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Abstract— The growing need for accurate simulation of 
advanced lithium cells for powertrain electrification de-
mands fast and accurate modeling schemes. Additionally, 
battery models must account for thermal effects because of 
the paramount importance of temperature in kinetic and 
transport phenomena of electrochemical systems. This pa-
per presents an effective method for developing a multi-
temperature lithium cell simulation model with thermal de-
pendence. An equivalent circuit model with one voltage 
source, one series resistor, and a single RC block was able 
to account for the discharge dynamics observed in the ex-
periment. A parameter estimation numerical scheme using 
pulse current discharge tests on high power lithium (LiNi-
CoMnO2 cathode and graphite-based anode) cells under 
different operating conditions revealed dependences of the 
equivalent circuit elements on state of charge, average cur-
rent, and temperature. The process is useful for creating a 
high fidelity model capable of predicting electrical cur-
rent/voltage performance and estimating run-time state of 
charge. The model was validated for a lithium cell with an 
independent drive cycle showing voltage accuracy within 
2%.  The model was also used to simulate thermal buildup 
for a constant current discharge scenario. 

Keywords- high-power lithium cell; thermal model, 
electrical equivalent lithium cell model. state of charge, 
pulse discharge test, energy storage; electric vehicle, hy-
brid electric vehicle 

I. NOMENCLATURE 
BMS battery management system 
Cn capacitor n, where n is a natural number  
CQ cell capacity (Ah) 
CT heat capacitance (J m-3 K-1) 
Em electromotive force of main branch 
Ep electromotive force of parasitic branch 
ECM equivalent circuit model 
EKF extended Kalman filter 
Im current in main branch (A) 
In current in branch n, where n is a natural 

number (A) 
Ip current in parasitic branch (A) 
NMC nickel-manganese-cobalt 

OCV open circuit voltage (V) 
Ps power dissipated inside the cell (W) 
Qe extracted charge from cell (Ah) 
Rn resistor n, where n is a natural number () 
RT convection resistance (W1 m-2 K-1)) 
s Laplace transform variable 
SOC state of charge 
T inner cell temperature (ºC) 
Ta ambient temperature (ºC) 
V voltage (V) 
Zp impedance of parasitic branch () 

II. INTRODUCTION 
An accurate forecast of the remaining driving range 

of an electric vehicle (EV) is crucial to avoid range anx-
iety. Drivers need to know how much further they 
would travel before their vehicle batteries require a re-
charge. In addition, the battery management system 
should predict when batteries need replacement. The 
remaining charge calculation must be precise to utilize 
the battery’s full capability. The state of charge (SOC) 
of a battery or pack of batteries is analogous to a fuel 
gauge of a conventional vehicle.  

Accurate run-time SOC estimation techniques are al-
so needed by the battery management system (BMS) for 
cell balancing of battery packs in vehicles with electri-
fied powertrains. The SOC estimation must be accurate 
under all vehicle operating conditions, and account for 
changes in temperature, different rates of current, and 
cell aging. High temperatures, broad SOC operation 
ranges, and strenuous load profiles accelerate cell aging. 
Coulomb counting (i.e. integration of the current) is a 
simple technique for estimating the SOC by integrating 
the measured current with time. However, coulomb 
counting has several drawbacks. Coulomb counting de-
pends on the current flowing from the cell into external 
circuits and does not account for self-discharge currents 
or parasitic reactions in the cell. Current measurement 
errors accumulate with time, and should be corrected by 
periodic recalibration. The maximum charge capacity of 
the cell depends on a number of factors, such as average 
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discharge current, discharge time, inner cell tempera-
ture, storage time (self-discharge), and cycle-age [1]. 

Equivalent circuit modeling (ECM) is the most 
common approach for battery numerical analysis. For 
lithium cells, a one or two RC block model with no 
parasitic branch is a common choice [1-3]. It has the 
advantage of being computationally simple and is eas-
ily combined with other methods such as coulomb 
counting with an OCV / SOC correlation for periodic 
recalibration during rest. The model also lends itself 
to the use of adaptive methods, such as extended 
Kalman filter (EKF) [3-5]. 

This paper presents a new and intuitive method for 
developing a non-isothermal lithium cell model. Re-
ducing the general ECM with n RC blocks to an ECM 
with just a single RC block was sufficient to account 
for all dynamic characteristics of the cell, including 
nonlinear open-circuit voltage, average discharge cur-
rent and inner cell temperature. A numerical parame-
ter estimation scheme using pulse current discharge 
tests on high power lithium nickel-manganese-cobalt 
oxide (NMC) cells under different operating condi-
tions was implemented using MATLAB®, Simulink® 
and SimscapeTM. The parameter estimation procedure 
revealed dependencies of the equivalent circuit ele-
ments on SOC and temperature, which were subse-
quently implemented as lookup tables that defined the 
values of the equivalent circuit elements. The model 
was validated using independent experimental data, 
and then used for general simulation purposes. This 
process can be used for runtime SOC estimation. 

