主要内容

基于GPU编码器的车道检测优化

此示例显示如何从深度学习网络生成CUDA®代码,由A表示SeriesNetwork对象。在本例中,序列网络是一个卷积神经网络,可以从图像中检测和输出车道标记的边界。

先决条件

  • CUDA支持NVIDIA®GPU。

  • NVIDIA CUDA工具包和驱动程序。

  • 英伟达cuDNN图书馆。

  • 用于视频读取和图像显示操作的OpenCV库。

  • 编译器和库的环境变量。有关编译器和库支持的版本的信息,请参见金宝app第三方硬件.有关设置环境变量,请参见设置前提产品下载188bet金宝搏

验证GPU环境

使用coder.checkGpuInstall函数来验证运行此示例所需的编译器和库是否正确设置。

envCfg = coder.gpuEnvConfig (“主机”);envcfg.deeplibtarget =.“cudnn”;envCfg。DeepCodegen = 1;envCfg。安静= 1;coder.checkGpuInstall (envCfg);

获取售价串行网络

[laneNet, coeffMeans, coeffStds] = getLaneDetectionNetworkGPU();

该网络以图像为输入输出两个车道边界,分别对应自我车辆的左右车道。每条车道边界用抛物方程表示: y 一个 x 2 + b x + c ,其中y为横向偏移量,x为到车辆的纵向距离。网络输出每个车道的三个参数a、b和c。网络架构类似于AlexNet除了最后几层由较小的完全连接的层和回归输出层替换。要查看网络架构,请使用analyzeNetwork功能。

analyzeNetwork (laneNet)

检查主要入口点功能

类型检测_lane.m.
从网络输出中,计算图像中左右车道点的坐标%。摄像机坐标由caltech单摄像机模型描述。一个持久对象mynet被用来加载序列网络对象。在第一次调用该函数时,将构造持久对象并设置%。当该函数随后被调用时,相同的对象将被重用%以调用预测输入,从而避免重新构建和%重新加载网络对象。持久lanenet;如果是空的(lanenet) lanenet = code . loaddeeplearningnetwork (' lanenet . loaddeeplearningnetwork ')席”、“lanenet”);end lanecoeffsNetworkOutput = lanenet。Predict (permute(frame, [2 1 3]));params = lanecoeffsNetworkOutput .* lanecoeffstd + laneCoeffMeans;isRightLaneFound = abs(params(6)) > 0.5; %c should be more than 0.5 for it to be a right lane isLeftLaneFound = abs(params(3)) > 0.5; vehicleXPoints = 3:30; %meters, ahead of the sensor ltPts = coder.nullcopy(zeros(28,2,'single')); rtPts = coder.nullcopy(zeros(28,2,'single')); if isRightLaneFound && isLeftLaneFound rtBoundary = params(4:6); rt_y = computeBoundaryModel(rtBoundary, vehicleXPoints); ltBoundary = params(1:3); lt_y = computeBoundaryModel(ltBoundary, vehicleXPoints); % Visualize lane boundaries of the ego vehicle tform = get_tformToImage; % map vehicle to image coordinates ltPts = tform.transformPointsInverse([vehicleXPoints', lt_y']); rtPts = tform.transformPointsInverse([vehicleXPoints', rt_y']); laneFound = true; else laneFound = false; end end function yWorld = computeBoundaryModel(model, xWorld) yWorld = polyval(model, xWorld); end function tform = get_tformToImage % Compute extrinsics based on camera setup yaw = 0; pitch = 14; % pitch of the camera in degrees roll = 0; translation = translationVector(yaw, pitch, roll); rotation = rotationMatrix(yaw, pitch, roll); % Construct a camera matrix focalLength = [309.4362, 344.2161]; principalPoint = [318.9034, 257.5352]; Skew = 0; camMatrix = [rotation; translation] * intrinsicMatrix(focalLength, ... Skew, principalPoint); % Turn camMatrix into 2-D homography tform2D = [camMatrix(1,:); camMatrix(2,:); camMatrix(4,:)]; % drop Z tform = projective2d(tform2D); tform = tform.invert(); end function translation = translationVector(yaw, pitch, roll) SensorLocation = [0 0]; Height = 2.1798; % mounting height in meters from the ground rotationMatrix = (... rotZ(yaw)*... % last rotation rotX(90-pitch)*... rotZ(roll)... % first rotation ); % Adjust for the SensorLocation by adding a translation sl = SensorLocation; translationInWorldUnits = [sl(2), sl(1), Height]; translation = translationInWorldUnits*rotationMatrix; end %------------------------------------------------------------------ % Rotation around X-axis function R = rotX(a) a = deg2rad(a); R = [... 1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]; end %------------------------------------------------------------------ % Rotation around Y-axis function R = rotY(a) a = deg2rad(a); R = [... cos(a) 0 sin(a); 0 1 0; -sin(a) 0 cos(a)]; end %------------------------------------------------------------------ % Rotation around Z-axis function R = rotZ(a) a = deg2rad(a); R = [... cos(a) -sin(a) 0; sin(a) cos(a) 0; 0 0 1]; end %------------------------------------------------------------------ % Given the Yaw, Pitch, and Roll, determine the appropriate Euler angles % and the sequence in which they are applied to align the camera's % coordinate system with the vehicle coordinate system. The resulting % matrix is a Rotation matrix that together with the Translation vector % defines the extrinsic parameters of the camera. function rotation = rotationMatrix(yaw, pitch, roll) rotation = (... rotY(180)*... % last rotation: point Z up rotZ(-90)*... % X-Y swap rotZ(yaw)*... % point the camera forward rotX(90-pitch)*... % "un-pitch" rotZ(roll)... % 1st rotation: "un-roll" ); end function intrinsicMat = intrinsicMatrix(FocalLength, Skew, PrincipalPoint) intrinsicMat = ... [FocalLength(1) , 0 , 0; ... Skew , FocalLength(2) , 0; ... PrincipalPoint(1), PrincipalPoint(2), 1]; end

