DDS Blockset Pilot Support Package (PSP)
User Guide

ISSUE DATE: 31 July 2020

MathWorks

Application Engineering Group

Contents

I Product DESCIIPLIONuviiieiiiiiee ettt ettt e it e e et e e e et e e e ennaeeeeennes 5
Lol ACTOMYIMIS. ceeiiitieiiiiiiiteeee e e e ettt e e e e e ettt e e e e e e s sttt b e e e eeeeessananbbbaeeaeeeesannnes 5
|8 D 1S 1113 T0) 4 TSR RPRPRRP 5
L.3 REIOTEINCES. . .uiiieiiiiiie ettt et e e et e e e ettt e e e eebbe e e e enbbeeeeennees 5
1.4 Contact INfOrmationooocuiiiiiiiiiiiee et e e e e e e e e 5
2 DOCUMENE HISTOTY...eiiiiiiiiieeiiiiiee et ee e ettt ettt e ettt e e e ettt eeeesiabeeeessbaeeeeessaaeaeenes 6
3 SyStem REQUITEIMENLS.cceiiiiiiieiiiiiee ettt e eeiiee e e et ee e e et e e e sbeeeeeesbbeeeeearaeeeesnnnes 6
R 0 0 B T | 111 (T AR USSR PUURURPPI 6
312 OPHONAL ... e e e et e e e naaeee s 7
4 Installation and SETUP........ccooiiiiiiiiiiiie et e e e e e e e e baaeaeenes 7
O B 01 1 B 110 U PRSP 7
4.1.1 Install RTT Connext DDS ..ottt 7
4.1.2 Install DDS BIOCKSEL..........uvviieiiiiiieeeiiiee ettt e 8
4.2 Environment Variablescccoiiiiiiiiiiiiiiiiiie et 11
421 WINAOWS .eeiiniiiiiieeiiiieeeeeiteee ettt e e ettt e e e et e e e e s ibbeeeeesbbeeeeesbaeeeeesseaeesanes 11
422 LINUX ttttiieeeiiiieeeeeiieee e ettt ee e e sttt e e e st eeeesebaeeeeenbbeaeeansbaeeeesbbaeeeennseaeaeanns 13
423 MACOS ...ttt ettt e 13
4.3 Alternate APProachc.eeiiiiiiiiiiiiiiiee e 14
4.4 UNINSEALL ..ottt e et e e e ba e e e eabbaeaeeaes 15
5 GettING StAITEAeeieeiiiiieeeiiiiee ettt ettt e ettt e e et e e e ettt e e e e ba e e e e e nbaeeeeebbaeaeenes 17
5.1 BasiC MO ...t 17
5.2 Complete MOdel......coouiiiiiiiiiiiieeeiiee e e 18
52.1 Create a SIMUlink BUs........cccciiiiiiiiiiiiiiiiiccee e 19
5.2.2 Create a Simulink Model...........ccoooiiiiiiiiiiiiee e 19
5.3 €O GONETATION. ...cceeiuiiiireeiiiiieeeeiieee e ettt e e eeiteeeeestbeeeeesbbeeeeesnnbaeesennnseeeeennnees 24
53.1 RTIDDS Target BIOCK.......ccccuiiiiiiiiiiieeiiieeeeieee e 25

54 RTIDDS Connext TOOIDOXcceriuuiiieiiiiiiiieeiiiiie ettt 26

0 EXAMPIES...oiiiiiiiiiiieeee e e et e e et e e e e baaeaeenes 26

6.1 SIMUlink/RTT Shapes......cccooiiiiiiiiiiiiieeiee e 26
6.1.1 Start the RTI DDS Connext Shapes Demo...........ccceevviiieeniiiiieeniiiieeeeee, 27
6.1.2 Simulink rtwdemo RTIShapes Model.............cccvviiviiiiiiiniiiiiieiiieeee 28

6.2 MATLAB/RTISRAPES ...ceeeiiiiiiieeiiiiee ettt et e e e eaaee e e 29

7 BlOCKSEt RETETEINCEeeeiiiiiiiiieeiiiie et e e aaee e e 31

Tl DS TyPCS.cieiiiiiiiieieeee ettt e e e ettt e e e e e ettt e e e e e e e nbbtraeeeeeeeennnes 31
7.1.1 Representing DDS Types in Simulinkccccoeeiviiiiiiiniiiiiieiieeee, 32
7.1.2 Importing IDL into SIMulink.............ccceeoiiiiiiiiiiiiieiiieeeeeee e 33
7.1.3 Exporting Buses to IDL.........c.coiiiiiiiiiiiiiiieeeeiieee e 34
7.1.4 Representing DDS Types in MATLABcccooiiiiiiiiiiiiieeiee e 34
7.1.5 Importing IDL into MATLAB ...ttt 35
T1.6 KEY FICLAS...uiiiiiiiiiiiieeiiiee et 36
7.1.6.1 SIMULNK ..eeiiiiiiie et 36
T.01.6.2 MATLAB ..ottt 37

7.1.7 IDL “Module” KeyWOrd..........cooeeiiiiiieeiiiiieeeiieee et 38

7.1.7.1 Simulink
7.1.7.2 MATLAB
7.1.7.3 Disabling Module Prefix
7.1.8 IDL Sequences
7.1.8.1 Simulink
7.1.8.2
7.1.9
7.1.9.1 Simulink
7.1.9.2 MATLAB
7.1.10 Simulink Data Dictionary
7.2 Simulink Blocks
7.2.1 Return codes
7.2.2 DDS Target
7.2.3 Domain Participant
7.2.4 Publisher/Subscriber
7.2.5 Data Writer
7.2.6 Data Reader
7.2.7 DDSTime
7.2.8 XML Application Creation Read
7.2.9 XML App Creation Write
7.3 Simulating with Accelerator Modes
7.3.1 Accelerator Mode
7.3.2 Rapid Accelerator Mode
7.4 Code Generation from Simulink Models
7.4.1 Quality of Service
7.4.2 DDS Type System
7.5 XML Application Creation
7.5.1 Code Generation
8 MATLAB Toolbox
8.1 DDS Functions
8.2 DDS Classes
8.3 MATLAB Performance
9 Topic Content Filtering
9.1 Simulink
9.2 MATLAB
10 Quality of Service (QoS)
11 Limitations
11.1 Simulink
11.2 MATLAB
11.3 IDL Import
11.4 IDL Export
12 MacOS Support
12.1 Background
13 Updating to a New Version of DDS RTI Connext
14 Using the DDS Toolbox with MATLAB Compiler
15 Using the DDS Blockset with Raspberry Pi

1 Product Description

The DDS Blockset Pilot Support Package (PSP) feature allows Simulink® and
MATLAB® models to interact with other simulation components via the OMG Data
Distribution Service (DDS) publish/subscribe interface. DDS is the first open
international middleware standard directly addressing publish-subscribe communications
for real-time and embedded systems.

The DDS Simulink blocks and MATLAB classes use RTI Connext DDS, the market
leading implementation of DDS. RTI provides the messaging backbone for the world's
most demanding real-time systems. RTI Connext™ enables applications — running on the
smallest devices and the largest enterprise servers — to seamlessly share information and
work together as one.

Blocks can be added to a Simulink model that will allow the model to interact with other
DDS participants during a simulation (via RTI Connext DDS). C/C++ code that is
generated from a Simulink model will conform to the RTI Connext DDS API. The
generated code can then be compiled and executed on any platform supported by RTI
Connext DDS or RTI Connext Micro DDS.

Similarly, instances of MATLAB RTI DDS classes can be created in MATLAB to
interact with other DDS participants during a simulation (via RTI Connext DDS). C
code generation is currently not supported for the MATLAB RTI DDS classes.

1.1 Acronyms
API — Application Programming Interface

DDS — Data Distribution System

PSP — Pilot Support Package. Customized updates to MATLAB and Simulink software
that is not yet available in the officially released version of MATLAB and Simulink.
TLC — Target Language Compiler

1.2 Definitions

1.3 References

1.4 Contact Information
e Mark McBroom — MathWorks. mark.mcbroom@mathworks.com

http://portals.omg.org/dds/
http://portals.omg.org/dds/
http://portals.omg.org/dds/
http://www.rti.com/products/index.html
mailto:mark.mcbroom@mathworks.com

2 Document History

Date Version | Author | Description

20 Sept 2012 | 1.0 MDM Initial version

18 Nov 2012 | 1.1 RL RTI edits

30 Nov 2012 | 1.2 MDM Add MATLAB Toolbox content

11 Mar 2013 | 1.3 MDM Add description for block return codes

15 Apr2013 | 1.4 MDM Add Linux" install directions

19 Nov 2013 | 1.5 MDM Micro DDS support. IDL import, export. IDL
‘module’ keyword support

9 Dec 2013 1.6 MDM Add IDL sequence support

15 Mar 2014 | 2.2 MDM Improved sequence support for DDS Toolbox.
Add sequence support for DDS Blockset
simulation.
Add DDS.import() support for MATLAB
classes.
Add support for IDL Inheritance

4 Nov 2014 |23 MDM Add optional rtiddsgen switches to DDS.import()
Add support for Accelerator and Rapid
Accelerator modes
Add support for topic content filtering

2.5.0 MDM Add support for RTI Connext DDS 5.2.0 and

microDDS 2.4.4

21 Oct 2015 | 2.6.0 MDM Remove ability to define Topic Type for Toolbox
functions using ML Struct or Simulink.Bus

21 Mar 2016 | 2.8.0 MDM | Add Raspberry Pi" support

14 Apr 2016 | 2.8.0 MDM Add Timestamp support for Data Reader

20 Apr 2016 | 2.8.0 MDM Add appendix with instructions for using
MATLAB Compiler™

17 May 2016 | 2.8.0 MDM Add support for Simulink Data Dictionary

22 Jun 2016 | 2.8.0 MDM Add DDS.discoveryMonitor() feature

21 Jul 2016 2.9.0 MDM Migrate to DDS Connext 5.2.3

17 Nov 2016 | 3.1.0 MDM Add MacOS support

30 Jun 2017 | 3.5.0 MDM Simulink Data Dictionary support

29 Jan 2018 | 3.6.0 MDM Two new blocks that support the XML Application|
Creation APIs.

14 July 2018 | 4.0.0 MDM Support for valuetype

23 May 2019 | 4.1.0 MDM Support for RTI Connext DDS 6.0.0 and DDS
Micro 3.0

26 Dec 2019 | 4.2.0 MDM Support for IDL unions

31 July 2020 |4.3.0 MDM Support for Simulink Real-Time in R2020b

3 System Requirements

3.1.1 Required
e MATLAB version R2015b or later
e Simulink
e RTI Connext DDS version 5.1.0, 5.2.0, 5.2.3, 5.3.0, 5.3.1 or 6.0.0

3.1.2 Optional

To generate code from a Simulink model, the following products are needed:
e Simulink Coder™
e Embedded Coder®

To use Simulink with long or unsigned long data types:
e Fixed-Point Designer

To compile and link code for RTI Connext Micro DDS:
e RTI Connext DDS Micro 2.2.3 or newer

4 Installation and Setup

4.1 Installation

4.1.1 Install RTI Connext DDS

Before installing the DDS Blockset on your computer, you should first install the RTI
Connext DDS. For details or to obtain a license, contact www.rti.com.