The paper is organized as follows: Section III de-
scribes the background and model formulation, while 
Section IV deals with the experimental setup. The re-
sults of the experimental tests on the cells are com-
pared with the modeling results in Section V. Section 
VI summarizes the work and states suggestions for 
future work. 

III. BACKGROUND AND MODEL FORMULATION 
A number of models have been developed in the 

past to characterize and simulate lithium cells. De-
tailed electrochemical models that simulate the inter-
nal dynamics of the lithium cells [6-9] are computa-
tionally-intensive, time-consuming, inflexible and un-
suitable for system-level modeling or run-time appli-
cations. An alternative approach is to use equivalent 
circuit models (ECM) [1-3]. In this case, the goal is to 
establish a direct correlation between electrochemical 
phenomena inside the cell and the circuit elements. 
Their level of complexity is decided as a trade-off be-
tween the fidelity and computational effort. These 
models can capture nonlinear electrochemical phe-
nomena, and yet avoid lengthy electrochemical pro-
cess calculations. They are especially suitable for sys-
tem-level modeling (e.g. powertrain electrification). 

Most models in the current literature do not account 
for thermal effects. This work overcomes this limitation 
by including temperature as an independent variable in 
the look-up tables that define the circuit elements.   

Figure 1. A general equivalent circuit model [1, 10-11] of an electro-
chemical cell. The number of equivalent circuit elements results in a 
trade-off between fidelity and complexity. The parasitic branch can 

be neglected for cells with high coulombic efficiencies. 

Fig.1 shows the generalized ECM presented in [10-
11] for lead-acid batteries, but which can be used to de-
pict an electrochemical cell of any chemistry. 

The choice of the model structure responds to a 
trade-off between the ability to fit experimental data and 
equivalent circuit complexity (and computational re-
sources). An extremely complex equivalent circuit 
would fit experimental data sets well, but would be 
computationally expensive, making it unsuitable for 
embedded control applications. In general, the level of 
complexity should be limited by the computational re-
sources available and the possibility of correlating each 
circuit component with an electrochemical phenomenon 
inside the cell. A model of adequate fidelity is useful for 
diagnosis purposes, since variation of its elements can 
be linked directly to a physical or electrochemical pro-
cess, such as charge, capacity, or health. 

Depending on the characteristics of the problem to 
be analyzed, the number of RC blocks typically ranges 
from one to two, since larger numbers increase compu-
tational effort without significantly improving model 
accuracy. 

 
Figure 2: The model used for the paper, with n=1. 

A single RC block model (Figure 2) is adequate for 
many problems of industrial relevance, and has been 
adopted in this work. The estimation techniques present-
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ed in this paper are, however, general, and could also 
be applied to other equivalent circuit model topolo-
gies. The choice of the ECM of Figure 2 implied that 
the fitting procedure involved the estimation of four 
independent parameters, namely Em, R0, R1, and C1, 
which vary with temperature and SOC of the cell. 

A. Thermal modeling 
The value of the ECM components depends on 

SOC and inner cell temperature. The inner cell tem-
perature is assumed to be uniform, and taken as the 
average temperature inside the cell. This cell tempera-
ture can be computed by solving the heat equation of 
a homogeneous body exchanging heat with the envi-
ronment:  

்ܥ
ௗ்
ௗ௧

= − ்ି்ೌ
ோ೅

+ ௦ܲ   (1) 

Applying a Laplace transformation: 

(ݏ)ܶ = ௦்ܴܲ + ௔ܶ

1 + ݏ்ܥ்ܴ
 

where the meaning of the variables are reported in 
Section I. 

Practical applications require a combination of 
cells rather than a cell in isolation. In general, the 
thermal parameters of cell packs are different from 
those of isolated cells, although this case is not con-
sidered here, but will be the subject of a future contri-
bution.  

B. Cell capacity and state of charge 
The cell capacity (extractable charge) depends up-

on a number of factors, including:  

 average cell discharge current and discharge time 
 inner cell temperature 
 value of the end-of-discharge voltage 
 storage time (self-discharge) 
 number of charge-discharge cycles that the cell 

has undergone (aging) 
For short periods of time we can restrict the list 

above to average cell discharge current, discharge 
time, and inner cell temperature.  

