
1

Engine-based powertrain (TTR-HEV) modeling and
Simulation-PI Tuning Problem

Sajjad A.Anbaran

I. INTRODUCTION

This report intends to present problems and challenges on
modeling and tuning of PIs for a TTRHEV powertrain ,
specifically front driveline of the TTRHEV. There are two
drivelines in a TTRHEV that are, in concept, operating inde-
pendently. However, they both are coordinated and dictated on
by a supervisory control logic. The front driveline is engine-
based with a multi-speed transmission and front wheels. As for
rear driveline, there are two electric machines, battery, power
electronic converter and rear wheels. Of course, all these
components are accompanied by their associated controller to
regulate their behavior in order to meet design performance
and efficiency goals.

From control standpoint, there are two layers of controllers.
First is the lower layer that regulates the TTRHEV components
dynamic behavior such that the entire powertrain as whole,
follows the dictated commands by supervisory control logic.
At this layer, the controllers are realized through conventional
PI controllers. On the higher layer, there is an event-driven
decision making system to interpret driver’s desire and then
outputs set of commands to meet driver’s wish. An event
is any state or condition at which a car can be. How to
perceive an event can vary in accordance to road condition,
powertrain condition, driver’s habit, and etc. There could
be many possibilities on the number of events. One way
to address this problem is to use engineering intuition and
knowledge and professional driver’s remarks to help the design
engineer to define events and assign these events to a set of
rules/ actions. This study, realized this task through stateflow
toolbox of MATLAB/Simulink. System modeling and model
fidelity is as equally important as the control system design.
For the sake of control design for a TTR-HEV a system-level
modeling is sufficient. Simscape toolbox and its libraries offer
acausal modeling approach in contrast to causal modeling that
is available in Simulink. Hence, SimDriveline, SimMechanics,
SimElectronics libraries of Simscape used to build TTRHEV
model. The focal point of this report, however, is to give a
detailed account of hurdles on front driveline control design.
You will be presented with front driveline models, and their
description. Next, the control problem of front driveline such
that vehicle speed tracks the reference speed profile is dis-
cussed.

II. DESCRIPTION OF THE SYSTEM

Front driveline configuration and modeling with Simscape

There are three models of front driveline presented here;
each model is simplified version of the previous model. For

Figure 1: Model A, Complete model of front driveline

Figure 2: Solver step Size plot for Model A

the sake of simplicity and clarity, these models are named A,
B, and C. The rationale behind this simplification process is to
alleviate the dynamics of the model, so to be able to ease the
tuning task of PI controller. This part of report describes these
three models and blocks that constitute them. And next section
elaborates on control challenge(s) associated to these models.
First, Model A, that is a fully-fledged driveline where you have
Engine, Torque converter, Continuously Variable Transmission
(CVT), Vehicle body dynamics, and Gear selection logic,
Figure 1. This model is highly dynamic and nonlinear owing
to presence of transmission system and gear selection logic;
states of the system are constantly changing, Figure 2. Hence,
the design and tune a linear controller (PI) for this system
needs much effort and skill to deal with. To view the inside
of subsystems in Model, refer to Appendix.

Model A is further simplified by removing Gear Selection
logic and replaced with a signal builder block, Figure 3 on
the following page. The signal block imitates Gear Selection
logic and sends out a continuously changing gear number to

2

Figure 3: Model B, Front driveline

Figure 4: Model C, Single-speed gearbox

the CVT. Meanwhile, driver model is added to the system.
Detailed view of the driver model and signal builder block is
available in appendix.

However, attempts to obtain a valid linearized model of
the Model B were not successful. Therefore, it is decided
to further simplify model B which leads to Model C. At
this stage, CVT is deleted and replaced with a single gear,
Figure 4,nevertheless, the rest of driveline is retained.

Figure 5 and 6, respectively, show the step size plot of
Model B and Model C. The discontinuities and rapid changes
have slightly decreased in Model B and we have further
decrease in Model C.

III. DESCRIPTION OF FRONT DRIVELINE CONTROL
PROBLEM

At this stage of modeling and simulation, the control
problem is to control engine torque such that vehicle tracks
the reference speed profile. The type of the controller is a
conventional PI controller and the objective of the control
design is ‘reference-tracking’.