The DDS Blockset includes compiled C code that is linked to RTI DDS Connext
Libraries. RTI has released a number of versions of RTI DDS Connext libraries, and
each of the releases is made for different combinations of operating system/compiler
combinations. Table 1 defines the versions of RTI DDS Connext supported by each
version of MATLAB. Using a MATLAB/RTI Connext version not supported will result
in unexpected behavior, error messages and/or MATLAB crashes.

Table 2 lists the operating system version/compiler versions that the DDS blockset was
developed with. While the DDS Blockset will likely run properly with other
OS/compiler combinatinos, it is highly recommended that you use these listed in the
table.

Table 3 lists the MATLAB/DDS Micro/Compiler combinations supported by the DDS
Blockset. DDS Micro is usually distributed in source code form and the customer is
responsible for building the DDS Micro libraries. Other versions of Visual Studio that
are supported by the particular MATLAB version can be used to rebuild the DDS Micro
libraries. The user should use the mex -setup command to configure the same version of
Visual Studio as the version used to build the DDS Micro libraries.

Table 1 MATLAB/DDS Version Support Matrix

DDS Version
MATLAB Version 5.0.0/5.1.0/5.2.0/5.2.3 5.3.0/5.3.1 6.0.0/6.0.1
R2016b and earlier Yes No No
R2017a, R2017b Yes Yes No
R2018a Yes Yes Yes
R2018b and later No Yes Yes

http://www.rti.com/

Table 2 MATLAB/DDS Library Support matrix

MATLAB Version(s) OS Version(s) RTI DDS Library
R20164a, 16b, 17a, 17b Windows® 64 7, 10 x64Win64VS2013
R2018a, 18b Windows 64 7, 10 x64Win64VS2015
R2019a, 19b, 20a Windows 64 7, 10 x64Win64VS2017
R2016a, 16b, 17a Linux 64 Debian 7.x x64Linux2.6gcc4.4.5
R2017b, 18a, 18b Linux 64 Debian 8.x x64Linux2.6gcc4.4.5
R2019a, 19b, 20a Linux 64 Debian 9.x x64Linux2.6gcc4.4.5
R2016b, 17a, 17b MacOS 10.11 x64Darwinl5clang7.0
R2018a MacOS x64Darwinl6c¢clang8.0
R2018b MacOS x64Darwinl7clang9.0
R2019a, 19b, 20a, 20b MacOS x64Darwinl7clang9.0

Table 3 Simulink Real-Time Version Support Matrix

DDS Version
MATLAB Version 5.0.0/5.1.0/5.2.0/5.2.3 5.3.0/5.3.1 6.0.0/6.0.1
R2020b TBD TBD Yes

4.1.1.1 Support for Simulink Real-Time
Beginning in R2020b, the Simulink RTI DDS Blockset will run on a Simulink Real-Time
system. In R2020b Simulink Real-Time began using QNX as the underlying operating system.
In order to run Simulink DDS models on a Simulink Real-Time system, the user must install the
RTI DDS Connext Libraries that have been compiled for QNX. Use the RTI Launcher Package
Installer to download and install the proper library.

Table 4 MATLAB/DDS Library Support matrix

MATLAB Version(s) OS Version(s) RTI DDS Library
R2020b QNX x64QNX7.0.0gcc_gpp5.4.0

After installation, the QNX library should be located in the same directory as the host computer libraries
as shown below:

» ThisPC » Windows (C:) » Program Files » rti_connext_dds-6.0.1 » lib v O Search lib

-

C) A [0 Mame Date modified Type

=nt File folder

File folder
File folder
File folder

armvBvfphlinux3.xgecd 7.2
java

1 xbdlinux2.bgecd 4.5

ilth xB4ONKT.0.0gcc_cxx3.4.0

I xB4ONXT.0.0qcc_gpp5.4.0 File folder

*BdWinbdVS2017 File folder

test_tools

4.1.2 Install DDS Blockset
This feature supports all platforms that are supported by MATLAB. The installation
program is in the form of a MATLAB Add-On. The same installation package can be
used for Windows, Linux, and MacOS.

1. Start MATLAB.
2. If a prior version of the DDS Blockset has been installed, uninstall it.

HOME PUBLISH

L?_& %‘:;j Tj IE e &l Eﬂ tﬁ}“ Mew Variable | < Analyze Code @ @ @ Preferences % @) @ Community

Open Variable Run and Time ' Set Path = Request Suj
MNew New Open |i-|Compare Import Save I_’B = "J? Simulink Layout ﬁ Lk e pport
Seript - Aakiii Data E?Cieat w [’ Clear Commands - “jl_PamH'
FILE | VARIABLE | CODE Bl ENVIRGNMENT
-
=R Bty @ b C b owork ¥ DDS F demos » SHM_Hardware » -

v
Foll
@w

Mame = SVM Size @ This file can be opened as a Live Script. For more informa|

Current Folder () Workspace 1 @ Editor - Chwork\DDS\demos\SHM_Hardware'start -

E Package Toolbox

4\ Add-On Manager I} — O
Sort By : | Installed Date - Get Add-Ons | Impol
DDS_Blockset version 9.9.9.924 by Mark McBroom installed on 21 July 2017

r t ' Toolbox Open Folder Learn More v

If you see a screen like this, follow the instructions to delete remaining files:

4\ Uninstall Successful >

i You have successfully uninstalled the toolbox. To complete the process, manually delete:
f) YWicentral-mivhomeimmcbroom'Documentst MATLABAdd- Ons\Toolboxes\ DDS_Blockset(3)

3. Navigate to the location of the .mltbx file that you downloaded to your computer
from mathworks.com.
4. Right mouse click and select.

R2016b 10| % Ge
&7 DDS_Blockset_v9.9.¢ : = | testRlarkeet m

=

Show Details

NNS Rlockset vG 9 0 77

5. Read and accept the licensing agreement.
Once the installation is complete, the DDS Blockset will appear in the list of Add-Ons:

2 & E @ Q Search Documentation

frences §% U (' Community

ath ':9’ Reguest Support
Help
> [Z] Learn MATLAB

INMENT
é& Get Add-Ons]

lel =

4

x.m 1& Manage Add-Ons
-

. ? Package Toolbox

Check for Updates >
.} Add-On Manager B =1
Sort By : | Installed Date - | GetAdd-Ons | Import
DDS_Blockset version 9.9.9.770 by Mark McBroom installed on 2 December 2016

r t ' Toolbox Open Folder Leamn More - Uninstall

MATLAB Support Package for Raspberry Pi Hardware version 15 installed on 1 December 2016

4\ Hardware Support Package Setup Leam More ~ Uninstall

Simulink Support Package for Raspberry Pi Hardware version 16.2.1 installed on 1 December 2015

— 4\ Hardware Support Package Setup Leamn More - Uninstall

4.2 Environment Variables

For all platforms, the environment variables NDDSHOME and RTI LICENSE FILE
must be defined. NDDSHOME points to the location where RTI Connext DDS is
installed, while RTI_LICENSE FILE is the full path to the license file. Note that the
strings should not be terminated with a semicolon.

The user must also add the location of the DDS shared libraries to the appropriate

environment variable so that the shared libraries can be located by the operating system
when invoked from MATLAB and Simulink.

4.2.1 Windows

Table 2. Example for DDS Connext 5.2.0 and later.

Env Variable Example value

NDDSHOME C:\Program Files\rti connext dds-6.0.1

RTI LICENSE FILE | C:\Program Files\rti_connext dds-6.0.1\rti_license.dat

PATH C:\Program Files\rti_connext dds-
6.0.1\lib\x64Win64VS2017

If the user will be generating C code from a Simulink model that is targeted for RTI
Micro DDS, then the following two environment variables must also be defined:

Env Variable | Example value

RTIMEHOME | C:\Program Files\rti_connext micro.2.4.10

RTIMEARCH | i86Win32VS2015

4.2.2 Linux
Table 3. Example for DDS Connext 5.2.0 and later.

Env Variable Example value

NDDSHOME /usr/rti connext dds-6.0.1

RTI LICENSE FILE | /usr/rti connext dds-6.0.1/rti license.dat

LD LIBRARY PATH | /ust/ rti_connext dds-6.0.1/lib/x64Linux2.6gcc4.4.5

If the user will be generating C code from a Simulink model that is targeted for RTI
Micro DDS, then the following two environment variables must also be defined:

Env Variable | Example value

RTIMEHOME | /usr/rti connext micro.2.4.10

RTIMEARCH | i86Linux2.6gcc4.4.5

4.2.3 MacOS

Table 4. Example for DDS Connext 5.2.0 and later.

Env Variable Example value
NDDSHOME /Applications/rti_connext dds-6.0.0
RTI LICENSE FILE /Applications/rti_connext dds-6.0.0/rti_license.dat

RTI LD LIBRARY PATH | /Applications/ rti_connext dds-
6.0.0/1ib/x64Darwin17clang9.0

DYLD LIBRARY PATH | /Applications/ rti connext dds-
6.0.0/1ib/x64Darwin17clang9.0

DEVELOPER DIR /Applications/Xcode.app/Contents/Developer

JREHOME See Note 2

NOTE 1. Beginning with MacOS v10.11 (El Capitan), the use of the environment
variable DYLD LIBRARY PATH is restricted due to a security concern. Refer to
section 12 for details.

NOTE 2. You may need to also define JREHOME environment variable. [f JREHOME
is not defined, then you will see an error message similar to this.

