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Stringent performance requirements and shorter development cycles are driving the use 
of modeling and simulation. Model-Based Design 
core of this development process. The model is transformed to code using code generation 
tools for use on embedded processors. Model-Based Design permits verification and validation 
tasks to be performed earlier in the process when it is easier and cheaper to fix errors. These 
verification and validation tasks in context of Model-Based Design span models to code. 

I. Introduction 
VIONICS systems require rigorous verification and validation (V&V) processes and often utilize the V-model 
to achieve verification objectives. As shown in Figure 1, the left and right branches of the V correspond to 

distinctly different activities.  The left branch starts with system-level requirements of the design, which are partitioned 
into subsystems and components. These elements of the design are then specified and implemented at a detailed level, 
e.g., with Simulink models. V&V with simulation confirms that the correct design is being developed and that the 
design is being developed correctly. The bottom of the V-model is the coding phase, where the design is transformed 
to code.  The right branch represents the realization and testing of the subsystems and components and their final 
integration. V&V tasks for the right branch are performed on the code and on the target hardware. 

This paper explores comprehensive Model-Based Design V&V processes that can be applied from requirements 
to delivery of the verified code. V&V activities that span models to code will be discussed. The discussion will be in 
the context of various aerospace examples to demonstrate specific V&V activities.  Simulink and Polyspace will be 
used for reference purposes. Where applicable, reference to standards such as DO-178C / ED-12C will be provided. 

II. Left Branch of the V-Model 
Let us begin examining the V&V process by starting with the left branch of the V-model. In order to provide 

context, we will use an aircraft thrust reverser 
controller example. The design process for 
our example thrust reverser controller begins 
by specifying requirements in a textual 
format. The next step is to implement the 
design in a Simulink model. Commercial 
avionics must be certified to standards such as 
DO-178C / ED-12C. These standards 
stipulate traceability from requirements to 
design to code. The example will show how 
we can trace from design to requirements. 
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Figure 1. V-Model. 
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A. Requirements Traceability 
Consider the model shown in Figure 2. This model designed with a Stateflow chart implements deployment logic 

for an aircraft engine thrust reverser. One of the requirements for the thrust reverser stipulates that it must never deploy 
during aircraft flight.  The 
deployment logic uses redundant 
sensor measurements of air speed, 
wheel speed, and weight on landing 
gear wheels to confirm that the 
aircraft is on the ground. Using 
requirements linking capability of 
Simulink Verification and 
Validation, critical aspects of the 
design in the model are linked to 
requirements. The requirements 
management interface (RMI) allows 
us to create navigation links between 
the requirements modeled in 
Simulink, the associated Simulink 
objects, and related test cases. For 
example, as shown in Figure 2, right-
clicking on the Stateflow chart traces 
to a Microsoft Word document that 
describes a specific requirement. 

B. Self-Validating Models 
Once the requirements have been associated, they can be used to derive the expected behavior of the model. The 

expected behavior can be used to create self-validating models with the use of assertion blocks in Simulink. We can 
confirm that signals do not exceed specified limits or that a particular logical condition does not arise during simulation 
testing. For example, for the thrust reverser logic, we can specify conditions such as the deploy signal and the weight 
on wheels warning signal must never be active at the same time. As shown in Figure 3, we have developed a test 
harness that encapsulates the thrust reverser model component under test (center), and we are driving it with tests 
(left). The logical constructs (right) are checking that the deploy and the weight on wheels warning signals are never 

active at the same time. An assertion is triggered if this condition is violated. By executing these test cases, we can 
check to be sure that this condition never arises. 

C. Checking Models 
We then perform requirements consistency checks and confirm compliance of the model to rules and guidelines 

with Simulink Verification and Validation. These types of checks can identify requirements with missing documents 

 
Figure 2. Linking Requirements to a Model.  

 
Figure 3. Self-Validating Model.  
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and inconsistent descriptions as well as confirm compliance to DO-178C standard checks. Basic checks range from 
support for updating the model to be compatible with the current product release version, to identifying unconnected 
lines and ports, to checking the root model interfaces. These checks may have to be repeated as the model is updated 
to address bugs and other issues from subsequent verification tasks. 