A. Driver Model

The reference speed profile could be any of standard drive
cycles or a custom-made speed profile of the vehicle. To begin
with control design, the reference signal constructed using
signal builder block whereby the vehicle speeds up to 50
Kilometer per hour (kph) in 10 seconds at rate of +5 kph/s,
then cruises at 50 kph for the next 10 seconds, ultimately, it
slows down to zero speed in 10 seconds with the rate of -5
kph/s, Figure 7.

Figure 5: Step size plot, Model B

Figure 6: Step Size plot, Model C

Figure 7: Test Drive cycle

3

Figure 8: Driver Model

B. Engine Torque Control

Engine torque is controlled through Driver model. Figure.
shows the inside view of driver subsystem. Outputs of driver
subsystem are Accelerator and Brake pedal signals. The Ac-
celerator pedal signal equates to demanded torque that the
engine must supply to meet the control objective. This signal
varies between 0 and 1 [0= closed throttle and 1= opened
throttle] and fed to engine block. To compute the demanded
torque, the reference speed is compared to the car actual speed
and the difference is fed to a PI controller block. MATLAB/
Simulink offers several methods to design and tune PIDs. The
common principle among all these methods is that they all
require a linearized model of the system. Nevertheless, front
driveline model with engine, multi-speed transmission, and
gear selection logic is highly nonlinear. This non-linearity
should be linearized before any attempts made to tune PI
controller. Once the linearized model is obtained, it should
be validated then one can proceed to use linearized model to
tune PI controller(s).

IV. LINEARIZATION WITH MATLAB / SIMULINK

The important motive to linearize a model is to obtain an
approximated linear model of a system, so that it could be used
to design and tune conventional PI controller. Linearization is
the process of finding the linear approximation of a model at
the vicinity of the equilibrium point(s). Equilibrium points are
operating points of the model at which the model is at steady-
state. The steady-state operating points include variables that
do not change with time aka steady-state variables. The
question, in turn, rises is that what states should be at steady-
state, and how to identify them? MATLAB/simscape lays
out the entire states of the model as a state vector x which
contains Simulink components (both continuous and discrete)
and Simscape components (continuous). This makes it difficult
to analyze operating points of the model and impossible to
identify state variables of the driveline. However, the number
of the state variables for a driveline can be counted, and
it is equal to number of independent Degree of freedom of
the driveline, provided that all clutches are unlocked. Not all
states are required to be at steady-state (or equilibrium). For
instance, the variables in cruise control problem of an HEV
are vehicle position and velocity, fuel and air rate into Engine.
Since the car is moving, the position is changing and not
having it as steady-state variable in linearization would not
cause invalid linearized model. In a further complex system,

good knowledge of the system dynamic and behavior over the
course of simulation can greatly help on choosing variables
that are needed to be at steady-state for the linearization. This
freedom of choosing steady-state variable is available by MAT-
LAB ‘trim’ command and its graphical equivalent of Simulink
control design Toolbox at ‘Linear Analysis Tool’. Neverthe-
less, using ‘trim’ command is not supported if the model is a
Simscape model. However, ‘Linear Analysis Tool’ is supported
by Simscape models whereby a model can be linearized either
at a certain time (simulation snapshot) or at model default
operating points, or at selected states. MATLAB/ Simulink
offers several ways to linearize a Simscape model and they
are listed in this part of report. Moreover, Simulink control
design toolbox allows PI controller tune and design without
necessarily having the knowledge about the model dynamics
and linearization. This, nevertheless, does not often yields to a
good design for a model developed in simscape environment.
To be able to successfully design and tune PI controllers for a
simscape model, having a good understanding of how model
works and behaviors is tremendously important.

A. Simscape model linearization

Standard procedure to design and tune PI controllers in
Simulinik involves following steps:

1) Find steady-state operating point(s)
2) Linearize the model at steady-state operating point(s)
3) Model validation with ‘Frequency Response Estimation’
4) Tune PI for the linearized model

MATLAB help documentation advises to use the following
methods to find steady-state operating points for a Simscape
model

1) Simulation in time to search for an operating point
2) Using Simscape initial condition solver
3) Using Simulink control design techniques to find oper-

ating points
It must be noted that MATLAB help does not recommend
using sources to find operating points, and as it was mentioned
earlier, ‘trim’ command is not supported with Simscape mod-
els. Finding operating point and linearization is a critical step
toward designing PI controllers. There is no guarantee that
there is any operating point for the model or the operating
point is suitable for linearization. Therefore, it is critical to
analyze the operating point by full simulation of the model,
away from any discontinuity, and varying parameters, input,
initial condition. Once a good operating point is found, the
model can be linearized at the neighborhood of that operating
point. MATLAB help advises to use following methods to
linearize models containing Simscape components.