> DDS.import('dSéquence.idl‘}
Warning: 0S Darwin may not be supported. Be sure JREHOME is set.
/sandbox/mmcbroom/rti_connext_dds-5.3.@/bin/../resource/app/jre/darwin

You will need to locate a Java Runtime Environment™ (JRE) on your computer, or install,
and then point JREHOME to the location where you installed. MATLAB also includes a
JRE. You can

also point JREHOME to the MATLAB JRE, which is located at:
<matlabroot>/sys/java/jre/maci64/jre

You can set the JREHOME environment variable at the shell prompt prior to
starting MATLAB, your you can set in MATLAB with the following command
>setenv(‘JREHOME”, fullfile(matlabroot,’sys’,’java’,’jre’,”maci64’,’jre’))

4.3 Alternate Approach

This section describes an alternate approach to setting environment variables. This
approach can be used if you do not have sufficient privilege to define environment
variables.

1. Set NDDSHOME and PATH environment variables from MATLAB. Type the
following lines at the MATLAB prompt to temporarily create two environment
variables. Update as necessary for the location in which RTI Connext DDS is installed.
Note that you will need to type these two commands each time you start MATLAB.
You can place these into a script that runs each time MATLAB starts.

setenv ('NDDSHOME', 'C:\Program Files\rti connext dds-5.2.0");
CurrentPath = getenv ('PATH');

setenv ('PATH', [CurrentPath, ';C:\Program Files\rti connext dds-
.2.0\1ib\x64Win64vs2012']) ;

UV Vv Vv

2. Use alternate approach to specify license file. Following are instructions from
RTI_ConnextDDS_CoreLibraries_GettingStarted.pdf section 2.4.1. to specify the
location of the RTI License File in the QoS XML file. The following approach has been
successfully tested.

2.4 License Management

Most package tvpes (Professional. Basic. and Evaluation) require a license file m order to run.
If your Connext DDS distnbution requires a license file, you will recerve one from RTI via email
If vou have more than one hcense file from RTL you can concatenate them into one file.

A smgle license file can be used to run on any archatecture and 1s not node-locked. You are not required to
run a hicense server.

2.4.1 Installing the License File
Save the license file m any location of your choice; the locations checked by the nuddleware are listed
below.

You can also specify the locanon of your license file in RTT Launcher's Configuration tab. Then
Launcher can copy the license file to the mstallation directory or to the user workspace.

Each time your Connext DDS application starts, it will look for the license ﬁ.lc m the followmg locations
until 1t finds a valid license:

[*]

In the PropertyQosPolicy of the DomainParticipant, there may be a property called dds.k-
cense.license_file. The value for this property can be set to the location (full path and filename) of a
License file. (This may be necessary if a default License location 1s not feasible and envronment van-
ables are not supported.) You can set the property either in source code or in an XML file.

Example XML to set dds.license.license file:

<participant gos>
{pIopercy>
<value>
<element>
<name>dds.license.license file</name>
<value>path to license file</value>
</element>
</value>
< /property>
<f/participant_ gos>

Figure 1. RTI License File Management.

4.4 Uninstall

frences & @ (' Community

ath 3 Request Support
lel = Learn MATLAB
INMENT h
= % Cet Add-Ons

w

S— U Get Hardware Suppaort Packages
Check for Updates >
4\ Add-On Manager - O ht
Get Add-Ons | Import
Installed (34) | Q)
Name Type Author Install ... ~
- : Mark
k) DDS_Blockset version 3.9.0.1084 Toolbox e 31 July 2018 @
[X] open Folder
PE Project Quality Assessment version 1.0 App Frank Graebe (i) View Details

@4 View in Add-On Explorer

h
|

e i MathWorks
= Text Analytics Toolbox version 1.1 4 = i | Enabled
- Q@ e
s SFT Toolbox version 1.4 Toolbox g#ss:wahis A Rprl 2018

After completing the uninstall, you will see a message similar to this.

Uninstallation Complete X

You have successfully uninstalled the toolbox. To
complete the process, manually delete:
\icentral-mithome\mmcbroom\Documents\MATLAB\Add-
Ons\Toolboxes\DDS_Blockset

Please follow the instructions to delete the directory in which the blockset was installed.

5 Getting Started

The DDS Blockset provides Simulink blocks for the five key DDS entities:
e Domain Participants
e Publishers
e Subscribers
e Data Writers
e Data Readers
The blockset also provides two blocks that use the XML Application Creation capability of DDS to
create Data Readers and Data Writers in conjunction with an XML configuration file.

The blocks appear in the Simulink Library Browser as shown below. Type “simulink” at
the MATLAB prompt to display the Simulink Library Browser.

E Simulink Library Browser o = X

= |Erter search term V‘Pu\ Ml b= g C |+ 2
DDS Blockset

Simulink

Aerospace Blockset /J b > Time
ARINC653 Blockset 5 b r t ' yop

Communications System Toolbox
Communications System Toolbox HDL Suppor| o101 Retp X Dato 101

Computer Vision System Toolbox
DDS Blockset

DSP System Toolbox

DSP System Toolbox HDL Support oPp ub p P [)
Embedded Coder [) Hor > b

DATA_READER DATA_WRITER DDS Target DDSTime
R

HDL Coder th Ret Dat
Image Acquisition Toolbox © otp 0 I 0 I ata p O I O I
Report Generator DOMAIN_PARTICIPANT PUBLISHER/SUBSCRIBER XmlAppRead XmlAppWrite

RF Blockset
Robotics System Toolbox
Figure 2. DDS Blockset in the Simulink Library Browser.

5.1 Basic Model

Follow these steps to create a simple Simulink model that contains the Domain
Participant block:
1. Create a new Simulink model by selecting “File -> New -> Model” in the menu of
the Simulink Library Browser window.
2. Drag a Domain_Participant block into the new Simulink model.
3. Drag Terminator block and Display blocks (in the Simulink-Sinks library) into
the model. Connect as shown below.
4. Save the model file by clicking File->Save.
5. Push the Run button.

File Edit View Display Diagram Simulation Analysis Code Tools Help

-8 =

Model Browser

4
Il

untitled

Ready

HE@"D ®) ¥ |00 é}:}le‘:J
untitled | o
@ |[*&|untitied -
&)
3l
=3
oP —p
Tesminator
B e
DOMAIN_PARTICIPANT Display

«

[100%

FixedStepliscrete

Figure 3. Simulink model with DDS Block.

If you are using the evaluation version of RTI Connext, the DOS output window should

show status like the following:
=101.]

RTI Data Distribution Serwvice Evaluation License issued to MathWorks mark.mchroo!
mEmathworks .com For non—-production use only.
Expires on 21-sep—2012 See www.rti.com for more information. .

Figure 4. RTI DDS Output Window.

5.2 Complete Model

Follow these steps to create a Simulink model that publishes data to DDS and then
subscribes to the same data.
If you would rather not create the following model, it is provided as part of the PSP.
Open the model by typing: rtwdemo DDSBasic.

5.2.1 Create a Simulink Bus

DDS Topic Types are represented in Simulink with a bus. Most DDS workflows define
Topic Types in IDL files. The first step in this workflow is to create a Simulink Bus object
from an IDL file.

DDS.import(‘BusObject.idl’);

5.2.2 Create a Simulink Model
We will now create a Simulink model that sends and receives data for the Simulink

Bus/DDS Topic type “BusObject”.
Drag and drop blocks from the DDS Blockset into a new model to look like this:

- (o)x|
File Edit Wiew Display Diagram Simulation Analysis Code Tools Help
5 d = () ' i
-8 & BEG-EE® I - @ oo fioma ERRNIORME- R
Model Browser = untitled |
untitled ® |[*a|untited -
@
Ed
_\DP »0F b
> ey T-0101
=t ’ FUBLISHER DATA_WRITER
DOMAIN_PARTICIPANT Display
P
ub e
> \5 o101 ™}
Ret b DATA_READER
SUBSCRIBER
«
Ready [100% FixedStepDiscrete /

Figure 5. Example Model.

Note that for the Publisher Subscriber block connected to the Data Writer, you will need to
double click on the block and configure it as a Publisher.

Block Parameters: PUBLISHER /SUBSCRIBER x|

~ PUBLISHER_SUBSCRIBER (mask) (link)

This block can be configured as either a DDS Publisher or Subscriber.
The input port must be connected to a DOMAIN_PARTICIPANT block.
The first outport should be connected to a DataWriter (if configured

as a Publisher) or a DataReader (if connected to a Subscriber).

The second outport contains a vector of status for each of the 4 DDS
services called by this block.

— Parameters.

Sub/Pub: |Publisher j

QoS profile (lib::profile or leave blank for default):
Sample time (-1 for inherited):
|-1

OK Cancel Help Apply

Figure 6. Publisher Block Dialog.

Next, configure the data writer block for the “BusObject” Topic Type. Double
click on each block and change the Topic Type as shown below:

Block Parameters: DATA_WRITER x|

— DATA_WRITER (mask) (link)

This block writes Topic data to DDS.

The first input port must be connected to a Publisher block.

The second input port must be a bus signal of the same type as the
Topic/Bus Object Name.

The output port contains a vector of status information for each of
the DDS services called to write data to DDS.

— Parameters

Topic Type/Bus Object Name:

| Busobject

Topic Name:

| myTopicName

QoS profile (lib::profile or leave blank for default):
Sample time (-1 for inherited):
|-1

OK Cancel Help Apply

Figure 7. Data Writer Block Dialog.

Now, configure the Data Reader block to read the same Topic Type and Topic Name.
These two fields must be identical to the Data Writer block.

Block Parameters: DATA_READER x|
— DATA_READER (mask) (link) 1=l

This block reads data for the specified Topic/Bus Object Name.
The first inport must be connected to a SUBSCRIBER. block.
The first outport contains the data read from DDS. The signal
must a bus and the same type as the Topic/Bus Object Name.
The second outport contains a vector of status information for
each of the DDS services used to read the data.

— Parameters

Main | Scheduling | Filtering
Topic type/Bus Object Name:

| BusObject

Topic Name:

| myTopicName

QoS profile (lib::profile or leave blank for default):
Sample time (-1 for inherited):
[-1

™ Outport for Sample Info

i

OK Cancel Help | Apply |

Figure 8. DataReader Block Dialog.