Hence, cell capacity, ܥொ =  ொ(I, T)  (2)ܥ

Assuming the cell to be fully charged at time t=0, 
the extracted charge, Qe is defined as: 

ܳ௘(ݐ) = ∫ ௠(߬)݀߬௧ܫ
଴    (3) 

Then, the state-of-charge (SOC) is: 

ܥܱܵ = 1 −ܳ௘ ⁄  ொ   (4)ܥ

where CQ is the capacity of the cell at the temperature 
and discharge current considered. Consequently, any 
SOC definition should consider the conditions under 

which a cell is discharged and refer to the particular dis-
charge current and temperature under which the SOC 
has been evaluated. 

C. Runtime determination of state of charge 
The most common technique for determining the 

SOC during runtime is to integrate the current output 
from the cell over time (coulomb counting). Since this 
simple technique does not account for current measure-
ment errors or parasitic phenomena (especially at end-
of-charge), periodic error compensation is needed. The 
most effective technique for error elimination is an 
SOC-OCV (open circuit voltage) correlation curve [13]. 

D. Equivalent circuit model parameters 
Each element of the equivalent circuit of Figure 2 is 

a function of SOC and temperature. Specifically: 

R0= R0(SOC,T)    (5.1) 

R1=R1(SOC,T)    (5.2) 

C1=C1(SOC,T)    (5.3) 

Em= Em(SOC,T)    (5.4) 
The parameter estimation routine was run for a range 

of discharge experiments at different temperatures.  The 
results provide two-dimensional look-up tables each of 
these four equivalent circuit elements. 

IV. EXPERIMENTAL SETUP 

A. Cell test setup 
Power-oriented 31Ah lithium ion cells of the 

LiNixMnyCozO2 (NMC) chemistry [13] were tested to 
verify the model efficacy at three different temperatures 
of 5°C, 20°C and 40°C. The experimental setup consist-
ed of: 

1) Charging System 

The charging system was driven by an Ametek® 
Sorensen® 60kW programmable DC power supply 
(Model SPS60X250-K02D). The device allowed charg-
ing the equipment under test with a completely pro-
grammable input voltage and current profile and was 
fully remote controlled via the General Purpose Inter-
face Bus (GPIB) standard interface. 

2) Discharging System  

The discharging system was driven by a 6kW-500A 
Zentro-Elektrik™ Electronic Load (Model EL 6000). 
The device allowed discharging the cell under test in 
constant current mode, constant voltage mode, constant 
power mode, or constant conductance mode, and was 
fully remote controlled via the GPIB standard interface. 

3) Measurement System  

A digital multi-meter measured the voltage while the 
current was measured using a shunt (for high currents) 
and a Hall-sensor current transducer (for low currents) 
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respectively. The cell voltage could be measured and 
controlled through a 16-bit multifunctional National 
Instruments® data acquisition board. Ambient and de-
vice temperatures were measured and controlled using 
two RTD (PT100) transducers connected to two mul-
ti-meters. 

B. Test Cycle Control 
The test cycle was implemented to control the 

charging, discharging, and measurement systems us-
ing GPIB standard interface and digital I/O of a data 
acquisition card. 

C. Description of characterization tests 
Pulse discharge characterization tests were con-

ducted on the 31Ah cells at three different tempera-
tures. The cell was initially charged and then subject-
ed to partial discharge-rest phase cycles. At the end of 
each one-hour rest the voltage was found to be stable 
enough so as to be considered a good estimate of the 
OCV. The experiment determined the response of the 
cell to the current pulses, providing a mechanism to 
evaluate the parameters for the cell model. The SOC 
was derived based on coulomb counting of the current 
drawn from the cell at each step. 

V. MODELING AND SIMULATION 
The numerical analysis proposed here consisted of 

a parameter estimation / validation stage, and a simu-
lation stage. During parameter estimation, a discharge 
profile was iteratively simulated and its results com-
pared with experimental data. The ECM was created 
using SimscapeTM blocks and SimscapeTM language. 
The drawing shown in Figure 4 represented the circuit 
diagram with a single RC block. Each of the circuit 
elements was a subsystem consisting of custom elec-
trical blocks, and blocks to calculate the properties of 
the circuit element. 

 

Figure 3. SimscapeTM Equivalent Circuit Model 

The resistive circuit elements were modeled as varia-
ble resistors, as shown in Figure 4. These were mod-
eled based on Ohm’s Law, though a minimum re-

sistance value was used to prevent the differential equa-
tion solver from entering a bad state during parameter 
estimation or simulation. The real power of the resistive 
elements was also calculated for later use in simulation 
of thermal dynamics. The value of the resistance was 
provided by a lookup table with one or two inputs of 
SOC and temperature. 