1) Linearize with Simulink ‘linmod’ and ‘dlinmod’ func-
tions

2) Linearize with Simulink control design software
3) Linearize with Simulink Linear Analysis Tool

There is, however, another method to deal with control prob-
lem beside above methods. This method does not require
linearization. Here ‘System Identification Toolbox’ is used to
identify best suit approximate of the non-linear model. Next,

4

Figure 9: Model with ’linmode’

the control problem studied in this report is presented and then
all above methods to search for a suitable operating point to
linearize the model and tune PI controllers are explored and
discussed.

B. Model Linearization with ‘linmod’ function

Simscape states are by default continuous, therefore, ‘lin-
mod’ function is a good choice for the purpose of the lin-
earization of the model under study in this report. There are
several ways to use Simulink function ‘linmod’ to perform
linearization and the result can be different depending on the
method selected. these methods are

1) Linearize with default input and states
2) Linearize with the steady-state solver at an initial steady

state
3) Linearization with specified state and input
First and the second method are ruled out, simply because of

the fact that they do not produce acceptable simulation result,
Figure 10. In particular, linearizing the model with steady-
state solver at steady state distorts the output signal shape.
On the other hand, linearization using the ‘linmod’ function
with specific state and input does not demonstrate the same
complications there are with method one and two. Thus, this
report explores linearization with ‘linmod’ function at specific
state and output. For this purpose, model-level input and output
are added to the part of model (Plant) that are to be linearized
, Figure 9.

First, the model is simulated with feedback loop closed in
order to analyze simulation behavior at the output (vehicle
velocity mph). It is obsevered that vehicle actual velocity is
oscillating however it is linear for very short period of time
in a periodic manner, Figure 11. It is arbitrary to pick any
of the windows of time at which model behaves linearly to
linearize the plant, so that t = 6.05 is selected. Figure 12 on
the following page is the result of linearization with ’linmod’
function at a specific state and input.

It is clear that Figure 12 on the next page and Figure 10a
are identical. Both of the figures linearized at zero. MATLAB
help documentation suggests few solutoin to deal with plants
that cannot be linearized ot linearized to zero and there are as
followings

1) linearize at a different operating point
2) import a linear model of the plant to PID tuner
3) Tune controller with model obtained from ’Estimated

Frequency Response’

10-4 10-2 100 102 104 106
0

0.5

1

M
ag

ni
tu

de
 (

dB
)

Frequency Response (Hydraulic Actuator)

10-4 10-2 100 102 104 106

Frequency (Hz)

-1

-0.5

0

0.5

1

Ph
as

e
(d

eg
)

(a)

(b)

Figure 10: Bode response of the linearization a) with ’linmod’
at default states and b) with the steady-state solver at an initial
steady state

0 5 10 15 20 25 30
-10

0

10

20

30

40

50

60

(a) Full scale

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

5

10

15

20

25

30

35

40

45

50

55

Actual
Ref

(b) Zoomed

Figure 11: Vehicle velocity

5

10-4 10-2 100 102 104 106
0

0.5

1

M
ag

ni
tu

de
 (

dB
)

Frequency Response (Bode)

10-4 10-2 100 102 104 106

Frequency (Hz)

-1

-0.5

0

0.5

1

Ph
as

e
(d

eg
)

Figure 12: Bode diagram of linearization with ’linmod’ at a
specific state

4) Use ’System Identification Toolbox’ to estimate a linear
plant model

This section dicusses the first item in the list only and the rest
are discussed in their repective sections.

The plant model has been linearized for several operating
points and the result was identical to that of Figure 12,
nevertheless, they are not presented here. To automatically
linearize a model at multiple operating points without running
simulation, MATLAB offeres ’Batch Linearization’ technique
but this report does not intend to explore that at the moment.