Click on the “Scheduling Tab” and make the following changes:

Block Parameters: DATA_READER |
— DATA_READER (mask) (link) o

This block reads data for the specified Topic/Bus Object Name.
The first inport must be connected to a SUBSCRIBER block.
The first outport contains the data read from DDS. The signal
must a bus and the same type as the Topic/Bus Object Name.
The second outport contains a vector of status information for
each of the DDS services used to read the data.

— Parameters

Main Scheduling | Filtering
¥ WaitSet

WaitSet Timeout(sec):

[2

Read method: |Take() =l

=l
ok | concel | Hep | oy |
Figure 9. Data Reader Block Dialog.

Although the model will now simulate and interact with DDS, the last step involves
writing non-zero data and then viewing the result.

Add Sine, Bus Creator, Bus Selector, and Scope blocks as shown below.

= 10| x|
File Edit View Display Diagram Simulation Analysis Code Tools Help
Evé gg@"%@ﬁﬂb ‘Q)'ho.o [Normal a| é@vv
Model Browser = untitlied I
- [Pa] untitied @ |[Pauntitied -
Q
3
=

h

[>\“Dp 1B \é> Evl—'ﬂggl o?Q>
gpe==)

FUBLISHER Sine Wave DATA_WRITER

SEl - R

o101 Ret b

DATA_READER

DOMAIN_FARTICIFANT Display

Retfs

SUBSCRIBER

«
Ready

[100% FixedStepDiscrete #

Figure 10. Example Model.

Double click on the Bus Creator block and change to the following:

Function Block Parameters: Bus Creator x|
—BusCreator

This block creates a bus signal from its inputs.

—Parameters

IInherit bus signal names from input ports j

Number of inputs: |1

IFlIter by name @I Find |
Signals in the bus

“ianalt Refresh |

Rename selected signal: |

Output data type: IBus: BusObject j > |

[~ Output as nonvirtual bus

_)- oK I Cancel | Help | Apply |

Figure 11. Bus Creator Block Dialog.

Double click on the Bus Selector block and change to the following:

Function Block Parameters: Bus Selector =
—BusSelector

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block
that defines its output using a bus object. The left listbox shows the signals in the input bus. Use the
Select button to select the output signals. The right listbox shows the selections. Use the Up, Down, or
Remove button to reorder the selections. Check '"Output as bus' to output a single bus signal.

—Parameters

Filter by name @ Find | Selected signals Up |

a
Signals in the bus | Select=> | Down |
Refresh | Remove |

™ Output as bus

J- 0K I Cancel Help Apply

Figure 12. Bus Selector Block Dialog.

The model is now complete. Push the Simulate button.

1 Analysis Code Tools Help
© -~
A

Figure 13. Simulink Run Button.

ORE

When the simulation is complete, double click on the Scope block. You should see the
following:

=lol x|
2ollaw i OERDOa | »

Figure 14. Simulink Scope Block.

5.3 Code Generation

With Simulink Coder and Embedded Coder licenses, code can be generated from a
Simulink model that contains DDS Blocks. Follow instructions in the MATLAB
documentation for configuring and generating code from a Simulink model. The
generated code will have calls to RTI DDS functions for each of the DDS Blocks in the
Simulink model. For example, the following code fragment is generated for a Domain
Participant block:

84 untitled B.DOMAIN PARTICIPANT ol =

100 DD5S_DomainParticipantFactory create _participant with profile

101 (DDS_TheParticipantFactory, 0, "UserQosProfilesLibrary"”, "MonitorDefault”,
102 NULL, DDS_STATUS MASK NONE) ;

For a subscriber:

http://www.mathworks.com/help/releases/R2012b/rtw/configuration-1.html
http://www.mathworks.com/help/releases/R2012b/rtw/source-code-generation.html

118 untitled B.SUBSCRIBER ol =

1149 DDS DomainParticipant create subscriber with profile
120 (untitled BE.DOMATN PARTICTIPANT ol, "UserQosProfilesLibrary",
121 "MonitorDefaulc™, NULL, DD5 STATUS MASK ALL);

And for a data reader:

struct DDS DataReaderQos dataReaderQos = DD5 DataReaderQos INITIARLIZER;
DD5 DomainParticipant® domainParticipant = DD5 Subscriber get participant
(untitled B.SUBSCRIBER ol);

(ST XY

/* register this data type and Topic with DDS. =/

RegisterTypeTopic(domainParticipant, &untitled DWork.DATA READER M=sgTopic,
untitled DWork.DATA READER CStructiize, "BusObject”,
"myTopicHame™, "UserQosProfilesLibrary", "MonitorDefault”,
£5imulink BusObject, (DD5_ReturnCode t¥)
untitled B.DATA READER o2 j;

1 Oy

Ly G Gy Gy ot o oty
o

i
[E T

A* get QoS from user specified library/profile */
untitled B.DATA READER ol2[5] =
DDS DomainFarticipantFactory get datareader gos from profile
(DDS_TheParticipantFactory, &dataReaderQos, "UserQosProfilesLibrary"”,
"MonitorDefault™);

if if o o
oy fnoW Ly ba

i
1

n

/* create data reader using this Jas5. */
untitled DWork.DATR READER MsgDataReader = DD5_Subscriber create_datareader
(untitled B.SUBSCRIBER ol, DDS Topic as topicdescription((DD3 Toplc®)
untitled DWork.DATA READER M=gTopic), &dataReader{os, NULL,
DDS STATUS MASK ALL) ;

]

n n

b

5.3.1 RTI DDS Target Block

By default, code generated from a Simulink model will be compatible with RTI DDS
Connext using static typing. The code for defining, registering, and accessing topic
samples will be generated by the rtiddsgen utility provided by RTI. However, the user

can

override these settings by adding an RTI DDS Target block to the model.

Block Parameters: DDS Target x|

—DATA_READER (mask) (link})

This block sets model-wide properties for DDS used when generating code
for the model. If the block is not present, the default is to generate
code for RTI Connext DDS with dynamic typing and the user specified QoS profile

DDS Target: Select either normal or micro DDS. I micro DDS, static typing
will be used and QoS profile will be ignored.

Type System: Select either Dynamic or static typing. I static typing,
rtiddsgen will be used to generate the C code for reading/writing the topic.

Discovery Mode: For the Micro DDS target, select either dynamic or static
discavery.

Main |

DDS Target: |RTI Connext DDS

=
TypeSystem: |Dynamic j
=

Discovery Mode: |Static

oK I Cancel | Help | Apply |

Figure 15. DDS Target Block Dialog.

5.4 RTI DDS Connext Toolbox

The DDS Blockset PSP also includes a set of MATLAB classes that can be used to
access RTI DDS Connext from MATLAB. This section explains how to create
instances of the MATLAB DDS Connext classes.

Type the following at the MATLAB Prompt.

DDS.import(‘ShapeType.idl’,’matlab’);
myTopic = ShapeType;

myTopic.x = int32(23);

myTopic.y = int32(35);

dp = DDS.DomainParticipant
dp.addWriter(‘ShapeType’, ‘Square’);
dp.write(myTopic);
dp.addReader(‘ShapeType’, ‘Square’);
readTopic = dp.take();

VVYVVYVYVVYYVY

The workspace variable readTopic should be an object of type ShapeType. The “x” and

(Y]

y” properties of the class should have values of 23 and 35, respectively.
6 Examples

6.1 Simulink/RTI Shapes

The DDS Blockset includes a Simulink model that will interact with the RTI Shapes
Demo. This demo is installed as part of RTI Connext DDS.

6.1.1 Start the RTI DDS Connext Shapes Demo
Open the Connext Launcher:
rtlD&Tl Connext Launcher 5.3.0 — O X

it =

(o (mimil

Admin Monitor
Console
*» Log

Figure 16. RTI Connext Launcher.

Select the Shapes Demo.
Make the following selections:
1. Select Publish — Square
a. Set “initial size” = 15

b. OK

2. Select Subscribe — Circle
a. OK

3. Select Subscribe — Triangle
a. OK

When complete, your display should look like this:

Il

File View Publsh Subscribe Controls Help

-

Publish

Square
Circle

Triangle

Controls
Delete All
Pause Publishing
Hide History
Configuration

-

Name | Type | Color | Partitions | Read/Take | QoS Settings | Reliability | Durability | owner | :

Square = Pub BLUE - Default::Default True VOLATILE | False
Cirde | Sub * Read() Default::Default False WVOLATILE | False

Triangle| Sub = Read() Default::Default False VOLATILE | False

4] | 1]
Cutput Legend I

|Read\|I on domain 0 v
Figure 17. RTI Connext Shapes Demo.

6.1.2 Simulink rtwdemo_RTIShapes Model

Start MATLAB. Before you run the RTI Shapes Simulink model, verify you have a
C/C++ compiler configured. At the MATLAB prompt, type: mex —setup.

You should be prompted for a list of available compilers. If you are using Visual Studio®,
you may need to download Microsoft® Windows SDK7.1 before Visual Studio will show
up in the list of selectable compilers. See this article link for more information.

At the MATLAB prompt, type: rtwdemo RTIShapes

Once the model is loaded, press the run button to start the simulation.

You will now see eight triangles and eight circles appear in the RTI Shapes Demo
display. The Simulink model is computing the position, velocity, and acceleration of the
triangle and circle shapes. The positions of each of these shapes is sent to the RTI
Shapes Demo via a DDS Writer. Simulink is reading the Square that is published by the
RTI Shapes Demo and using the information from this shape to compute collisions with
the other 16 shapes being published by Simulink.

To make the demo more interesting, right-mouse click on the square shape and change
its direction and speed.

Note that the Simulink model will stop simulation after about 30 seconds. Push the run
button on the Simulink model to resume the example.

http://www.microsoft.com/downloads/details.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b&displaylang=en
http://www.mathworks.com/support/compilers/R2012b/win64.html

=lolx|

File View Publish Subscribe Controls Help

Publish

Square
Circle

Triangle

Subscribe
Square
Circle
Triangle

Controls
Delete All
Pause Publishing
Hide History
Configuration

Hame | Type| Color | Partitions | Read/Take | QoS Settings | Reliability | Durability | owner | :

Square | Pub BLUE - Default::Default True VOLATILE | False
Circde | Sub = Read() Default::Default. False WOLATILE | False

Triangle | Sub = Read() Default::Default| False VOLATILE | False

4] | |
Output | egend I

|Rfady on domain 0 v
Figure 18. RTI Connext Shapes Demo.