Sections 6.3.1.f and 6.3.2.f of the DO-331 Model-Based Design supplement of the DO-178C standard states that 
High-level requirements trace to system requirements Low-level requirements trace to high-level 

requirements. Using Simulink Verification Validation, we are able to determine whether Simulink blocks and 
Stateflow objects link to a document containing engineering requirements for traceability.  If any of the blocks lack 
traceability information, these blocks are flagged for analysis and follow-up. 

D. Functional Testing 
The next step is to perform simulation-based tests of our thrust reverser algorithm in Simulink. Closed-loop testing 

of the controller with a plant model helps engineers investigate all aspects of the system, including algorithms, 
components, the plant model, and the environment. Tests are created in textual form (e.g., in a spreadsheet or text file) 
or with graphical waveforms. These testing scenarios create test vectors for simulation with inputs, plant parameters, 
environmental factors, and other elements. Expected outputs are also required to confirm whether the test passed or 
failed. Test cases should also have a description that explains its purpose with traceability to requirements for 
certification to DO-178C / ED-12C. 

Formal methods-based functional verification can then be performed to confirm that the design provably meets 
certain functional requirements. The DO-333 formal methods supplement to DO-178C discusses use of formal 
methods to complement testing. Functional requirements for discrete systems are typically explicit statements about 
expected behaviors that a system exhibits and behaviors that it must never exhibit. To formally verify that the design 
behaves according to these requirements, the requirements statements first need to be translated from a human 
language into the language understood by a formal analysis engine. Each requirement has one or more verification 
properties associated with it. These verification properties are used to report whether or not the design meets the 
functional requirements. Using Simulink Design Verifier, the design is formally verified to conform to the specified 
property. If a verification property is not met, Simulink Design Verifier will generate a counter example test case to 
show the conditions under which the property (requirement) will not be met. This test case can then be used to diagnose 
the error and fix the model. 

For our thrust reverser example, if two weight on wheels sensors are false, then deploy cannot be true. This property 
is described in Simulink as shown in Figure 4. If this property is not correct for the thrust reverser design, Simulink 
Design Verifier will generate a counter example test case showing an example of a condition that will cause this 
property to fail. 

E. Verification for Robustness 
As our thrust reverser example is being hardened and readied for subsequent verification tasks, it is important to 

confirm that it is robust. Robustness provides assurance that the design performs as implemented and does not have 
any unexpected behavior. For example, if the algorithm were to suffer from an overflow or divide-by-zero condition, 
that could result in unexpected behavior. Because testing may not be exhaustive, formal-methods-based-design error 
detection with Simulink Design Verifier can be applied to prove that the algorithm will not suffer from these types of 
defects. Furthermore, if our design is state-based or logic-based, it is important to confirm that there are no dead 
branches or dead logic. Avionics standards such as DO-178C / ED-12C specifically prohibit existence of dead or 
unreachable code. 

In relation to dead code, DO-178C / ED-12C require coverage analysis. This type of analysis checks that 
cumulative tests that are executed will activate all aspects of the design. Simulink Verification and Validation produces 
model coverage reports to identify untested elements of the design. It displays coverage information on the model, 

 
Figure 4. Verification Property. If two weight on wheels sensors are false, deploy cannot be true. 
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letting us traverse the model for missing coverage and navigate to the associated requirements. We can then determine 
whether we need to modify the requirements, test cases, or design in order to meet coverage goals. Using Simulink 
Design Verifier, we can also automatically generate test cases to improve coverage analysis.  Various types of 
coverage analysis can be performed: decision coverage, condition coverage, modified condition/decision coverage 
(MC/DC), lookup table coverage, boundary value analysis, and signal range coverage. 

For our thrust reverser example, using Simulink Design Verifier we are able to automatically generate tests to 
check for coverage analysis. When 
we run these tests, we are able to 
measure cumulative coverage 
results. As shown in Figure 5, we are 
able to achieve 100% condition 
coverage, decision coverage, and 
modification condition decision 
coverage.  

Upon completion of all of the 
above V&V tasks, the thrust reverser 
model in an executable specification 
form is ready for production code generation.  Using Embedded Coder, we can generate readable, compact, and fast 
C or C++ code that can be compiled for additional tests on a host computer or the target embedded processor. We 
have now reached the bottom of the V-model. 