C. Model Linearization with ‘Linear Analysis Tool’

To linearize models, Linear Analysis Tool is the specific
tool provided by MATLAB and it is the graphical equivalent
of MATLAB ’linearize’ function. It provides GUI environment
to perform variety of tasks such as linearization, and frequency
response estimation.

the linearization process begins with specifying input and
outpu signals of open-loop plant , Figure 9 on the preceding
page. It is expected the result to be similar to what obtained
with ’linmod’ function, because both techniques use the same
approach to linearize a model. Figure 13 shows the Linear
Analysis Tool front page. The model is linearized at its default
operating point as well as at t = [4,5.05,6.05]. Figure 14 is
the linearizatoin reult.

D. Model linearization with ’Frequency Response Estimation’

’Frequency Response Estimation’ returns frequency re-
sponse data serves several purposes. Amongst them are vali-
dation of fidelity of the linear model obtained from other lin-
earization methods and an alternative to design PID controllers
when the linearized plant model is invalid for PID design.

Before proceed to estimate frequency respose of the model,
a test performed to understand the model behavior. The result
from execution of follwing codes, Figure 15 on the next
page,explains why the model under study is linearizing to
zero. The model contains a static gain that causes the model
linearizes to zero. This usually happens when the model
contains some discontinuity caused by event-based blocks such

Figure 13: MATLAB Linear Analysis Tool

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

dB
)

From: Driver To: Vspd

10-1 100 101
0

0.5

1

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/s)

(a) Linearization at Model default operating points

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

dB
)

From: Driver To: Vspd

10-1 100 101
0

0.5

1

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/s)

(b) Linearizatoin at t = [4,5.05,6.05]

Figure 14: Model Linearization result

6

Figure 15: Model Linearization test code

-200

-150

-100

-50

M
ag

ni
tu

de
 (

dB
)

From: Driver To: Vspd

101 102 103
-150

-120

-90

-60

Ph
as

e
(d

eg
)

Freq Estimation Response

Frequency (rad/s)

Figure 16: Frequency Response Estimation

as stateflow block or triggered-based subsystems. However,
this is not the case for the model in this study and the reason
of this issue is unfathomable to the author at the moment.

’Frequency Response Estimation’ is accessible through
Simulink →Analysis → Control Design → Linear Analysis.
This action opens the Linear Analysis Tool for the model.
Next, in linear analysis tool, and finally click on Estimation
Tab. In the Input Signal drop-down list, Sinestream signal
selected in Frequency range of 10 to 1000 with Amplitude
of 1. This returns frequency response data and plotted with
Bode diagram, Figure 16.

To continue with PID design, the frequency response data
should be moves to MATLAB workspace and then imported
to PID Tuner block for further analysis and design, Figure 17.

The vehicle velocity (output), Figure 17, indicates that car
fails to track reference signal and the response is slower that
of obtained from previous methods.

E. Model Linearization/ PI Tune with Simulink Control De-
sign software

Irrespective of type of the methods provided by’Simulink
Control Design Software’, all of them require model lineariza-

Figure 17: PID design with Frequency Response Estimation

0 5 10 15 20 25 30
-10

0

10

20

30

40

50

60
vehicle Velocity PID design with FRD

Actual Spd
Ref Signal

Figure 18: Vehicle velocity with PID design Frq Response
Estimation

tion before proceed to PI tuning. This is particularly true
for Simscape Models. Several methods available at ’Simulink
control Design software’ are explored in this section and the
objective is to tune kpand ki values to accomplish ’reference
tracking’ goal.

1) Control System Designer: Control System Designer is
a tool for classical control design offering various graph-
ical and automated tuning methods (Analysis →Control
Design→Control System Designer). It is a good tool to tune
compensatros in models that contain multi-loop or cascade
feedback loops. An example is a full HEV powertrain model.
However, the model under study here is a simple powertrain
with single feedback loop. Design workflow with ’Control
System Designer’ is as following:

1) Select blocks to be tunes
2) Add analysis point to specify the portion of model to be

linearized
3) Specify linearization options. Here the model chose to

be linearized at t = 6.05.

7

Figure 19: Control System Designer

4) select a tuning method
Several tuning methods are used to tune PI controller but none
returned a good result. These methods are:

1) Bode Diagram Design
2) Root Locus Design
3) Nichols Plot Design

Ultimately, ’Optimization Based Tuning’ used, nevertheless,
it did not produce any acceptable result, Figure 19. Likewise,
different optimization techniques that are available as option
in this method are examined.

