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ABSTRACT 

The lithium iron phosphate (LFP) cell chemistry is finding 
wide acceptance for energy storage on-board hybrid electric 
vehicles (HEVs) and electric vehicles (EVs), due to its high 
intrinsic safety, fast charging, and long cycle life. However, 
three main challenges need to be addressed for the accurate 
estimation of their state of charge (SOC) at runtime: 

 Long voltage relaxation time to reach its open circuit 
voltage (OCV) after a current pulse 

 Time-, temperature- and SOC-dependent hysteresis 

 Very flat OCV-SOC curve for most of the SOC range 

In view of these problems, traditional SOC estimation 
techniques such as coulomb counting with error correction 
using the SOC-OCV correlation curve are not suitable for this 
chemistry.  

This work addressed these challenges with a novel 
combination of the extended Kalman filter (EKF) algorithm, a 
two-RC-block equivalent circuit and the traditional coulomb 
counting method. The simplified implementation of the EKF 
algorithm offers a computationally efficient option for runtime 
SOC evaluation on-board vehicles. The SOC estimation was 
validated with experimental data of a current profile 
contaminated with pseudo-random noise and with an offset in 
the initial condition. The model rapidly converged to within 
4% of the true SOC even with imposed errors of 40% to initial 
SOC, 24% to current measurement and 6% to voltage 
measurement.  

INTRODUCTION 

The LFP olivine has emerged as one of the favored cathode 

materials for lithium ion batteries, especially for use as a 

rechargeable energy storage device (RESS) on-board HEVs 

and EVs, thanks to its high intrinsic safety [1], capacity for 

fast charging, and long cycle life [2]. Recent research and 

development advancements in this cell technology, especially 

the commercial launch of high-power LFP cells, have led to 

these cells matching the performance of the latest super-

capacitors over short time periods (up to 30 seconds). 

A metric of great importance for a rechargeable lithium 

battery pack is the accurate runtime evaluation of its SOC, 

which is defined as the percentage of the completely 

extractable charge capacity remaining in the battery. It is akin 

to the fuel gauge of a conventional vehicle. The SOC indicates 

the amount of electrical energy remaining in the battery pack 

that is available to do work. An accurate runtime estimate of 

the SOC is important for the battery application designers and 

the battery users. However, the charge capacity of a battery 

depends upon a number of factors, including average current, 

discharge time, voltage cut-off limit, electrolyte temperature, 

aging, and battery storage time [3]. 

Armed with the confidence that the battery SOC would be 

determined accurately, the designer is able to efficiently use 

available battery capacity and reduce over-engineering; 

enabling the use of smaller and lighter batteries. With an 

accurate indication of the battery SOC, the user ensures that 

the battery is not over-charged or under-discharged; and 

suffers less range anxiety. Overall, the battery lasts longer and 

provides better performance. An accurate SOC is also a very 

important input for the battery management system.  

Over the years, many techniques have been proposed for 

estimation of the battery SOC, and they generally depend 

upon the battery chemistry and the final application [4-9]. The 

most reliable test for establishing the SOC of a battery is to 

charge or discharge it completely, thus physically reaching 

100% or 0% SOC. This test is often adopted for an EV or a 

PHEV that is charged completely every evening, and allows 

the onboard SOC estimation algorithm to gain valuable 

feedback to recalibrate itself. For an HEV, which is never 

charged from the grid, ampere-hour counting remains the most 

popular technique. This technique (also called the 

bookkeeping system or coulomb counting) uses discrete 

integration of measured current over time as a direct indicator 

of SOC. Since this integration includes errors in current 

measurement and battery losses, the result needs to be 

periodically corrected. The OCV vs. SOC correlation curve is 

often used to provide points for recalibration. Other techniques 

such as direct measurement of the cell physical properties, 

including impedance or internal resistance, are not practical 

for LFP cells during runtime.  
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The coulomb counting technique with correction (after rest 

periods) using an OCV-SOC correlation curve is not practical 

for cells exhibiting hysteresis since the battery cell takes a 

long time to reach a steady-state OCV after a current pulse. 

The problem is aggravated for the LFP batteries that also have 

a very flat OCV-SOC correlation curve. Current SOC-

estimation models are unable to take care of all of these 

complications. A more robust algorithm is needed to estimate 

the instantaneous total charge available for work inside an 

LFP cell. The EKF technique, an adaptive estimator, has 

emerged as one of the practical solutions to enhance the 

accuracy of SOC determination, but is complicated and needs 

heavy computing resources on-board the vehicle [6-8].  