6.2 MATLAB/RTI Shapes

1. Follow steps in 6.1.1 to start the RTI Shapes Demo.
2. Type the following at the MATLAB prompt to create a data reader:

% Create a MATLAB class from the ShapeType IDL definition
DDS.import (‘ShapeType.idl’, "matlab’, ‘f’);

%% create a DDS Domain participant and data reader
dp = DDS.DomainParticipant;
dp.addReader ('ShapeType', 'Square');

3. Type the following at the MATLAB prompt. You will see output similar to the
following, which is the current position of the blue square in the RTI Shapes
Demo.
dp.take ()

ans =

color: 'BLUE'
x: 143
y: 167
shapesize: 15

4. Type the following at the MATLAB prompt to send a purple circle to the RTI
Shapes Demo.

dp.addWriter ('ShapeType', 'Circle');
myData = ShapeType;

myData.x = int32(20);

myData.y = int32 (40);

myData.shapesize = int32(20);
myData.color = 'PURPLE';
dp.write (shapeData) ;

-I5lx]

File View Publish Subscribe Controls Help

Publish

Triangle

Controls
Delete All
Pause Publishing
Hide History
Configuration

Name| DataType |Type| Color | Partitions | Read/Take | QoS Settings |
Square Shape Pub BLUE — Default::Default
Cirde Shape Sub = Read() Default::Default
1| |
Output | egend I

|R.eady on domain 0 A

Figure 19. RTI Shapes Demo.

7 Blockset Reference

7.1 DDS Types

Most DDS implementations, including RTI, support definition of data types via a
language independent description language. OMG IDL is the most commonly used, but
XML and XSD are also often supported. Simulink has a set of built-in data types along
with the ability to define structured data types via Simulink Buses and enumerated data
types via Simulink enumerated data type. Similarly, MATLAB has built-in data types
along with the ability to define structured data types via MATLAB classes/structures and
enumerated data via MATLAB enumerated data types. The following table defines the

IDL, DDS and MATLAB and Simulink data type mapping and support.

Table S. DDS Type Support in MATLAB and Simulink.

IDL DDS MATLAB Simulink Type
Type

short DDS TK SHORT intl6 intl6

long DDS TK LONG int32 int32

unsigned short DDS TK USHORT uintl6 uintl6

unsigned long DDS TK ULONG uint32 uint32

float DDS TK FLOAT single single

double DDS TK DOUBLE double double

boolean DDS TK BOOLEAN logical boolean

char DDS TK CHAR int8 int8

octect DDS TK OCTECT uint8 uint8

struct DDS TK STRUCT MATLAB Simulink.Bus
Struct/Class

union DDS TK UNION MATLAB Simulink.Bus
class

enum DDS TK ENUM MATLAB Simulink.Enum
Enumeration

string<maxlen> | DDS TK STRING char DDS CharArray

Note 1

sequence DDS TK SEQUENCE Supported Note 1

“[1” notation DDS TK ARRAY Supported Supported

? DDS TK ALIAS Not Not Supported
Supported

long long DDS TK LONGLONG Supported Supported

unsigned long DDS TK ULONGLONG Supported Supported

long

long double DDS TK LONGDOUBLE Not Not Supported
Supported

Wchar DDS TK WCHAR Not Not Supported
Supported

Wstring DDS TK WSTRING Not Not Supported

Supported

valuetype DDS TK STRUCT MATLAB Simulink.Bus
Struct/Class

? DDS TK VALUE Not Not Supported
Supported

? DDS TK SPARSE Not Not Supported
Supported

? DDS TK RAW BYTES Not Not Supported
Supported

? DDS TK RAW BYTES KEYED | Not Not Supported
Supported

Note 1: For code generation, only Dynamic Data type mode is supported. For static code
generation, errors will occur during code generation and/or execution of the generated

code.

Note 2: For long long and unsigned long long support in Simulink, the Fixed-Point
Designer is required.

7.1.1 Representing DDS Types in Simulink

The DDS Simulink blocks assume that the Topic Type will always be in the form of
an IDL struct which is modeled in Simulink as a Simulink Bus. The user must create a
Simulink Bus with the desired fields/types/sizes for the Topic data to be sent and
received. If the Topic Type is defined in IDL, the user must make sure to define the
Simulink Bus with the same attributes.

It is strongly recommended that the user create Simulink Buses using the
DDS.import() utility. See section 7.1.2. This utility creates buses from struct
definitions in IDL files, including all metadata data (i.e. @key, @optional, sequence,
etc). required for proper DDS operation.

Figure 20 shows how a Topic Type with nested structures can be represented in
Simulink with a corresponding set of nested Simulink Buses.

IDL Representation

struct DIMT_MumericObsValBus{
char[16] udi;
MubsValueCmpBus pulse_oximeter,
AbsoluteTimeBus absolute_timestamp;

i3

M@Extensibility EXTENSIBLE_EXTENSIBILITY

struct NuObsValueBus{
unsigned short dimhandle;
unsigned short metric_id;
unsigned short state;
unsigned short unit_code;
unsigned shortvalue;

¥
M@Extensibility EXTENSIBLE_EXTENSIBILITY

struct NuObsValueCmpBus{
MuObsValueBus PULS_RATE;
MubsValueBus SAT_02;
MuObsValueBus CO2_EXP;

¥

N@Extensibility EXTENSIBLE_EXTENSIBILITY

struct AbsoluteTimeBuS| e

St

[B | & &3

p4 Filter:lby Bus Name L”

EI--Ijj Base Workspace

B = AbsoluteTimeBus
. IMT_NumericObsValBus
; NuObsValueBus
= MuObsValueCmpBus

I DataType

I Comple:

=

— udi int3
pulse_oximeter{(NuObsValueCmpBus)
= absolute_timestamp{AbsoluteTimeBus) Bus: AbsoluteTimeBus

Bus: NuCbsValueCmpBus

real

E}Ijj Base Workspace
= AbsoluteTimeBus
IMT_MumericObsValBus

uCbsValueCmpBus

E}Ijj Base Workspace

--= AbsoluteTimeBus
DIMT _MumericObsValBus
uObeValueBus

R |

{NuDbsValueCmpBus

= Base workspace

octet century;

octet year;

octet maonth;

octet day;

actet hour;

octet minute;

octet second;

octet sec_fractions;

b

Figure 20. Topic Type Defined by Simulink Bus.

: AbsoluteTimeBus
DIMT_MumericObsValBus
MuObsValueBus

[= MuObsvalueCmpBus

MName | DataType | Complg
= dimhandle uintlg real
— metric_id uint16 real
— state uint1s real
= unit_code uintle real
— value double real
| Name | DataType | Complgx

Bus: MuObsValueBus
Bus: NuObsValueBus
Bus: NuObsValueBus

= PULS_RATE(MuCbsValueBus)
= SAT_02({NuObsValueBus)
= CO2_EXP(NuObsValueBus)

o [e

e

= century uintg
— year uints
=— month uint8
— day uintd
— hour uintd
= minute uintd
— second uintd

If the Topic Type contains enumerated data types, a Simulink enumerated data type must
be created with the same name and enumerators. This link explains how to create and

use an enumerated data type.

Simulink strings do not generate code in a way that is compatible with DDS strings.
Strings are therefore treated in Simulink as a fixed length array of unsigned bytes. In
order for the Simulink Blocks to differentiate between a vector of bytes and a string, an
alias data type, DDS CharArray, was created. This alias type is used by the DDS
Blockset infrastructure to differentiate between strings and byte vectors. DDS.import()
will import all IDL strings into a bus element with type DDS_CharArray.

7.1.2 Importing IDL into Simulink

The recommended technique for creating buses in Simulink is to import the DDS type
definitions from a DDS IDL or XML file using the DDS.import() function. By default,
the buses will be created in the MATLAB base workspace. The ‘sldd’ option will import

the buses into the user specified Simulink Data Dictionary.

e DDS.import(‘IDL/XML file name’)
e DDS.import(‘IDL/XML filename’, ‘f) — ‘f* overwrites any existing objects in the

workspace.

e DDS.import(‘IDL/XML filename’, ‘sldd’, ‘myData.sldd’)
e DDS.import(‘IDL/XML filename’, ‘-ppDisable’) : —ppDisable command line
switch to disable IDL preprocessor for rtiddsgen.

real
real
real
real
real
real

real

http://www.mathworks.com/help/releases/R2012b/simulink/ug/using-enumerated-data-in-simulink-models.html

Table 5 defines IDL keywords/XML tags that are supported by the DDS.import
command and the resulting MATLAB and Simulink entity created. Note that the classes
DDS.Bus, DDS.Parameter, and DDS.AliasType are derived from built-in classes
Simulink.Bus, Simulink.Parameter, and Simulink.AliasType. These derived classes hold
additional meta data needed for proper interaction with DDS, such as key field,
sequence, and IDL module.

Table 6. IDL Import/Export Keyword Support for Simulink.

IDL Keyword | XML tag Simulink Comment

struct <struct> DDS.Bus

valuetype <valuetype> | DDS.Bus

n/a <member> | DDS.BusElement

enum <enum> Simulink.Enum A dynamic enum will be created.

const <const> DDS.Parameter

typedef <typedef> | DDS.AliasType

union <union> Simulink.Bus IA bus to hold the discriminator and a
sub-bus to hold all union cases.

7.1.3 Exporting Buses to IDL

DDS topics defined with buses can be exported to DDS IDL with the function
DDS.export(<busName>). Table 5 describes the Simulink entities that will be exported.

7.1.4 Representing DDS Types in MATLAB

Topic Types in MATLAB are represented by MATLAB classes. The MATLAB class for
a Topic Type is required when creating a data reader or data writer using the addReader()
or addWriter() method.

A MATLAB class must be created for each IDL structure in the Topic Type. The classes
must contain a “properties” section to define the type and size of each element. Optional
methods can be provided to indicate key fields (see section 7.1.6.2), sequences, and IDL
module keyword information. Note each IDL structures, including the top structure for
the Topic Type, must each be represented with a MATLAB class.

Although the classes can be created with a text editor, it is strongly recommended that
the user create MATLAB classes using the DDS.import() utility. See section 7.1.5 for
details. This utility creates MATLAB classes from struct definitions in IDL files,
including all metadata data (i.e. @key, @optional, sequence, etc.) required for proper
DDS operation.