2) Control system Tuner: Control System Tuner automat-
ically tunes the controller parameters to satisfy the must-
have requirements (design constraints) and to best meet the
remaining requirements (objectives). Design workflow with
this tool is

1) Model set-up
2) Tuning goals
3) Tuning, Analysis, and validation

The Model set to be linearized at t = 6.05 and PI controller
block is selected as tunable block. The Tuning goal is set to
’Reference Tracking’ and the auto tuning performed. Figure 20
is the result of Linearization/ PI tuning with ’Control System
Tuner’.

The model linearized to zero and consequently the tuning
result is unaccaptable.

F. Model identification with ‘System Identification Toolbox’

In many situations, like the system under study in this
report, a dynamic representation of the system is not readily
available. One solution to this problem is to obtain a dynamical
model using identification techniques. One of the many meth-
ods MATLAB offers to tune PI controllers for a non-linear
system is to use ’System Identification Toolbox’. The plant
model can be estimated from measured or simulated response
data. Measured data is not available, so instead simulated
input/output data will be used.

PID Tuner block provides for both plant identification and
controller design in a single interface. Input/output data and

Figure 20: Control system Tuner result

Figure 21: System Identification simulated input/output

use it to identify one or more plant models., however, PID
Tuner can only identify single-input, single output, continuous-
time plant models. This poses no issues to coduct plant
estimation.

The simulated input signal has the following specifications;
Amplitude = 50, Offset= 0.01 and Onset lag = 0.1.
As for the simulated output signal, the simulation output

logged into workspace as timeseries and then fed as output
signal, Figure 21.

Plant Auto-estimated, Figure 22 on the following page and
ready for fine tuning before saved and fed to the PID Tuner
block. Figure shows the plant estimated with Underdamped
pair next to the step plot for Reference Tracking. The result
is the same if other plant structure for identification is used.
However, There has been an slight improvment in the system
output (Vehicle Velocity). In comparison to Figure 11 on
page 4 the Velocity oscillatoin in Figure 24 on the following
page is eliminated, particularly after t = 4sec but still the car
does not track the reference as it supposed to.

8

Figure 22: Plant Identification report

Figure 23: Identified Plant withUnderdamped pair

V. CONCLUCSION

This report is an attempt to describe the problem in hand at
this stage of study. It basically comprised of three parts. First,
the model and control problem is described, then proceeded
to discussion over simscape model linearization and available
method to perform linearization analysis and PID design.
Ultimately, the third part of report explores each of the
analysis and design methods and presents the result with some
discussion.

A Simscape model of conventional car is developed. The car
powertrain consists of Driver Model, Engine, CVT, and vehicle
body. The objective of this study is to tune PI controller in the
Driver model subsystem via classical PID design methods such
that vehicle tracks the reference signal. MATLAB/ Simulink
offeres several methods to design and tune PID controller.

0 5 10 15 20 25 30
-10

0

10

20

30

40

50

60
Vehicle Velocity with Sys Identi [kp=2.154,ki=0.2862]

Figure 24: Vehicle velocity output with System Identification

However, they all need a linearized approximated of the model
to be able to tune kp and ki values of PI controller, except
for methods such as ’Frequency Response Estimation’ and
’System Identification Tool’. Moreover, not all of the avail-
able methods are applicable to Simscape models. MATLAB
Help documentation is voluminous on the subject of Model
linearizationa and PID design. Nevertheless, for a Simscape
model, suitable methods can be jotted down as following

1) Linearize with Simulink ‘linmod’ and ‘dlinmod’ func-
tions

2) Linearize with Simulink control design software
3) Linearize with Simulink Linear Analysis Tool

Model linearizatoin with a ’linmod’ function and ’Lineari
Analaysis Tool’ both linearized to zero. These two methods,
fundamentally, use same linearization approach to deal with a
model. However, the reason why model linearizes to zero is
not clear at this stage of study, although many attempts were
made to linearize the model at different time and operating
points with various optimation search methods. In these kind
of cases, MATLAB recommends to use follwing methods

1) linearize at a different operating point
2) import a linear model of the plant to PID tuner
3) Tune controller with model obtained from ’Estimated