III. Right Branch of the V-Model 
The right branch of the V-model focuses on verification of the code and execution of that code on an embedded 

target. Although code generation automates the task of generating code from models, the model may include legacy 
code or other handwritten code such as S-functions in Simulink models. Furthermore, generated code may have to be 
integrated with other legacy code, driver code, RTOS services, and so forth. The end result is mixed code consisting 
of handwritten and generated code. Interface issues and bugs in the mixed code may result in functional and robustness 
problems. In order to confirm the integrity of this mixed code, it is necessary to perform checks on the source code. 

For example, consider the addition of two variables in a programming language such as C. If the target hardware 
does not have a floating-point unit, the addition operation must be performed with integers and care must be taken to 
avoid an overflow.  

 
int32_t a, b, c;   /* declare signed 32bit integer variables   */ 

     /* some other code here to initialize variables  */ 
c = a + b;    /* add variables         */ 
 
The addition operation c = a + b is risky because of the potential of an overflow. The summation could produce 

results that are greater than 231-1. This result will not fit in the 32bit variable c. This condition will result in incorrect 
computation. This type of error is known as a run-time error. It is important to pay attention to run-time errors as these 
errors may exist in code, but unless specific tests are executed under particular conditions, the run-time error may not 
be detected. The errors may cause unexpected system failures. 

One may expect that these types of issues should have been detected at the simulation model level. Issues such as 
overflow and divide-by-zero can be detected at the modeling level with Simulink Design Verifier, but they can only 
be detected if the model implementation is identical to the code implementation. For example, if the simulation is 
accomplished in double-precision floating-point but the C code is implemented in fixed-point (integer), then an 
overflow or divide-by-zero condition may not be detected at the model level.  

Examples of code level run-time errors are as follows: 
 Non-initialized data if variables are not set to an initial value, the value is unknown  
 Out of bounds array access occurs when writing or reading beyond the boundary of the array 
 Null pointer dereference occurs when attempting to access a pointer that is NULL  
 Wrong results caused by an overflow, underflow, divide-by-zero, negative square root, and so forth 
 Unprotected reading or writing to shared variables by multiple threads  
 Dead code that will never execute (may lead to a run-time failure) DO-178C does not allow dead code 

A software verification technique known as static analysis can be used to identify and prove absence of certain 
run-time errors. This technique can be applied to the verification of avionics software at the code level. 

Figure 5. Coverage Summary Report.  
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A. Static Analysis of Source Code 
Static analysis is a verification activity in which source code is analyzed for quality. This technique allows software 

developers to find and diagnose errors. Results produced by static-code analysis provide a means by which robustness 
of the code can be measured and improved. In contrast to other verification techniques, static analysis can be 
performed without executing the program or running tests. 

Static analysis ranges from checking source code for compliance to standards, to bug finding techniques. Bug 
finding can utilize simple techniques and sophisticated methods. The advantage of simple techniques is that they are 
very fast; however, they may produce false negatives and false positives. False negatives are situations in which the 
static-code analyzer misses a real error. False positives are incorrectly identified errors. Both false negatives and false 
positives are problematic. The former may produce a false sense of security, whereas the latter may delay production 
of the software or create unnecessary rework that impacts the performance or memory footprint of the code. 

Sophisticated static analysis combines formal methods with bug finding techniques. An example of a formal 
method technique is abstract interpretation, a mathematical rigorous approach to prove correctness of code. Tools that 
use this methodology find errors in the source code and prove the absence of certain critical errors.   

B. Software Metrics and Monitoring Quality 
Code metrics such as cyclomatic complexity metrics help 

quantify the complexity of handwritten code when they contain 
complex decision logic and paths.  This metric quantifies the 
number of linearly independent paths or decision logic.  

Using static-code analysis tools like Polyspace Bug Finder, 
we can generate project-level, file-level, and function-level 
metrics to evaluate the complexity of code. Using an online 
dashboard to monitor cyclomatic and other code complexity 
metrics, we can drill down to the function level to obtain more 
detailed information about the software. We can also apply 
thresholds to check if certain software quality objectives have 
been met. As shown in Figure 6, reports from Polyspace Bug 
Finder identify project-level, file-level, and function-level 
metrics. This report can be submitted as part of the code analysis 
report for DO-178C / ED-12C certification. 

C. Code Rule Checking 
Languages such as C and C++ provide freedom and flexibility in software program development. This flexibility 

can result in the construction of inherently unsafe programs.  For example, it is possible to write code that has multiple 
levels of pointer deference as shown in the C code fragment below. 