为网络和后处理代码生成代码

网络计算参数a, b和c,这些参数描述了左右车道边界的抛物线方程。

根据这些参数,计算车道位置对应的x和y坐标。坐标必须映射到图像坐标。这个函数检测_lane.m.执行所有这些计算。为图形处理器创建图形处理器代码配置对象,为该函数生成CUDA代码'lib'目标并将目标语言设置为C ++。使用编码器。DeepLearningConfig函数创建CUDNN.的深度学习配置对象,并将其分配给DeepLearningConfig图形处理器代码配置对象的属性。运行codegen命令。

cfg = coder.gpuConfig ('lib');cfg.deeplearningconfig = coder.deeplearningconfig(“cudnn”);cfg。GenerateReport = true;cfg。TargetLang =“c++”;输入= {(227227 3“单一”),那些(1,6,“双”),那些(1,6,“双”)};codegenarg游戏输入配置cfgdetect_lane
代码成功成功:查看报告

生成的代码描述

这个系列网络是作为一个包含23个层类数组的c++类生成的。

班级c_lanenet公众:int32_TbatchSize;int32_TnumLayers;real32_T* inputData;real32_T * outputData;MWCNNLayer*层[23];公众:c_lanenet(无效);无效设置(空白);无效预测(空白);无效的清理(无效);~ c_lanenet(无效);};

设置()类的方法设置句柄并为每个层对象分配内存。的预测()方法对网络中的23层中的每一层调用预测。

CNN_LANENET_CONV * _W和CNN_LANENET_CONV * _B文件是网络中卷积层的二进制权重和偏置文件。CNN_LANENET_FC * _W和CNN_LANENET_FC * _B文件是网络中完全连接图层的二进制权重和偏置文件。

codegendir = fullfile (“codegen”'lib''detect_lane');dir (codegendir)
.MWReLULayer。o . .MWReLULayerImpl。cu .gitignore MWReLULayerImpl.hpp DeepLearningNetwork.cu MWReLULayerImpl.o DeepLearningNetwork.h MWTargetNetworkImpl.cu DeepLearningNetwork.o MWTargetNetworkImpl.hpp MWCNNLayer.cpp MWTargetNetworkImpl.o MWCNNLayer.hpp MWTensor.hpp MWCNNLayer.o MWTensorBase.cpp MWCNNLayerImpl.cu MWTensorBase.hpp MWCNNLayerImpl.hpp MWTensorBase.o MWCNNLayerImpl.o _clang-format MWCUSOLVERUtils.cpp buildInfo.mat MWCUSOLVERUtils.hpp cnn_lanenet0_0_conv1_b.bin MWCUSOLVERUtils.o cnn_lanenet0_0_conv1_w.bin MWCudaDimUtility.hpp cnn_lanenet0_0_conv2_b.bin MWCustomLayerForCuDNN.cpp cnn_lanenet0_0_conv2_w.bin MWCustomLayerForCuDNN.hpp cnn_lanenet0_0_conv3_b.bin MWCustomLayerForCuDNN.o cnn_lanenet0_0_conv3_w.bin MWElementwiseAffineLayer.cpp cnn_lanenet0_0_conv4_b.bin MWElementwiseAffineLayer.hpp cnn_lanenet0_0_conv4_w.bin MWElementwiseAffineLayer.o cnn_lanenet0_0_conv5_b.bin MWElementwiseAffineLayerImpl.cu cnn_lanenet0_0_conv5_w.bin MWElementwiseAffineLayerImpl.hpp cnn_lanenet0_0_data_offset.bin MWElementwiseAffineLayerImpl.o cnn_lanenet0_0_data_scale.bin MWElementwiseAffineLayerImplKernel.cu cnn_lanenet0_0_fc6_b.bin MWElementwiseAffineLayerImplKernel.o cnn_lanenet0_0_fc6_w.bin MWFCLayer.cpp cnn_lanenet0_0_fcLane1_b.bin MWFCLayer.hpp cnn_lanenet0_0_fcLane1_w.bin MWFCLayer.o cnn_lanenet0_0_fcLane2_b.bin MWFCLayerImpl.cu cnn_lanenet0_0_fcLane2_w.bin MWFCLayerImpl.hpp cnn_lanenet0_0_responseNames.txt MWFCLayerImpl.o codeInfo.mat MWFusedConvReLULayer.cpp codedescriptor.dmr MWFusedConvReLULayer.hpp compileInfo.mat MWFusedConvReLULayer.o defines.txt MWFusedConvReLULayerImpl.cu detect_lane.a MWFusedConvReLULayerImpl.hpp detect_lane.cu MWFusedConvReLULayerImpl.o detect_lane.h MWInputLayer.cpp detect_lane.o MWInputLayer.hpp detect_lane_data.cu MWInputLayer.o detect_lane_data.h MWInputLayerImpl.hpp detect_lane_data.o MWKernelHeaders.hpp detect_lane_initialize.cu MWMaxPoolingLayer.cpp detect_lane_initialize.h MWMaxPoolingLayer.hpp detect_lane_initialize.o MWMaxPoolingLayer.o detect_lane_internal_types.h MWMaxPoolingLayerImpl.cu detect_lane_rtw.mk MWMaxPoolingLayerImpl.hpp detect_lane_terminate.cu MWMaxPoolingLayerImpl.o detect_lane_terminate.h MWNormLayer.cpp detect_lane_terminate.o MWNormLayer.hpp detect_lane_types.h MWNormLayer.o examples MWNormLayerImpl.cu gpu_codegen_info.mat MWNormLayerImpl.hpp html MWNormLayerImpl.o interface MWOutputLayer.cpp mean.bin MWOutputLayer.hpp predict.cu MWOutputLayer.o predict.h MWOutputLayerImpl.cu predict.o MWOutputLayerImpl.hpp rtw_proj.tmw MWOutputLayerImpl.o rtwtypes.h MWReLULayer.cpp MWReLULayer.hpp