Frequency Response’
4) Use ’System Identification Toolbox’ to estimate a linear

plant model
It has already been tried to linearize and re-linearize the model
at different operating point but it was fruitless. The second
recommeded method is ruled out due to fact that no linear
model of the plant is at disposal. On the other hand, third
and forth recommended methods presented promising results.
Although frequency response data of the model provides
a linearized approximate, it does not yield to a good PI
tuning. The vehicle velocity trajectory does not follow the
reference signal,nonetheless, it contains less oscillacion but
the amplitude of scillation is bigger than that of obtained from
’linmod’ function. A simple analysis of the model revealed the
actual reason model linearizes to zero with ’linmod’ function

9

and ’Linear Analysis Tool’. It is because the model contains
’Static Gain’ along the linearization path. This problem is
common with models that made up of event-based blocks or
trigger-based subsystem. But this is not the case in the model
under study in this report, because of the fact that none of
these blocks or subsystem are not present in the model and in
linearization path. Ultimately, System Identification technique
is used via PID Tuner block. The identification process was
successful. A model was identified and fine tuned by adding
’Underdamped pair’ of poles and then fed to the PID Tuner
block for further analysis and tuning. The output of simulatoin
shows an improvement by significantly resducing oscillatoin
at vehicle velocity.

Lastly, Simulink Control Design software is a package of
several methods to design and tune PIDs with the use of
graphical means of design such as bode diagram, root locus
and Nichols diagrams. Even though having good knowledge
of linear control system theory is not necessary sometines,
it is not valid when dealing with Simscape models. Due to
the fact that the model is non-linear and classical PID tuning
technique is being used, the model still need to be linearized
when working with ’Simulink Control Design software’. It is
found that when linearize with methods provided by ’Simulink
Control Design software’, they all use the same technique as
it is used by ’linmod’ function and ’Linear Analysis Tool’ to
linearize the model. Hence, the PID design founded on invalid
linearized model and leads to unsatisfactory results.

This report examined myriad of methods MATLAB offeres
to analyze, design, validate PID controllers, particularly those
are supported by Simscape model. They all come with their
pros and cons, and few of them can be ruled out. However,
what is certain is that deep grasp of the Model dynamic
and behaviour would tremendeously ease the process of PID
design. At the time of the writing this report, the author is
not able to fathom many of issues in the model design and
control problem. Thus, further study and investigation into the
problem is a must.

VI. FUTURE WORK

Over the course of report write-up, it was observed that
Vehicle output with ’System Identification’ method, Figure 24
on the previous page has longer linear region in contrast to
Figure 11 on page 4 and Figure 18 on page 6. A longer window
of linear behavior of system could lead to a better linearization
result. Therefore, the model was again linearized at t = 6.05sec
once with ’linmod’ functoin and another time with ’dlinmod’
function, Figure 25 and Figure 26, respectively.

Adimittedly, this time neither of ’linmod’ and ’dlinmod’
fucntions linearize the model to zero like what observed
in Figure 12 on page 5. This reveals another reason for
linearization at zero beside presence of ’static gain’. Obviously,
the length of linearization region was inadequetly short. Next,
these linearized models will be examined, validated and used
to tune PI controller.

On another note, the simulation of Electric drivetrain is
complete. Necessary preparations are being made to begin with
Desktop Real-Time Simulation of Electric Drivetrain and then
HIL.

10-4 10-2 100 102 104 106
-400

-200

0

200

M
ag

ni
tu

de
 (

dB
)

Frequency Response (Bode)

10-4 10-2 100 102 104 106

Frequency (Hz)

-600

-400

-200

0

Ph
as

e
(d

eg
)

Figure 25: Linearizatoin with ’linmod’ function

10-4 10-2 100 102 104 106
-250

-200

-150

-100

-50

M
ag

ni
tu

de
 (

dB
)

Frequency Response (Bode)

10-4 10-2 100 102 104 106

Frequency (Hz)

0

200

400

600

800

Ph
as

e
(d

eg
)

Figure 26: Linearization with ’dlinmod’

VII. APPENDIX

Figure 27: Inside view of Supervisory Control Logic

10

Figure 28: Inside view of CVT Subsystem

Figure 29: Inside View of Vehicle Body