This paper presents a novel, simplified implementation of the 

extended Kalman filter technique that overcomes the practical 

challenges involved in runtime evaluation of the SOC of 

commercial high-power LFP cells. Its formulation demands a 

lower level of resources compared to traditional EKF 

implementations. 

CHALLENGES IN RUNTIME 

ESTIMATION OF SOC OF LFP CELLS 

Voltage relaxation time 

 

Figure 1: One pulse of the pulse discharge test  

(sign convention from Figure 1). 

The OCV-SOC correlation curve is often used to correct the 

current integral errors during runtime. This is usually done 

when the vehicle has been at rest (with its battery neither 

charging nor discharging) for a sufficiently long duration (30-

60 minutes), and when its battery voltage at the terminals is 

assumed to approximate the value of the OCV. This 

assumption is valid for most battery chemistries. The authors 

attempted to validate this assumption for the LFP cells using 

pulse discharge and charge tests. Under this test, the cell was 

first completely charged, rested for two hours, and then 

subjected to ten discharge pulses at 1C rate interspersed by 

one-hour rest phases until the cell was completely discharged. 

Subsequently, the cell was charged using ten charge pulses at 

1C rate interspersed by one-hour rest phases until the cell was 

completely charged. The cell was then allowed to rest for 13 

hours. A schematic of one pulse of the discharge test is shown 

in Figure 1. Figure 2 presents the cell current and terminal 

voltage measurements during the complete pulse discharge 

and charge experimental test. 

 

Figure 2: Input current and voltage response for a pulse 

charge and discharge test (inset in figure 3). 

 

 

Figure 3: Inset from figure 2 to highlight the long voltage 

stabilization time. 

The authors’ primary interest in the experiment was to validate 

the assumption that the voltage of the LFP cell relaxes to 

approximately reach its OCV (as shown in Figure 1) after a 

long rest of one hour. However, it was observed that after the 

complete pulse discharge and charge test (Figure 2), when the 

SOC had reached 100%, the voltage did not relax to its OCV 

even after 13 hours (Figure 3).  
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Hysteresis 

From the pulse discharge and charge experimental test (Figure 

2), the voltage at rest was plotted with respect to the SOC for 

different times of rest, to estimate the amount of hysteresis in 

the LFP cells. In fact, the hysteresis is correlated with the long 

voltage relaxation time, with the level of hysteresis decreasing 

with the rest period, as seen in Figure 4, due to lithium ion 

diffusion inside the cell. 

 

Figure 4: Hysteresis decreases with increasing rest time 

between pulses (legend in minutes) in the multiple-step test 

conducted on the LFP cell (20°C). Hysteresis with rest time 

beyond 60 minutes was excluded from this figure. 

This shows that hysteresis depended on time. A second pulse 

discharge and charge experimental test at a lower temperature 

of 0°C showed that both the voltage relaxation time was larger 

and the hysteresis was more pronounced. 

Flat OCV-SOC relationship 

The pulse discharge and charge tests also produced the OCV-

SOC correlation curve for the LFP cell as shown in Figure 5. 

The curve was nearly flat for SOC levels between 40% and 

60%. Moreover, for the entire length of the SOC window from 

20% to 80%, the voltage gradient was approximately 0.1V. 

Even a small error in voltage measurement would have led to 

a very inaccurate SOC estimate. These observations 

highlighted the challenge of performing corrections to the 

coulomb counting technique using the OCV-SOC correlation. 

 

Figure 5: Flat OCV-SOC curve for the LFP cell (20°C) 

(plotted after a 3-hour rest period). 

PROPOSED MODEL 

 

Figure 6: Equivalent circuit model of the battery cell  

(It is positive during charge). 

To address the challenges posed by the LFP cells as discussed 

in the section above, the authors proposed the equivalent 

circuit model shown in Figure 6, based on models already 

available in the literature [2, 8-12]. In this model, CQ was the 

internal capacity of the battery cell (CQ=3600Cnom), Rsd was a 

resistance representing the cell self-discharge; VSOC was a 

voltage ranging between 0 and 1 that models the SOC of the 

cell, while VOC was the OCV of the cell, a function of the cell 

SOC. The transient behavior of the cell was captured using 

three resistors (R0, R1 and R2) and two capacitors (C1 and C2). 