»» dp.addWriter("AbsoluteTime", "AbsoluteTimeTopic')

IDL Representation

struct MuObsValue{ +_
unsigned short dimhandle;
unsigned short metric_id;
unsigned short state;
unsigned short unit_code;

classdef HulbsValue
[= properties
dimhandle = uintlé&(0)
metric id uintlea (0)
=tate = uintlé (0):;
unit code = uintlée(0);

}.dﬂumEHEME; ralue = double (0):
@Extensibility EXTEMSIBLE_EXTEMNSIBILITY dlend
21
struct AbsoluteTime{ chlassdef AbhsoluteTime
octet century; properties
octet year; century = uint8(0):
actet month; year = uint8 (0);
octet day; month = uintd (0)
nctethqur, day = uint8 (0}
octet minute; hour = uinta (0)
octet secand; S o
octet sec_fractions; =R e
¥ zecond = uinth (0);
l@Extensibility EXTEMSIBLE_EXTEMNSIBILITY sec_fractions = uinti (0);
end
struct DIMT_NumericObsVal end

char(16] udi; CIFiassa=t DIMT NumericObsVal

MuCbsialue value;

o
AbsoluteTime absolute_timestamp; Lhseists i lES_

¥ udi = int8(zeros(l,1&))

/i@Extensibility EXTENSIBLE_EXTENSIBILITY e

absolute timestamp = AbscluteTime);

end

Figure 21. Topic Type Defined with MATLAB Class.

7.1.5 Importing IDL into MATLAB

The DDS.import() utility can be used to automatically create MATLAB classes
from an IDL or XML file.

DDS.import(‘HelloWorld.idl’,’matlab’)
DDS.import(‘HelloWorld.idl’,’matlab’, ‘f”)
where:

e ‘HelloWorld.idl’ — IDL file containing Topic Type(s)

e ‘" —Force over-write if file already exists

e ‘matlab’ — create MATLAB classes for each Topic Type.

r

Table 7. IDL Import/Export Keyword Support for MATLAB.

IDL Keyword | XML tag MATLAB Comment

struct <struct> MATLAB class Filename will be
<module> <struct>.m
Struct elements become
properties of the class.

valuetype <valuetype> | MATLAB class Filename will be

<module> <struct>.m Struct
elements become properties of
the class.

enum <enum> MATLAB class Filename will be
<module> <enum>.m

const <const> N/A If used to define size of a
structure, value will be hard
coded in the property
dimensions.

typedef <typedef> N/A All typedefs in the IDL file
will be resolved to build-in
MATLAB types, nested
classes or enums. These
resolved types will be used
when defining class

properties.
module <module> Class method Optional
getIDModule().
Union <union> MATLAB class A class to hold the discriminator
and a sub-class to hold all union
cases.

7.1.6 Key Fields

7.1.6.1 Simulink

The DDS Blockset has support for key fields. DDS Topic Types are modeled in Simulink
using the data class DDS.Bus and DDS.BusElement, which are derived from the built-in
classes Simulink.Bus and Simulink.BusElement. The DDS.BusElement class has an
additional property for holding key field information.

If a Topic has a key, DDS can use that information to determine which data object is
being affected by your write operation. This allows DDS to implement QoS policies that
properly manage the information maintained by the system. The DDS Blocks will use
this key information when registering the DDS Topic Type. As a result, readers of data
being published by a write block can implement code to register instances for each key.
However, the DDS read block currently does not register separate instances for each key
field value.

»>» ShapeType.Elements (1)
ans =

BusElement with properties:

Inherited:
Optional: O
HName: 'color’
Complexity: 'real'
Dimensions: 128
DataType: 'DD5 CharArray'
Min: []
Max: []
DimensionsMode: 'Fixed®'
SampleTime: -1
Unit: '°
Description: ''

Figur'e 22. Key Field representation in a Simulink Bus.

7.1.6.2 MATLAB

MATLARB classes define key fields via a static method “getKeyFields” must be
added to the class definition to identify key fields. Following is an example class
for the RTI Shapes Demo. This file is in the
<matlabroot>/toolbox/psp/examples/DDSBlockset directory and is used for the
demo mldemo RTIShapes.m The first field (“color”) is a key field.

1 classdef ShapeType

2 properties

3 color = 'PUORFLE'; % default color

4 4 = int32 (D) ;

5 v = int32 (0) ;

& shapesize = int32(0);

7 end

g methods (Static = true)

g % return a wvector of booleans indicating which fields are key
10 % fields.

11 function keyFields = getKeyFields({)

12 keyFields alse, false, false]:
13— end

14 end

15 end

16

Figure 23. Topic Type and Key Fields defined with MATLAB Class.

7.1.7 IDL “Module” Keyword

The IDL that is used to define DDS Topic Types can include the “module” keyword.
This keyword is analogous to the C++ namespace keyword and it allows user to scope an
IDL identifier. When a structure is defined within an IDL module, the resulting DDS
fully qualified Topic Type name is: module::struct. For example, in the following IDL
example, the DDS Topic Type name would be: top::middle::inner::Image

1 module top {

2 module middle {

3 module inner

4 struct Image f{
5 long width;

[long height:;

7 iz

& iz

9 i

10 b

Figure 24 IDL Module Keyword

The following sections describe how the IDL modules and the double colon operator are
mapped to Simulink and MATLAB.

7.1.7.1 Simulink

Simulink does not support double colon operator, and also does not support package
directories. Bus, aliases, parameters, and enumerations that are created in the base
workspace will have the IDL module as a prefix. For the example, IDL file shown in
Figure 24, the DDS.Bus would be named ‘top_middle inner Image’.

The module information needs to be retained and used when registering the Topic Type
with DDS. The module information is captured in the ‘Module” property of the data
object as shown below.

E3 Model Explorer = | Ellil
File Edit Vview Tools Add Help

EO4E N ®HHEHS [|+ &8

Search: Iby Name LI MName: I (g4, Search

Model Hierarchy @ ¥ | 52 Contentsof: Base Workspace (only) DDS.Bus: top_middle_inner_DDSTypesBus

=S 9& Simulink Root

itional attributes |

= Standard a
Ea Base Workspace Column View: IData Objer vl Show Details 36 object(s) ' ~
. |mp::middle::inni:/)
IName i I\c'alue IHeaderFiIe |DatBType Il‘;l

= mlxice_Product... BaseType: I[]
= mlxice_Relative... TopLevel: Itrue
= mlxice_5a0bsV...
[EH mhxice_TIVE_T Extensibiity: |[]
= mlxice_Timespec
= mlxice_Top
= mlxice_TYPE
|EH| mixice_uD1
= mlxice_VMO
= top_middle_inn... - LI
4| | »

Revert Help Apply |

Contents I Search Results |

Figure 25. IDL Module Keyword in Simulink Bus.

7.1.7.2 MATLAB

MATLAB does not support double colon operator. MATLAB classes created for IDL
structs and enumerations will have the IDL module as a prefix. For the example, IDL file
in the previous section, the MATLAB class would be named
“top_middle inner Image.m”. The module information needs to be retained and used
when registering the Topic Type with DDS. The information is returned by the
“getIDLModule()” method in the MATLAB class. For example, an IDL struct named
“ice::AbsoluteTime” would be imported as a MATLAB class named
“ice_AbsoluteTime.m” as shown below.

7.1.7.3 Disabling Module Prefix

Some IDL files may have many nested <module> keywords. In these situations, it is
possible that the resulting object name or class name exceeds the MATLAB limit of 63
characters due to the large number of module names prefixed to the identifier. If the
identifiers are unique, this problem can be resolved by removing the prefixes from object
names or class names.

The following MATLAB preference can be used to prevent <module> names from being
used as prefixes.

setpref ('DDSBlockset', '"ModulePrefix', ‘false’);

To restore default behavior in which the module names are used as prefixes:

setpref ('DDSBlockset', '"ModulePrefix', ‘true);

classdef ice BbspluteTime

properties
century = uint8 (0)
year = uintd (0);
month = uintd (0)

day = uints (0);

hour = uintg (0)
minute = uintd (0) ;
second = uintd (0) 7
sec_fractions = uints (0);
end
methods (Static = true)
functi] tIDLModule ()
module = 'ice::';
end
end

end

Figure 26. IDL Module Keyword in MATLAB Class.

7.1.8 IDL Sequences

IDL supports the concept of a variable length vector, called a sequence. This section
describes how to interact with Topic Types that utilize sequences.

7.1.8.1 Simulink

Sequence information for Simulink is captured as the “Dimensions Mode” property of a
Simulink Bus Element as shown in Figure 28. Note that the “Dimension” field must be
set to the maximum size of the sequence. Support for sequences is limited to Simulink
support for variable sized signals. Specifically:
e Simulink does not allow a nested bus to be a sequence. It must have fixed length.
e Simulink does not allow an element in a nested array of buses to be a sequence.
An error will be displayed if a Simulink model uses a bus that has one of these unsupported
sequence patterns. The user will have to modify the IDL file to replace sequences with
fixed length vectors.

|Z Editor - C:\work\DD5\test\dSequence.idl

1 module ice {

2

3 enum ConnectionMode {

4 Serial,

5 Simulated,

L3 Hetwork

7 F:

g

5 const 5':101’1:

10 const short LENGTH UNSIGHED = 8;

11 const short LENGTH FLOAT = 3;

12

13 struct SegquenceStruct {

14 'nar, LENGTH SIGNED> s8:
Al sequence<octet, LENGTH_UNSIGHED> u8:
lé seguence<short, LENGTH SIGNED> =516;
17 sequence<unsigned short, LENGTH_UNSIGHNED> ulé;
18 sequence<long, LENGTH_SIGNED> =532;

Figure 27. IDL Sequence Example.

Figure 28. IDL Sequence in a Simulink Bus.