  
Figure 4. Resistive Circuit Element and Simscape™ Language 

Code 

The performance of lithium cells varies significantly 
from cell to cell. The empirical equation approach typi-
cally used for lead-acid batteries as in [15] could not be 
used for lithium chemistry. Lookup tables were chosen 
for parameterization of the circuit elements for two rea-
sons. One is that lookup tables are very flexible. Second, 
the pulse discharge technique provides sufficient cell 
performance information about the open-circuit voltage 
and RC network at each pulse for a numerical optimizer 
to isolate each parameter and each breakpoint within the 
lookup tables. 

 
Figure 5. SimscapeTM Charging Circuit 

For parameter estimation, each temperature was con-
sidered independently. The lookup tables for each circuit 
element were chosen to be based on 7 different points of 
SOC, with SOC breakpoints spaced with a bias slightly 
toward low and high SOC. More points could have been 
used, but more breakpoints would have provided a di-
minishing benefit for two reasons. One was that more 
parameter values would slow down the parameter esti-
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mation. The second was that the discharge pulses of 
10% SOC would only provide the parameter estimator 
with good data near 10% SOC increments. Excessive 
breakpoints may have led to having too many parame-
ters that were not well exercised in the data, which is a 
known problem when optimizing unconstrained 
lookup tables [15]. 

 
Figure 6. Flow diagram of the parameter estimation procedure 

The parameters were determined using the param-
eter estimation tool in Simulink Design Optimiza-
tion™. To enable the estimation, the SimscapeTM 
ECM was connected to a simple charging circuit 
model using an ideal current source and a voltage sen-
sor, as shown in Figure 5. The estimation was auto-
mated using the command line parameter estimation 
capability.  

The pulse discharge curve for each temperature 
was run individually through an estimation task. This 
produced a set of one-dimensional lookup tables ver-
sus SOC for the four parameters at each temperature. 
To produce these lookup tables, Simulink Design Op-
timization™ iteratively simulated the discharge pro-
file in Simscape™ while comparing the simulation 
results with experimental data. The nonlinear least-
squares algorithm was used. This algorithm computed 
the error gradient across each of the 28 parameters (4 
tables * 7 breakpoints) to minimize the sum of 
squared error. The flow diagram of Figure 6 illustrates 
the parameter estimation steps.  

Repeating this process at three different tempera-
tures (5°C, 20°C, and 40°C) resulted in four sets of 
data that characterized the cell chemistry under con-
sideration: Em (SOC,T), R0 (SOC,T), R1 (SOC,T), and 
C1 (SOC,T). These values, in addition to a linear in-
terpolation process, constituted the two-dimensional 
look-up tables that determined the values of the 

equivalent circuit elements during the simulation stage. 
The resulting model assumed that cell impedance did 
not change significantly due to the magnitude of the dis-
charge current. The dependence on current magnitude 
may be investigated more closely in a future work.  

 
Figure 7. Experimental (- . -) and simulated (-) discharge curves for a 
31Ah cell at 20°C at the end of the estimation process. The cell under 
test shows first-order dynamics, which is effectively captured by the 
equivalent circuit simulation. The cell potential (top) drops with de-
creasing SOC (bottom), as the cell is discharged with a set of 31A 
pulses (middle). 

Figure 7 shows the agreement between experimental 
and final simulated voltage, current, and SOC, at 20°C. 
The simulation reproduced the nine discharge pulses and 
was able to keep track of the reduction in OCV as the 
cell discharged. The inset illustrates the capability of the 
optimizer to capture the dynamics of the system. The 
remarkable agreement with which such a simple equiva-
lent circuit was able to simulate cell behavior made this 
approach especially suitable to develop control algo-
rithms and system level models.  

A. Look-up Tables 
Figures 8-11 show the result of the parameter esti-

mation procedure. These values constitute the look-up 
tables for the non-isothermal model. Figure 8 shows 
how the e.m.f., represented here by the voltage source 
Em, strongly depends upon the SOC, while being largely 
independent of temperature. Figures 9-11 show the vari-
ation of R0, R1 and C1 with temperature and state of 
charge. 
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Figure 8. Electro-motive force (Em) as a function of T and SOC. 
Temperature dependence is minimal compared to SOC depend-
ence. 

 

Figure 9. Ohmic internal resistance R0 shows much stronger de-
pendence on temperature than on SOC, suggesting ion movement 
across the separator as responsible for this component of energy 
losses. The resistance decreases for high temperatures.  