The RC component with the largest time constant accounted 

for the hysteresis. The system’s behavior was described by the 

following equations: 
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Although the cell SOC was dependent upon the internal cell 

temperature and the average discharge current rate, this paper 

presents a simplified approach using an isothermal algorithm 

because its main purpose is to present the EKF-based 

methodology. Temperature variation effects will be the subject 

of a future publication. 

Experimental pulse discharge and charge tests were conducted 

on a 4.4 Ah commercial high-power LFP cell at 20°C to 

estimate the model parameters using a program built with 

MATLAB, Simulink, and Simscape. Under this procedure, the 

LFP cell was first completely charged and then subjected to 

ten 1C discharge pulses interspersed by one-hour rest phases 

until the cell was completely discharged. Then the cell was 

charged using ten 1C charge pulses interspersed by one-hour 

rest phases until the cell was completely charged.  

EXTENDED KALMAN FILTER 

APPROACH 

The Kalman filter is the optimum state estimator for a linear 

system. For nonlinear systems (in the present case the 

nonlinearity is given by the OCV-SOC correlation) a 

linearization process takes place at each time step to 

approximate the nonlinear system as a linear time varying 

(LTV) system. This technique is often referred to as extended 

Kalman filter (EKF) [6-8]. It inherits the ability of the Kalman 

filter to estimate the best possible values of the inputs 

containing unmeasured noise. The Appendix describes the 

basics of EKF in the context of this work. 

The EKF was implemented using the equivalent circuit model 

of Figure 6 with the Simulink model topology shown in Figure 

7 to evaluate the SOC at runtime. The voltage and current 

measured at the battery terminals constituted the input to the 

SOC evaluation system. 

The model was comprised of three main subsystems: 

1. Lithium Cell (1R+2RC without Voc): This was the 

dynamic LTV system simulating the battery transient behavior 

with parameters that were functions of SOC. These equations 

were implemented in Simscape with the equivalent circuit of 

Figure 8. Here, the input port Ibatt provided the 

experimentally measured current.  The input port SOC 

provided the corrected estimate of SOC.  The output VRC was 

the calculated potential drop across the branches R0, R1-C1, 

and R2-C2 from the equivalent circuit in Figure 6.  The 

implementation of this subsystem using Simscape is shown in 

Figure 8.  

 

Figure 7: Schematic of the model system architecture in Simulink and Simscape. 

 



 

`  

Figure 8: Equivalent circuit model for an LFP cell with two parallel RC branches and a series resistor.

2. Extended Kalman SOC Estimator: This block 

implemented the EKF. The input port Ibatt provided the 

experimentally measured current. The input port VOC 

provided the estimate of true open-circuit voltage. The true 

open-circuit voltage VOC was calculated as the difference 

between measured terminal voltage (Vt) and VRC, the 

simulated voltage across the equivalent circuit’s R-C network 

shown in Figure 8. The output port SOC was an output of the 

EKF algorithm. The state equations of the EKF are shown in 

Equation 2: 
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where f(xk) was a non-linear VSOC-VOC correlation function to 

handle the hysteresis. The actual OCV followed both the 

major hysteresis loops (0 to 100% SOC during charging and 

discharging) and the minor loops (small charge-discharge 

cycles during a larger overall charge or discharge). This non-

linear behavior could not be accurately modeled using linear 

elements such as RC blocks; hence the hysteresis was modeled 

using equation 3: 
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where VOCch(VSOC) and VOCdisch(VSOC) were the OCV-SOC 

relationships for charge and discharge respectively on the 

major loops, and k, the hysteresis factor, was the parameter 

regulating the transition rate between them. The value of k was 

obtained by inspection by minimizing the difference between 

the experimental and simulated VOC vs. SOC curves. 

VOC(VSOC) is the instantaneous value of the OCV on the minor 

loop. Other variables are defined in the Abbreviations section. 

3. Coulomb Counter + EKF Correction: This block 

implemented the integration of measured current Ibatt to 

continuously track changes to the battery SOC. The coulomb 

counter was recalibrated with the EKF SOC estimate only 

every ten minutes, to reduce the computing requirements.  The 

output SOC_Actual was the accurately measured SOC used 

for validation. 