7.1.8.2 MATLAB

An additional method getSequenceFields() must return true for each field that is a
sequence. When specifying the size of the property in the MATLAB class, you must
specify the maximum sequence length from the IDL file.

struct Latency {
long sequence number:
sequence<octet, 8192>» data;

clas=sdef tencyClass

= 32 (0);
pints (zeros (8192,1));
end
methods (S5tat

% return a ctor of booleans indicating which fields are sequences
% fields.
function sequenceFields = getSegquenceFields ()
sequenceFields = boolean([false truel]): % second field is a seguence
end

For the MATLAB class syntax, sequence lengths less than the maximum sequence
length are supported.

|Name Value |Dit‘ﬂ-'me| Mi"l M Name Data/Bus Type G i | Di i | Minimuml Maxil | Dimensions Mode | Sample Time | Unitl
[s] ice_LENGTH_FLOAT 3 int16 £l Ll 2% - coal Variable 5
[s] ice LENGTH_SIGNED 32 int16 EL P s i e Ty ¥
[rer N 1
[sw] ice_LENGTH_UNSIGNED 8 it [1 [] S16 intle real 2 Variable 1
= eStruct i
X et ulé uinti6 real B8 Variable -1
= ice_SequenceStructNoEnum = 5
EH i —_— s32 int32 real 32 Variable -1
ans inti
u32 uint32 real B8 Variable -1
b8 boolean real 4 Variable -1

To send a sequence length less than the maximum length using classes, follow these
steps:

e Create an instance of the class

e Set the values for the sequence element.

e Write the class instance using the write() method.
Following is an example using the Latency class in Figure 34.

% create instance of the class
myData = Latency:
myData.segquenceNumnber = int32 (23)

% for this sample, length of sequence will be 4 rather than 8]
myData.data = uint8({[1 2 3 4]):

% create publisher with Latency class/topic type
dp = DD5.DomainParticipant;
dp.addWriter{'Latency', 'LatencyTopic'):

% write the data
dp.Publishers (l) .Writers(l) .write (myData)

Figure 29. Example data writer using sequences.

Note that sequences of structures are also supported. Following is an example MATLAB
class that has an element (struct seq) which is itself a sequence of structures.

klassdef ParentSeqClass

% this class is for testing seguence support. It has botha seqguence of

% base type (uintg) and a sequence of structures (ChildClass).

properties .
uint32 ID = uwint32(0): %Bkey rl'\u‘lax length of sequence of
struct_wec = repmat(ChildSegClass,1,8):-] struct ChildSeqClass -‘J
struct seq = repmat(ChildSeqgClas=s,1,6);:

end

methods (Static = true)

% return a vector of booleans indicating which fields are key

% fields.
function keyFields = getEeyFields ()

keyFields = [true, false, false]:

3 ——
=8 element "struct_seq” is a
“ sequence

function sequenceFields = getSequenceFields ||

sequenceFields = [false, false, true]:
end

end
end

Figure 30. MATLAB classes used to define sequences of IDL structures.

7.1.9 IDL Structure Inheritance

IDL has the concept inheritance in which a structure definition inherits structure elements
from a base structure definition. For example, the IDL code in Figure 31 defines a struct
StructA2 that inherits from StructB2.

" Editor - C:\work\DD5S\test\dA.idl*
struct StructB2

{
unsigned short vInti;

{

1

2

3

4 I

5 struct StructhA? : StructB2
[

7 unsigned long vMonthal;
g

g

Figure 31. IDL Structure Inheritance.

This section describes how inheritance can be represented in Buses and MATLAB
classes.

7.1.9.1 Simulink

A property in the DDS.Bus is used to indicate fields inherited from a base structure
definition and the name of the base structure.

For the previous example, the DDS Bus definition in Figure 28 would be created. Note
that:
1. The field vintA from struct StructB2 have been merged into Bus StructA2
The metadata field “BaseType” for bus SructA2 references the base struct/bus
StructB2
3. The field vIntA has the meta data “Inherited” set to true

=] Editor - G:\work\DDS\test\dA.idl*
struct StructB2

Column View: IDaia Obije vI Show Details 3 object{s)

‘-\T L L L L IS | MULIIUS) S US|
-

Bus elements (read only)

/! | Value

| HeaderFile | DataType | Mir

—Tame | name?MCommemw | Di

{ | MName
unsigned short vIntR\ % =
b = structaz

{

1

2

3

4

5 struct S5tructd? : StructBj
[

7 unsigned long vMonthi%g
g

¥

9

£ Model Explorer
Fie Edit View Tools Add Help

uintl6

HOl4 8 % HHDS el
search: | by Name =] rame: |
Model Hierarchy ’E E ":' Contents of: ._se Workspace (only) DDS.Bus: StructA2
2] i
’iéau;:;krt e e Standard atvbutes Additions
Moduie I
= structs2 AEEType: StructB2
= StructA2 Toplevel: Im..e
Extensibiity: [[]
P — 2
Contents Resuilts

Figure 32. IDL Inheritance in Simulink.

7.1.9.2 MATLAB

[1 wInta uint16 re 1

vMonthA2 uint32 r 1

BusElement with properties:

Key:
Inherited:
Hame :
Complexity:
Dimensions:
DataType:
Min:

Max:
DimensionsMode:
SamplingMode:
SampleTime:
DocUnits:
Description:

It is highly recommended that the DDS.import() utility be used to create MATLAB
classes from IDL to ensure the MATLAB classes are constructed properly. A MATLAB
class will be created for each IDL structure. MATLAB class inheritance is used to

represent IDL inheritance.

4]

1
'vInthA'
‘real"’

1
‘uintle’
[1

[1
"Fixed"
'Sanple based!
i b

]

" Editor - G\work\DDS\test\dA.idl*

1 struct StructB2 C\work\DDS\test\junk\StructB2.m*
2 { classdef StructB2
3 unsigned short vInth fiee properties
4 ¥: 3 vIntd = uintls (0);
= struct StructAZ : StructB 4 end
8 { 5 end
7 unsigned long vHMonthia?z: [
8
9
- C\work\DDS\test\junk\s

classdef Structi
properties
vMonthaZ2 = uint32 (0);
end

end

~1 R L Ry

Figure 33. IDL Inheritance in MATLAB.

7.1.10Unions
Unions are represented in Simulink and MATLAB as a bus/structure with two fields, one to
hold the discriminator and a second to hold the union data. The union data itself will be a sub
bus/struct that has a field for each case of the union. This convention is consistent with the
layout of the union code generated by rtiddsgen.

7.1.10.1 Simulink

Two buses are used to represent a union in Simulink. This convention was chosen to agree with the C
data structures that rtiddsgen creates when generating code for IDL unions. One bus will be created
with the same name as the union. This bus will always have 2 fields, dand u. The d field holds
the value of the discriminator. In the following example, the discriminator is a short integer, which in
Simulink is int16. The second field, u, is a sub-bus which has a field for each union member. The
sub-bus is named the same as the IDL union name, with a suffix of “ u”. In this example, there are
two union members, UA_Short and UA Char. The value of the d field indicates which of the union
member fields are active.

union UnionArrayDef switch (lgpg)

case -100 : long

UAE T aTe

UAD_Shor
UAD Char[4]

case 100 : shord

default : char

DDS.Bus: UnionArrayDef_u Minimum

b Standard attributes Ad

Launch Bus Editor

Bus elements (read onl

Data/Bus Type Complexity Dimension
int32 real 1

UnionArrayDef u real 1

Name Data/@8 Type Complexity Dimension Minimum P
UAD_Long int32 real 1
UAD_Short int16 real 2
UAD_Char int8 real 4

To properly simulate and generate code for unions, additional metatdata is stored in the DDS.Bus and
DDS.Buselement data objects. This metadata is automatically populated by the DDS.import()
function. However, if users manually create buses, they must properly set these additional fields for
proper operation:

UnionArrayDef =

Bus with properties:

'Parent’ indicates that this

Module: '' bus contains a Union
BaseType: []
TopLevel: 1
Extensibility: []
Union: 'Parent'
UnionDefaultCase: 3
Description: ' If the Union has a default
DataScope: 'Auto' case, 1-based index of the
HeaderFile: '' default. In this case,
Alignment: -1 "UAD_Char[3]" is the 3rd
Elements: [2x]1 DDS.BusElement case, so a 3is placed here

SUnionArrayDef_u F

Bus with properties:

Module:

BaseType:
TopLevel:
Extensibility:
Union:
UnionDefaultCase:

Set to 'Child' if this Bus
holds the union cases

Description: This union has 3
DataScope: cases
HeaderFile:
BAlignment:
Elements: [3x1 DDS.BusElement]

1

>>|UnionArrayDef u.Elements (1)

ans =

BusElement with properties:

Key:

Inherited:
Optional:
DiscriminatorValue:
Name:
Complexity:
Dimensions:
DataType:

Min:

Max:
DimensionsMode:
SampleTime:
Unit:
Description:

0 Cell array of

0 discriminator values for
0
{'-100"}
'"UAD_Long'
'real’

1

'int32'

[1

[1

'Fixed'

-1

T

this case.

T

7.1.10.2 MATLAB
Two MATLAB classes are used to represent a union in MATLAB. The only difference between the
MATLAB classes and the Simulink bus described in the previous section is the names of the
discriminator and union. MATLAB does not allow variables to begin with an underscore, so the
underscore is moved to a suffix as shown below.

40 union UnioniAr awitch (short)

41 {

42 case -200

43 case -100 : short UA_Short| ~

44 case 100 : char UA Char[4]:

45 }: classdef Unionfirray

='intl6(0);
repmat (Unionkrray u, 1, 1);

10

11 classdef lonArray u *

12 roperties
131 = UL_Short repmat (intle(0), 1, 2):
14 — UA Char repmat (intg (0), 1, 4);

154(= end

7.1.11 Simulink Data Dictionary

The DDS Blockset is compatible with the Simulink Data Dictionary. The following
steps should be followed:
1. Import IDL information inth a Simulink Data Dictionary using the
DDS.import command. See section 7.1.2.
2. Link the data dictionary to your Simulink model
a. set param(‘myModel’,’DataDictionary’,’myDD.sldd’);
3. Disable access to the base workpace (beginning in R2019a):
a. set param(‘myModel’, 'EnableAccessToBaseWorkspace',” off”)

Beginning in R2019a, if the user wants to access both the SLDD and the base workspace from
the Smiulink model, the user must also uncheck this box in the SLDD using the Model
Explorer

=] Model Explorer 4+ _0OX
File Edit View Tools Add Help

b 3 m

Model Hierarchy = = contents of: ...DSTypesBus.sldd' (only) |Filter Conte... Data Dictionary: dDDSTypesBus

« ®3 simulink Root -

H ase Workspac Column View: |Dictionary Obj ~ | Show Details 0 object(s) Information for: dDDSTY|
= dDDSTypesBus*

File: /mathworks/devel/s:
dDDSTypesBus.sldd

Created: 2018-10-02 08:20

Last Modified: 2018-10-03 09:41

Iact Cawad: 2012 10 N2 12.32

be Design Data Name Status Value DataType Dimensions Complexity Mil

1

Enable access to base workspace

Referenced Dictionaries

dDDSTypesBus A

Figure 34 Simulink Data Dictionary - controlling access to base workspace

7.1 Simulink Blocks

'E'E Simulink Library Browser — O X

<& | Enter search term V|-Pg.k il R AN =)
DDS Blockset

Simulink

Aerospace Blockset o ; b)& ;:Q Time P
ARINC653 Blockset 3 b r t ' Sop

Communications System Toolbox

Communications System Toolbox HDL Suppor o101 ™ P o101 Retp
Computer Vision System Toolbox
DDS Blockset

DSP System Toolbox

DSP System Toolbox HDL Support _ obrp : —%> ®> ; .:Q
Embedded Coder P >
HDL Coder l) >

DATA_READER DATA_WRITER DDS Target DDSTime

AL

>
et Ret Data [
Image Acquisition Toolbox < 0 I O I O I O I
Report Generator DOMAIN_PARTICIPANT PUBLISHER/SUBSCRIBER XmIAppRead XmIAppWrite
RF Blockset

Robotics System Toolbox
Figure 35. DDS Blockset.