为后期处理输出生成附加文件

从经过培训的网络中导出平均值和标准值,以便在执行过程中使用。

codegendir = fullfile(pwd,“codegen”'lib''detect_lane');fid = fopen (fullfile (codegendir“mean.bin”),' w ');A = [coeffMeans coeffstd];写入文件(fid,,“双”);文件关闭(fid);

主文件

使用主文件编译网络代码。主文件使用OpenCVVideoCapture方法从输入的视频中读取帧。每一帧都被处理和分类,直到没有更多的帧被读取。在显示每一帧的输出之前,输出将使用detect_lane函数中生成detect_lane.cu

类型main_lanenet.cu
/ *版权所有2016 MathWorks,Inc. * / #include  #include  #include  #include  #include #include  #include  #include  #include  #include  #include“detect_lane.h”使用命名空间简历;void ReadData(Float *输入,Mat&Orig,Mat&IM){尺寸尺寸(227,227);调整大小(orig,Im,size,0,0,Inter_linear);for(int j = 0; j <227 * 227; j ++){// bgr到rgb输入[2 * 227 * 227 + j] =(float)(im.data [j * 3 + 0]);输入[1 * 227 * 227 + j] =(浮动)(im.data [j * 3 + 1]);输入[0 * 227 * 227 + j] =(浮动)(im.data [j * 3 + 2]);void addlane(float pts [28] [2],mat&im,nampts){std :: vector  iArirray;for(int k = 0; k > orig; if (orig.empty()) break; readData(inputBuffer, orig, im); writeData(inputBuffer, orig, 6, means, stds); cudaEventRecord(stop); cudaEventSynchronize(stop); char strbuf[50]; float milliseconds = -1.0; cudaEventElapsedTime(&milliseconds, start, stop); fps = fps*.9+1000.0/milliseconds*.1; sprintf (strbuf, "%.2f FPS", fps); putText(orig, strbuf, Point(200,30), FONT_HERSHEY_DUPLEX, 1, CV_RGB(0,0,0), 2); imshow("Lane detection demo", orig); if( waitKey(50)%256 == 27 ) break; // stop capturing by pressing ESC */ } destroyWindow("Lane detection demo"); free(inputBuffer); free(outputBuffer); return 0; }

下载示例视频

如果~ (”。/ caltech_cordova1.avi '“文件”) url =“//www.tatmou.com/金宝appsupportfiles/gpucoder/media/caltech_cordova1.avi”;websave (“caltech_cordova1.avi”url);结尾

构建可执行

如果ispc setenv (“MATLAB_ROOT”, matlabroot);vcvarsall = mex.getCompilerConfigurations (“c++”).details.commandlineshell;setenv (“VCVARSALL”, vcvarsall);系统(“make_win_lane_detection.bat”);cd (codegendir);系统(“lanenet.exe  ..\..\..\ caltech_cordova1.avi”);其他的setenv (“MATLAB_ROOT”, matlabroot);系统(“让- f Makefile_lane_detection.mk”);cd (codegendir);系统('./ lanenet  ../../../ caltech_cordova1.avi”);结尾

输入截图

输出屏幕截图

也可以看看

功能

对象

相关的话题