MODEL SIMULATION AND 

VALIDATION 

For validating the model, the battery of a hybrid electric 

vehicle was simulated running a modified NEDC cycle 

(Figure 9) in an urban environment (the maximum speed of 



 

the vehicle was limited to 80 km/h instead of 100 km/h in the 

extra-urban part of the cycle). The battery current and voltage 

were scaled down to the cell level. This modified NEDC 

profile was then experimentally applied across the LFP cell.  

 

Figure 9: Modified New European Drive Cycle and its 

simulated current profile (scaled to cell level) in a hybrid 

vehicle. 

The assessment of the EKF algorithm required a comparison 

of the predicted SOC with the “real” SOC measured 

accurately in laboratory conditions. This was accomplished 

via coulomb counting with cell current measured using lab-

grade instruments, with the following accuracy: 

Maximum voltage error: ±0.035% of full scale  

Maximum current error: ±0.06% of full scale  

In addition, probing current and voltage directly at the cell 

terminals further helped keep experimental errors to a 

minimum.  

 

For the EKF algorithm to be of practical use, it should be 

implementable with relatively inexpensive measurement 

hardware. In view of this requirement, the algorithm was 

contaminated with artificially added offset and proportional 

errors to both voltage and current measurements, to mimic the 

output of standard, relatively inexpensive sensors, as follows:
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(4) 

In addition, the initial SOC for the EKF-based model was set 

at 20% higher than the actual experimental SOC. Thus, 

although the initial cell SOC was 50% (cell charged 

completely, and then discharged at 1C current for 30 minutes), 

the EKF-based estimator was provided with an initial 

estimated SOC of 70% to verify model convergence to the 

actual value within a reasonable period of time.  

Figure 10 shows that the SOC estimated by the proposed 

model converged to the true value of the SOC (measured 

experimentally) in approximately three hours using a sequence 

of NEDC cycle repetitions. It is also worth mentioning that 

since the EKF-based algorithm always assumed noise in the 

system, the estimated SOC would approach but never exactly 

match the true SOC value. 

 

Figure 10: The SOC predicted by the model (green) 

converged to the true SOC value (blue) in approximately 

three hours from an artificially erroneous initial condition, 

and offset and proportional errors in current and voltage. 

In a second validation example, the model was simulated with 

five different input currents with different levels of artificially 

added error and with the resulting discrepancy between the 

simulated and true SOC of less than 4%, shown in Figure 11. 

 

 

Figure 11: Percentage error in runtime SOC estimation by 

EKF-based model for different levels of initial error in input 

current (no voltage error). 

Based on this result, the authors concluded that the EKF-based 

SOC evaluator successfully overcame the challenges posed by 

the LFP cell chemistry. 
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SUMMARY/CONCLUSIONS 

This work presented a simplified EKF-based algorithm that 

used a combination of voltage and current measurements with 

a dynamic model of battery dynamics. A simpler SOC-OCV 

correlation was unsuitable for LFP cells because of long 

voltage relaxation time and hysteresis, combined with a very 

flat SOC-OCV relationship. The EKF-based algorithm 

proposed in this work predicted SOC within 4% of the value 

measured using very accurate lab-grade equipment, even in 

the presence of artificially added errors to mimic commercial-

grade sensor measurements.   

The coulomb counting was corrected every ten minutes 

(instead of after every measurement like in state-of-the-art 

EKF procedures) with the SOC value predicted by the 

simplified EKF algorithm.  This reduced the computing 

requirements that would be required for real-time SOC 

evaluation onboard a vehicle.   
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ABBREVIATIONS 

1C A constant current rate of 

discharge or charge in 

amperes equal to the 

battery’s nominal capacity 

in ampere-hours.  

Cn Capacitor n 

CQ Capacitor emulating the 

cell charge capacity 

EKF Extended Kalman filter 

It Current measured at cell 

terminals (A) 

k Hysteresis factor 

(k=0.1384, obtained by 

minimizing the difference 

between the experimental 

and simulated VOC vs. 

SOC) 

LFP Lithium iron phosphate 

LTV Linear time varying system 

OCV Open circuit voltage (V) 

Rn Resistor n 

Rsd Resistor emulating the cell 

self-discharge 

RESS Rechargeable energy 

storage system 

SOC State of charge (0 to 1) 

VOC Open circuit voltage (V) 

     
 Open circuit voltage during 

charging (V) 

        
 Open circuit voltage during 

discharging (V) 

VSOC Voltage equal to the SOC 

of the cell (0 to 1V)  

Vt Voltage measured at cell 

terminals (V) 

  



 

APPENDIX: KALMAN FILTER AND EXTENDED KALMAN FILTER 
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Figure 1: Block diagram of the Kalman filter in state-space form. 

