requires code segments

to be written in MATLAB. MATLAB and the documentation will be available during this portion of the

exam, though no other resources, online or otherwise, are permitted. To earn the MCMP credential,

submissions for both sections of the exam must meet or exceed the passing criteria for the exam

instance.

Writing MATLAB Code

The performance-based problems require code submissions written in MATLAB. Submissions must

meet all the requirements outlined in the problem statement as well as the basic expectations outlined

in the next section.

While there are always opportunities to improve upon submissions by adding additional error checking,

comments, or code for edge cases, these additions need to be balanced with the time constraint of the

exam. Consider moving on to other problems if spending more than 15-20 minutes on a problem.

There will be no bonus points for solutions that go above and beyond the requirements. Additionally,

there are no bonus points for “clever tricks” or obscure syntax. Code submissions should clearly

communicate the solution to other MATLAB programmers.

Comments in the MATLAB code are welcome and appreciated to help explain the intent of the code.

However, given the time constraints of the exam, comments are not required.

Expectations for Submissions

Each submission must meet minimum criteria to receive credit. The scoring process also evaluates

requirements set forth in the problems statement. The table below outlines the minimum criteria:

Category Criteria

Meets Requirements

Solutions must not:

 Make system calls using system command, ! operator, or
any other method of accessing a system command prompt.

 Use MEX-files or Simulink blocks.

 Make calls through external interfaces to any other
programming environments such as Java, Python, .NET, or
ActiveX.

 Make calls to undocumented functionality, or anything that
does not contain explicit instructions in the documentation
for use.

 Exception: Calls to any documented, pre-existing MATLAB
functions that may make use of any of the functionality
outlined above are allowed.

Correct Answer/Stability

Solutions must not:

 Produce run-time errors as a result of default execution as
outlined in the problem statement.

 Produce warnings that indicate final results are incorrect,
incorrect functions are being called, or the correct functions
are being called incorrectly.

 Exception: Errors are acceptable when a problem statement
explicitly requires an error for a given set of inputs or
conditions.

Implementation

Solutions must not:

 Use functions which indirectly change the workspace such as

assignin, evalin, eval, and feval.

 Write new functions or code that replicate existing MATLAB
functionality (see table).

 Contain Code Analyzer warnings if there is an automatic fix or
a fix with instructions provided.

 Violate any of the stated Vectorization Rules (see table).

 Use variable names that collide with common MATLAB
functions (see list of common MATLAB functions).

 Contain code that grows the size of an array incrementally in
a loop when the final array size is known.

 Exception: Automatically generated code may contain Code
Analyzer messages. These messages do not need to be
addressed.

Vectorization Rules

Unless otherwise noted in a problem statement, the vectorization rules outlined in the table below

serve as the minimum criteria for all submissions.

Rule Accepted Application Example Violation

Use element-wise operators to
perform mathematical,
relational, or logical operations
on corresponding elements of
arrays.

x = rand(1, 10);

y = rand(1, 10);

z = x .* y;

x = rand(1, 10);

y = rand(1, 10);

for i = 1:10

 z(i) = x(i) * y(i);

end

Pass entire arrays to functions
that accept them instead of
passing smaller subsets
individually in a loop.

x = 1:10;

y = sin(x);

x = 1:10;

for i = 1:10

 y(i) = sin(x(i));

end

Call functions that return entire
arrays in a single function call
rather than building an array
incrementally.

x = rand(1, 10)

for i = 1:10

 x(i) = rand();

end

Use vectors for extracting
multiple elements of an array
when indexing.

x = rand(5);

y1 = x(:, 4);

x = rand(5);

for i = 1:5

 y1(i) = x(i, 4);

end

Use logical indexing for the
extraction of elements of an
array based on a condition.

x = randn(1, 30);

y = x(x > 0);

x = randn(1, 30);

for i = 1:30

 if x(i) > 0

 y = [y x(i)];

 end

end

MATLAB Functionality to Know

Familiarity with the MATLAB operators, keywords, and functions in the table below is assumed

knowledge for the MCMP exam. Submissions for exam problems must not recreate any of this

functionality when the appropriate function already exists to address the need. Care should also be

taken not to choose variable names that take precedence over these function names. Submissions for

exam problems may use any other documented functions not appearing in the table, as long as it is not

part of an add-on product (toolbox). Additionally, exam problems may introduce other functions as part

of the problem statement.

Mathematical
Operators

+

-

*

\

^

.*

.\

.^

/ ./

Mathematical
Functions

sin

cos

tan

asin

acos

atan

abs

exp

log

log10

log2

nthroot

round

sqrt

polyfit

polyval

pi

ceil

floor

mod

Array Creation
Functions

ones

zeros

rand

randi

randn

true

false

eye

linspace

logspace

: (colon

operator)

meshgrid

Statistical Functions sum

prod

cumsum

cumprod

mean

median

min

max

diff

std

var

cov

fft

Array Dimensions length numel size

Set Operations union

intersect

unique

sort

sortrows

setdiff

ismember

String Operations strcmp

strrep

strfind

deblank

lower

upper

Dates and Time datenum

datevec

datestr

now

clock

Plotting Functions plot

plotyy

loglog

semilogx

semilogy

scatter

contour

surf

image

imagesc

pie

bar

hist

subplot

xlabel

ylabel

title

legend

text

axis

ylim

xlim

grid

hold

colormap

colorbar

datetick

Graphics and UI
Components

get

set

findobj

findall

gcf

gca

uicontrol

uitable

uipanel

uimenu

uitoolbar

guidata

figure

axes

uigetfile

uiputfile

msgbox

close

Logical and
Relational
Operators

>

<

>=

<=

==

~=

~

&

|

Logical Functions any

all

nnz

find

isequal

isa

isnan

isinf

isempty

isnumeric

isvector

iscell

ischar

isstruct

ishandle

File I/O load

save

fopen

fclose

fscanf

fprintf

disp

textscan

fgetl

imread

imwrite

xlsread

xlswrite

dlmread

dlmwrite

Conversion
Functions

num2str

str2double

cell2mat

num2cell

mat2cell

cellstr

struct2cell

cell2struct

char

logical

Programming
Keywords

break

case

catch

classdef

continue

else

elseif

end

for

function

if

otherwise

return

switch

try

while

Vectorization repmat

reshape

cellfun

arrayfun

structfun

bsxfun

accumarray

Help and
Troubleshooting

doc

help

whos

which

ver

tic

toc

clear

clc

error

warning

