主要内容

3D Reconstruction of Radiation Pattern From 2D Orthogonal Slices

This example shows how to reconstruct 3D radiation pattern using patternFromSlices function. A 3D radiation pattern is a very important tool for antenna analysis, characterization, design, planning, and applications. This example will show reconstruction of 3-D radiation from 2 orthogonal slices. Pattern reconstruction for an omni-directional and directional antenna will be considered.

全向天线

Define an omni-directional antenna such as a dipole with a specific frequency and required elevation and azimuth angle.

ant = dipole; freq = 70e6; ele = -90:5:90; azi = -180:1:180;

Generate Orthogonal 2-D Slices.

切片沿着图案形态函数沿垂直方向。在这里,我们也可以提供其他2-D模式数据。

Vertslice = PayseralElevation(Ant,Freq,0,'海拔',ele);theta = 90 - ele;

两个正交切片也可以可视化。

数字;图案线(Ant,Freq,0,'海拔',ele);数字;patternAzimuth(ant,freq,0,'Azimuth',azi);

Reconstruction Of 3-D Radiation Pattern

对于全向天线,我们可以单独使用Vertslice重建三维模式。当仅提供高度模式数据时,功能假定天线的全向Z轴(即,方位称对称)对称性。

Patternfromslices(Vertslice,Theta);

Reconstruction using both vertSlice & horizSlice data points can also be done for the above case. The reconstructed pattern will not vary. Thus, for any omni-directional antenna 3-D pattern can be reconstructed with enough data points from orthogonal slices along the theta direction. The reconstructed radiation pattern looks like the 3-D radiation pattern which can be obtained using the pattern function.

丢弃数据点

当数据点在2-D平面中的360度跨越360度时,会丢弃3-D模式期间的数据点。由于该算法在一个平面中需要360度的最大跨度和在另一个平面中的跨度为180度,因此丢弃额外的数据点。

Vertslice = PayseralElevation(Ant,Freq);Theta = 90  - (-180:1:180);

Dimension of pat3-D won't be equal to the length(phi)*length(theta) in this case. The size of thetaout also vary from that of theta dimension. Also, thetaout data will show the values for which data points have been considered during reconstruction.

[Pat3d,Thetaout] = Patternfromslices(Vertslice,Theta);dim_theta = size(thetaout);DISP(DIM_THETA);
1 181

3-D radiation pattern will not get affected by data discarding since there will be enough data points along both the orthogonal plane for reconstruction of 3-D pattern. This result will be the same as that of the above reconstructed 3-D radiation pattern.

Patternfromslices(Vertslice,Theta);

定向天线

定义具有特定频率的定向天线,例如频率和升高和方位角的值。

ant_dir = helix('Tilt',90,'TiltAxis',[0 1 0]);freq = 2e9;ELE = -90:5:90;Azi = -180:5:180;

正交2-D切片

The slice along the vertical direction using patternElevation function.

vertSlice = patternElevation(ant_dir,freq,0,'海拔',ele);theta = 90 - ele;

使用Patternazimuth函数沿水平方向的切片。

HevelSlice = Patternazimuth(Ant_Dir,Freq,0,'Azimuth',azi);phi = azi ;

两个正交切片也可以可视化。

数字;图案图(Ant_Dir,Freq,0,'海拔',ele);数字;Picturingazimuth(Ant_Dir,Freq,0,'Azimuth',azi);

Reconstruction Of 3-D Radiation Pattern

For a directional antenna pattern, both the horizontal and vertical slice must be provided for accurate pattern reconstruction. Two separate algorithms are implemented for pattern reconstruction and will consider both below.

求和Method.

The "classic" summing algorithm is the default method. This algorithm can be used for near-perfect reconstruction of omni-directional antennas than for directional antenna.

Patternfromslices(Vertslice,Theta,Heathislice,Phi);

CrossWeighted Method.

In this algorithm, the normalization parameter can be changed to obtain different results for the reconstructed pattern about the estimated directivity/gain

patternFromSlices(vertSlice,theta,horizSlice,phi,'Method','交叉');

3-D Radiation Using Pattern Function

使用螺旋的图案函数最初是3-D辐射模式

数字;pattern(ant_dir,freq);

通过使用图案函数的上述3-D辐射模式和重建的3-D图案进行比较,显然与其后平面相比,将3-D图案的前平面进行得很好。此外,当使用交叉重量的方法完成重建时,这种情况的求和方法更准确。

Read and Visualize Antenna Data from Manufacturer

天线制造商通常提供它们与辐射图案的两个正交切片一起供应的天线的细节。模式数据以各种格式提供。一个在天线工具箱中支持的这种格式是MSI文件格式金宝app(扩展名为.msi或.pln)。使用MSiread函数将数据读入工作区。

[Horizontal,Vertical,Optional] = msiread('test_file_demo.pln');

Adjust To dBi if data is in dBd

如果Strcmpi(可选。'dbd') Horizontal.Magnitude = Horizontal.Magnitude + 2; Vertical.Magnitude = Vertical.Magnitude + 2;end

在交互式的2-D极性绘图中可视化垂直和水平增益数据。

图p = pararpattern(垂直.elevation,垂直);p.titletop ='MSI Planet文件数据';CreateLabels(P,'az=0#deg');figure Pel = polarpattern(Horizontal.Azimuth, Horizontal.Magnitude); Pel.TitleTop ='MSI Planet文件数据';CreateLabels(PEL,'el = 0#deg');

Reconstruction Of 3-D Radiation Pattern

Extract the pattern slice magnitude data from the two output structures as well as the azimuth and elevation angle data. Note, that the angle data should be adjusted for the phi-theta convention. The azimuth angles maps to phi but the elevation angle is adjusted by 90 degrees to map to theta.

vertSlice = Vertical.Magnitude; theta = 90-Vertical.Elevation; horizSlice = Horizontal.Magnitude; phi = Horizontal.Azimuth; patternFromSlices(vertSlice,theta,horizSlice,phi,'Method','交叉');

See Also