The general framework of the Kalman filter consists of two equations: 

                  
(1) 

                
(2) 

Here, xk is the system state vector at time index k, and equation 1 is called the state equation or process equation as it captures the 

system dynamics. The input to the system is uk which is known or can be measured. However, the measurement could result in errors, 

assumed to be stochastic process noise, wk, which cannot be measured and affects the state of the system. 

Equation 2 models the output of the system yk, in terms of the input, the state vector and the noise in the measurement of the output, vk. 

This equation is also called the measurement equation or the output equation. 

Both wk and vk are assumed to be mutually uncorrelated white Gaussian random processes with zero mean and covariance matrices of 

known values. The equations are initialized by setting the following at k=0 

 ̂ 
        and    ∑   

 ̃    (    ̂ 
 )(    ̂ 

 )   
 (3) 

where, the superscript T refers to the transpose of the matrix. For k=1,2,3… the following computations are made: 

State estimate time update:   ̂ 
       ̂   

                     (4) 

Error covariance time update:  ∑   
 ̃      ∑     

   
 ̃    ∑       (5) 

Kalman gain matrix:      ∑   
  

 ̃     ∑   
  

 ̃   ∑   
  

      (6) 

State estimate measurement update:  ̂ 
   ̂ 

           ̂ 
             (7) 

Error covariance measurement update: ∑   
 ̃  (      ) ∑

 
 ̃         (8) 

The linear discrete-time Kalman filter computes two estimates – an a priori estimate,  ̂ 
 , based on the prior state estimate computed 

in the previous iteration,  ̂   
 . This estimate is computed before any system measurements are made and is denoted with a superscript 

“”. After the system measurements of the input uk and output yk , the second estimate  ̂ 
  is more accurate and is denoted with a 

superscript “+”. Thus, at every measurement interval, the Kalman filter first predicts the value of the present state, system output and 

error covariance: and then corrects the state estimate and error covariance. The prediction step is called the time update while the 



 

correction step is also known as the measurement update. The error difference between the predicted output and the actual output 

represents the new information and is called the innovation process.  

The Kalman filter then optimizes the minimum squared error estimate  ̂  of the true state xk for the entire set of observed data {u0, 

u1…uk} and {y0, y1…yk} by solving: 

 ̂          (    ̂) (    ̂)  for all inputs         (9) 

Since the Kalman filter can only be used on linear systems, for nonlinear systems, the extended Kalman filter (EKF) is used by using a 

linearization process. The nonlinear system is depicted as: 

      (     )     
(10) 

    (     )     
(11) 

where, wk and vk are white Gaussian stochastic processes with zero mean and covariance matrices w and v respectively. The 

functions f(xk, uk) and g(xk, uk) are linearized using a Taylor-series expansion, assuming that they are differentiable at all operating 

points. 

Here, the elements of the state vector matrix are defined as: 
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The nonlinear state space model can be expressed as: 

      ̂     ( ̂    )   ̂  ̂     
 (13) 

    ̂     ( ̂    )   ̂  ̂     
(14) 

The terms  ( ̂    )   ̂  ̂  and  ( ̂    )   ̂  ̂  replace the terms      and      in the standard Kalman filter. The initialisation 

of the equations at k=0 are made as follows: 

 ̂ 
          and     ∑   

 ̃    (    ̂ 
 )(    ̂ 
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where, again the superscript T indicates the transpose of the matrix. For k=1,2,3… the following computations are made as follows: 

State estimate time update:   ̂ 
   ( ̂   

      )           (16) 

Error covariance time update: ∑   
 ̃   ̂   ∑  ̂   

   
 ̃    ∑          (17) 

Kalman gain matrix:      ∑  ̂ 
  

 ̃    ̂ ∑  ̂ 
  

 ̃   ∑   
  

         (18) 

State estimate measurement update:  ̂ 
   ̂ 

         ( ̂ 
    )           (19) 

Error covariance measurement update:∑   
 ̃  (     ̂ ) ∑

 
 ̃             (20) 

The above set of equations can be used to estimate the inner state vector, such as the SOC. The drawbacks of this technique are that it 

is computationally intensive and needs a good initial estimate. 

 