 
*****ptr = 12; 
 
Although this code will compile and execute, it is likely that the complex nature of the multi-dereference will 

result in an error elsewhere in the program.  For example, the program author may subsequently omit a level of 
dereference and this could result in a run-time error. Therefore, significant care must be taken to keep track of all of 
the levels of pointer dereference and unless extensive analysis has been performed, it may not be possible to confirm 
that the code is safe.  DO-178C / ED-12C stipulate that code standards must be used for development of avionics 
software. Code standards restrict the use of the programming language to a safer subset. Examples of code standards 
are Motor Industry Software Reliability Association (MISRA) and Joint Strike Fighter (JSF++). MISRA includes 
standards for handwritten code and automatically generated code.  For example, the MISRA Rule 6.17 specifies 
guidelines for pointer arithmetic shall only be applied to pointers 
that address an array or array element.   Polyspace Bug Finder can be used to analyze source code for code-rule 
standards and produce reports of code-rule compliance. 

  

 
Figure 6. Project, File, and Function Metrics.  
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D. Range Analysis and Results 
In order to understand the operational limits of software, it is necessary to know the ranges of outputs and 

intermediate variables. Static analysis, with the use of formal methods techniques, provides an excellent technique for 
calculating the ranges of global variables and function outputs.  For example, Polyspace Code Prover uses a technique 
known as abstract interpretation to track control and data flow through the software.  It displays range information 
associated with variables and operators. We can 
use range information that is calculated to 
determine that the software does not violate 
specified range limits. 

As illustrated in Figure 7, for the code 
relating to our thrust reverser example, the 
display from Polyspace Code Prover identifies 
that the division operation consists of a range 
between -1701 to 3276 for the left operand and 
9 for the right operand. The resulting range from 
performing the division is -189 to 364. 

E. Finding Bugs 
An obvious goal of software development is to produce code that does not contain bugs. Static-code analysis tools 

like Polyspace Bug Finder can help with this task.  Using fast analysis techniques, they can pinpoint numerical, 
dataflow, programming, and other bugs in C or C++ source code. Bugs are identified in the source code with detailed 
information to help determine the root cause and source of the bug. For example, when a defect such as an overflow 
occurs, as shown in Figure 8, Polyspace Bug Finder traces all line numbers in the code that lead to the error condition. 
Software developers can use this information to debug and fix the code. 

F. Proving Absence of Certain Run-Time Errors 
When static analysis is combined with formal methods, it is possible to use mathematical proofs to check if the 

software is free of certain run-time errors. A formal methods technique known as abstract interpretation can be applied 
to static analysis. This technique uses mathematical techniques to analyze complex dynamic software programs. The 
source code is interpreted in a mathematical domain to understand the behavior of the program. It produces verification 
results without requiring program execution or test cases to find and prove run-time errors. DO-333, the formal 

Figure 7. Results from Range Analysis.  

 
Figure 8. Overflow Bug Identification with Root Cause Information. 
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methods supplement to DO-178C, recognizes the use of 
formal methods.  For example, the supplement states 
that requirements involving always/never  in general 
are difficult to verify with a finite number of test cases, 
but may be verified by formal analysis. 

Polyspace Code Prover is an example of a static-
analysis tool that uses abstract interpretation. It is able 
to identify where certain run-time errors may occur and 
proves the absence of specific run-time errors. Using 
abstract interpretation, Polyspace Code Prover 
categorizes findings such as (a) proven to fail with a 
run-time error, (b) unreachable code, (c) proven to be 
free of certain run-time errors, or (d) unproven. Using 
Polyspace Code Prover, it is possible to obtain 
certification credit for certain aspects of DO-178C 
standard. For example, in Table A-5(6) of the standard, 
Polyspace Code Prover can be used to identify fixed-
point arithmetic overflows, use of uninitialized 
variables, use of uninitialized constants, and data 
corruption due to tasks or interrupts conflict.  As shown 
in Figure 9, Polyspace Code Prover depicts color-coded 
proof-based static-code analysis results directly on the 
source code.  