 

Figure 10. R1, the resistive component of the RC element, inverse-
ly depends on temperature, but only shows SOC dependence at 
5°C. 

 

 

Figure 11. The capacitive component of the RC element seems to 
depend on temperature, but it also shows a jagged shape with SOC. 
The reason for this behavior is not clear at this moment. 

B. Validation 

 
Figure 12. Validation. Top to bottom: Speed: vehicle speed during 
New European Drive Cycle.  SOC: simulated state-of-charge. Cur-
rent: electrical current corresponding to the New European Driving 
Cycle. Voltage: Experimental (dashed red) and simulated (solid 
black) potential (V) evolution as a result of the input. |error|: voltage 
discrepancy between model and experiment (%). 
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Validation of the proposed approach required 
comparison with an independent set of experimental 
data. The New European Driving Cycle, featuring the 
current profile shown in Figure 12 was used to this 
effect. The voltage plot of this figure shows the simu-
lation result and the experimental measurement for the 
voltage delivered by the cell. The error graph shows 
the percentage difference between these voltages, 
which remains below 2%. Figure 13 shows a close-up 
view of the voltage difference enduring the latter part 
of the 20-minute cycle. 

 
Figure 13. Voltage discrepancy at end of New European Drive 

Cycle. 

The experimental conditions for this measurement 
were: T = 20ºC, and initial SOC = 45%. Figure 12 al-
so shows the speed profile and online state of charge 
estimation computed solely by coulomb counting.  
During the rest period after the cycle, the SOC could 
be corrected using the SOC-OCV correlation from the 
lookup tables in this model. Techniques such as the 
extended Kalman filter approach [4-6] could enhance 
the SOC correction. 

C. Simulation 
The isothermally-validated model can now be ex-

panded to consider thermal effects. Additions to the 
model that allow this expansion include: 

a) Convective heat exchange between the cell and the 
environment 
b) Calculation of heat losses due to internal resistanc-
es 
c) Thermal mass of cell assembly 
d) Two-dimensional look-up tables for equivalent cir-
cuit elements. 

 
Figure 14. Temperature increase for a constant current discharge of 
3000 sec at 31 A. 

An interesting example of application for this 
model is the calculation of the temperature build-up 

during a constant current discharge. Figure 14 shows the 
temperature evolution for the following constant current 
discharge situation: 

 Current discharge: 31 A 
 Ambient temperature: 20ºC 

The resulting temperature increase in this situation 
was approximately 16ºC. 

The thermal parameters utilized in this simulation 
were: 

 Convective heat exchange coefficient between the 
cell and the environment R= 5 W m-2 K-1 

 Cell heat capacity CT= 2.04106 J m-3 K-1  
 Cell dimensions: 0.00840.2150.22 m3  

The convective heat transfer coefficient must be set 
based on the experimental conditions or design require-
ments.  

For integration into system level models, the ambi-
ent temperature can be easily set as an input variable 
that accepts a temperature reading from other part of the 
model, for example a thermodynamic model of a hybrid 
vehicle. 

VI. CONCLUSIONS 
This work expands upon the general structure of the 

equivalent circuit cell model presented in prior literature 
[1-2, 10-11] by including cell thermal dynamics. The 
paper illustrates a practical method for evaluating the 
equivalent circuit parameters using pulse discharge ex-
perimental data to create lookup tables with cell temper-
ature and SOC as independent variables. 

For the LiNixMnyCozO2 (NMC) cell chemistry under 
study, an equivalent circuit with a voltage source, a se-
ries resistor, and a single RC element was adequate to 
capture the dynamics of the system. The techniques used 
for evaluating the parameters could also be used for an 
equivalent circuit model of higher complexity to better 
fit experimental data. 

The model was validated using a single 20-minute 
New European Drive Cycle, which showed cell voltage 
accuracy within 2%. The model accounts for the inner 
heat generated in the cell and the corresponding thermal 
build-up; and predicted the cell voltage and SOC for an 
arbitrary current profile. The procedure also illustrates a 
way in which SimscapeTM may be utilized as a numeri-
cal tool for modeling electrochemical systems using 
equivalent circuits, in combination with the parameter 
estimation functionalities of Simulink Design Optimiza-
tion™. 

A simple single-cell thermal model was developed in 
this paper. However, cells are generally combined into 
cell packs, whose thermal parameters are different from 
those of single isolated cells. This case has not been 
considered in this article, but shall be the subject of a 
future contribution. Future work shall also investigate 
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the dependence of the equivalent circuit model pa-
rameters on current magnitude.  
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