G. Testing Source Code 
Once the code has been verified with static analysis, it can be tested on the host computer (e.g., on a desktop 

computer) to check that the code has the same behavior as the executable specification (simulation model). This genre 
back-to- in-the-

host computer is software-in-the-loop (SIL) testing. The generated C or C++ code is compiled for the desktop 
computer and cosimulated with the original simulation to compare the outputs to identify errors, if any. This step 
confirms there have been no changes in behavior from one development stage to the next and verifies that a 
development step did not introduce errors. 

The next phase is to cross-compile the code for the target processor and to check that the target-specific code has 
the same behavior as our executable specification (simulation model). This cosimulation task is known as processor-
in-the-loop (PIL) testing. Similar to SIL, PIL provides a method to execute tests created on a development host 
computer directly on an embedded processor. Tests or closed loop simulations running on the host development 
computer communicate synchronously with the code running on the embedded target, enabling engineers to run the 
tests against the code on the target. PIL testing can also be performed with an instruction set simulator (ISS) that 
executes on the host computer. Running PIL tests on multiple target platforms is one way to assess 
robustness to variations in processor, hardware, or compilers. PIL supports execution profiling to help determine 
Worst Case Execution Time and integration with code coverage analysis tools. 

Real-time testing can be performed with hardware-in-the-loop (HIL) testing. This type of testing permits us to 
execute the control algorithm on dedicated target hardware connected to the physical system with a real-time plant or 
environment model. The behavior of the system in real time can be compared to expected results. 

IV. Conclusion 
Verification and validation (V&V) tasks can be applied in Model-Based Design spanning the domain of models 

to code. Considered in context of the V-model, V&V activities begin with models, continue to code where they 
confirm that avionics designs have traceability to requirements, meet those requirements, and are robust.  These 
activities can begin early in the design development phase. Static analysis ranging from bug finding to proving the 
absence of certain run-time errors can be performed on the source code.  In-the-loop testing helps confirm that the 
software behaves as expected on the target processor.  

  

Figure 9. Color-Coded Static Analysis Results.  

static void pointer_arithmetic (void) {
int array[100];
int *p = array;
int i;

for (i = 0; i < 100; i++) {
*p = 0;
p++;

}

if (get_bus_status() > 0) {
if (get_oil_pressure() > 0) {
*p = 5;

} else {
i++;

}
}

i = get_bus_status();

if (i >= 0) {
*(p - i) = 10;

}             
} 

Green: reliable
safe pointer access

Red: faulty
out of bounds error

Gray: dead
unreachable code

Orange: unproven
may be unsafe for some
conditions

a

Range data
tool tip

Purple: violation
MISRA-C/C++ or JSF++
code rules



 

 References  

[1] MISRA, Guidelines for the Use of the C Language in Critical Systems, MISRA, 2013.  

[2] T. Erkkinen and B. Potter, "Model-based design for DO-178B with qualified tools," AIAA Modeling and Simulation 

   Technologies Conference, 2009.  

[3] R. Estrada, E. Dillaber and G. Sasaki, "Best practices for developing DO-178 compliant software using Model-Based 

   Design," AIAA Modeling and Simulation Technologies Conference, 2013.  

[4] W. J. Aldrich, "Using model coverage analysis to improve the controls development process," AIAA Modeling and 

   Simulation Technologies Conference, 2002.  

[5] T. Erkkinen, "Production code generation for safety-critical systems," in SAE World Congress, 2004.  

[6] MathWorks, "Simulink and Polyspace products," 2015. [Online]. Available: www.mathworks.com.  

[7] J. Pan, "Dependable Embedded Systems," in Software Testing, 1999.  

[8] J. Bowen, "Safety Critical Systems, Formal Methods and Standards," Software Engineering Journal, 1992.  

[9] P. Cousot, "Abstract interpretation: a unified lattice model for static analysis of programs by construction or 

 approximation of fixpoints," 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, 1977.  

[10] NIST, "Reference Information for the Software Verification and Validation Process," 1996.  

[11] B. Clark and D. Zubrow, "How Good Is the Software: A Review of Defect Prediction Techniques," Software 

     Engineering Institute, 2001.  

[12] T. Martyn, "Issues in Safety Assurance," SafeComp, 2003.  

[13] RTCA, "DO-178C, Software Considerations in Airborne Systems and Equipment Certification," RTCA, 2012.  

© 2015 MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks 

for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their 

respective holders.  

8  