7.2.1 Return codes
Most of the DDS blocks will have an output port indicating the status of the block. The
following table defines possible values for this signal. The enumerated type
DDS RETCODE TYPE is available to use in Simulink and MATLAB.

Table 8. DDS Return Codes.
Enumerated Type Integer equivalent
DDS RETCODE OK
DDS RETCODE ERROR
DDS RETCODE UNSUPPORTED
DDS RETCODE BAD PARAMETER
DDS RETCODE PRECONDITION NOT MET
DDS RETCODE OUT OF RESOURCES
DDS RETCODE NOT ENABLED
DDS RETCODE IMMUTABLE POLICY
DDS RETCODE INCONSISTENT POLICY
DDS RETCODE ALREADY DELETED
DDS RETCODE TIMEOUT
DDS RETCODE NO DATA
DDS RETCODE ILLEGAL OPERATION
DDS RETCODE NOT ALLOWED BY SEC

R [Q| NN || W~ O

O

—
(e

—
—

—
\]

—
(8]

7.2.2 DDS Target

This block controls the code generated for the DDS blocks in the Simulink model.
The main “DDS” tab contains general settings for controlling code generation.

This block has 6 configuration parametgers.
e DDS Target: Controls which version of DDS the generated code will be
compatible with.
o RTI Connext DDS(default)
o RTI Connext Micro DDS
e TypeSystem: Controls which type system the generated code will be compatible
with. When DDS Target is set to Micro DDS, only static typing is supported.

o Static(default)

o Dynamic
Discovery Mode: Controls the code generated for discovering other domain
participants. Only used when DDS Target is Micro DDS.

o Static

o Dynamic
IDL file: If the user has an IDL file for defining Topic Types used in the Simulink
model, this file can be placed here. If present, then this IDL file will be used with
rtiddsgen when TypeSystem == Static. If not provided, then Simulink will generate
an IDL file for use with rtiddsgen.
Sample Time: Sample time for the block.

DDs

Block Parameters: DDS Target X ‘

DDS_TARGET (mask) (link)

This block sets model-wide properties for DDS used when generating code
for the model. If the block is not present, the default is to generate
code for RTI Connext DDS with dynamic typing and the user specified QoS profile

DDS Target: Select either normal or micro DDS. If micro DDS, static typing
will be used and QoS profile will be ignored.

Type System: Select either Dynamic or Static typing. If static typing,
rtiddsgen will be used to generate the C code for reading/writing the topic.

Discovery Mode: For the Micro DDS target, select either dynamic or static discovery.

IDL File Name: If generating code and Type System == Static, this file will be used with
rtiddgsen to create stream code required by this model. Simulink Buses will also be
generated from this IDL file. Note that If there are Topic Types used by Data Reader/
Data Writer blocks which aren't defined in this IDL file, a compilation error will occur. If
an IDL is not provide, Simulink will create an IDL file based on the Simulink Buses used to
define Topic Types used in Data Reader/Data Writer blocks.

IP Address: Enter the IP address on the SLRT target. This should match either the target
settings or the values on a "UDP Configure’ block. If more than one IP address, seperate
with commas (10.10.10.111, 10.10.10.112).

Subnet: Enter the subnet for the SLRT Target. This should match either the target
settings or the values on a "UDP Configure' block.

Simulink Real-Time

DDS Target: RTI Connext DDS v
TypeSystem: Static =
IDL File Name:

Sample time (-1 for inherited) -1

Cancel Help Apply

Figure 36. DDS Target Block Dialog.

7.2.3 Domain Participant

This block creates a DDS Domain Participant. Quality of Service settings are obtained
from the user specified library and profile, contained on a QoS XML file.

Outport 1 is the address of the created Domain Participant, or NULL if not
successful.

Outport 2 is the return code from the create participant() DDS service. Refer to
the RTI Connext DDS documentation for explanation of the return codes from the
various Connext DDS functions.

RetCode | Description

1

If
DDS DomainParticipantFactory create participant with profile returns NULL,
DDS RETCODE ERROR else DDS RETCODE OK

There are three configuration items for this block:

e QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank to
use a default QoS. This link describes the rules RTI Connext DDS uses for locating
and loading QoS profiles. Refer to section 10 for detailed information regarding
QoS profiles and code generation. If left blank, the rules for locating a default QoS
profile will be used. This link provides details.

¢ Domain ID: This is the Domain ID number that will be used when creating this
domain participant.

e Sample Time: This has no effect on the operation of this block, as its logic
executes during initialization to establish a domain participant. It should be left as
-1 so that sample time is back-propagated from the data reader/writer block.

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

! source Block Parameters: DOMAIN_PARTICT x|

— DOMAIN_PARTICIPANT (mask) (link)

This block creates a DDS Domain Participant. Quality of Service
settings are obtained from the user specified library and profile,
contained on a QoS XML file.

Outport 1 is the address of the created Domain Partitipant, or NULL if
not successfull.

Outport 2 is the return code from the create_participant() DDS
service.

— Parameters

Domain ID:

o

QoS profile(lib::profile }:

| UserQosProfilesLibrary: :MonitorDefault

Sample time (-1 for inherited):

-1

oK | Cancel Help Apply

Figure 37. Domain Participant Block Dialog.

7.2.4 Publisher/Subscriber
This block can be configured as either a DDS Publisher or Subscriber.

Input port 1 must be connected to a DOMAIN PARTICIPANT block.

Outport 1 should be connected to a DataWriter (if configured as a Publisher) or a
DataReader (if connected to a Subscriber).

Outport 2 contains a ReturnCode for each of the DDS service called by this block.
Refer to the RTI Connext DDS documentation for explanation of the return codes
from the various Connext DDS functions.

RetCode | Description

1

If
DDS DomainParticipant create subscriber with profile
returns NULL, DDS RETCODE ERROR else DDS RETCODE OK

There are three configuration items for this block:

Sub/Pub: Select either publisher or subscriber from the dropdown list.

QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank to
use a default QoS. This link describes the rules RTI Connext DDS uses for locating
and loading QoS profiles. Refer to section 10 for detailed information regarding
QoS profiles and code generation. If left blank, the rules for locating a default QoS
profile will be used. This link provides details.

Sample Time: This has no effect on the operation of this block, as its logic
executes during initialization to establish a domain participant. It should be left as

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

-1 so that sample time is back-propagated from the data reader/writer block.

" Function Block Parameters: PUBLISHER {SUBSC x|

— PUBLISHER_SUBSCRIBER (mask) (link)

This block can be configured as either a DDS Fublisher or Subscriber.
The input port must be connected to a DOMAIN_PARTICIPANT block.
The first outport should be connected to a DataWriter (if configured
as a Publisher) or a DataReader (if connected to a Subscriber).
The second outport contains a vector of status for each of the 4 DDS
services called by this block.

— Parameters

Sub/Pub: \
QoS profile (lib::profile):

| UserQosProfilesLibrary: :MonitorDefault

Sample time (-1 for inherited):

|-1

OK Cancel Help Apply

Figure 38. Publisher/Subscriber Block Dialog.

7.2.5 Data Writer
This block writes Topic data to DDS.

e Input port]l must be connected to a Publisher block.

e Input port 2 must be a bus signal of the same type as the Topic/Bus Object Name.

e Output port 1 contains a vector of size 11 that holds status information for each of
the DDS services called to write data to DDS. Refer to the RTI Connext DDS
documentation for explanation of the return codes from the various Connext DDS
functions.

Table 9. DDS Return Codes for Data Writer.

RetCode [Description
Index
1 If
DDS DynamicDataTypeSupport new() returns NULL, DDS RETCODE ERROR else
DDS RETCODE OK
2 Status returned by DDS_DynamicDataTypeSupport_register type()
3 If
DDS DomainParticipant create topic_with profile() returns NULL,
DDS RETCODE ERROR else DDS RETCODE OK
4 If publisher has not been created yet, this will return
DDS RETCODE PRECONDITION NOT MET
5 Not used
6 Status returned by DDS DomainParticipantFactory get datawriter qos from_profile
7 If DDS Publisher create datawriter() returns NULL, DDS RET CODE ERROR, else
DDS RETCODE OK
8 Not used
Not used
10 If DDS DynamicDataTypeSupport create data() returns NULL,
DDS RET CODE ERROR, else DDS RETCODE OK
11 Status returned by DDS DynamicDataWriter write()

There are four configuration items for this block.

e Topic Type/Bus Object Name: This is the name of the Simulink Bus object that
is the data type for input port 2. This Bus Object name will be used for the DDS
Topic Type when the Topic type is registered with DDS. Data readers wishing to
read this topic data must use the same Topic Type/Topic name combination.

e Topic Name: This is the name that will be used, along with the Topic Type, when
registering this Topic with DDS. Data readers wish to read this topic data must
use the same Topic Type/Topic name combination.

e Sample Time: The sample time controls the rate at which this topic data will be
written to DDS. If inherited, Simulink will use implicit rules for determining the
sample time.

e QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank to
use a default QoS. This link describes the rules RTI Connext DDS uses for locating
and loading QoS profiles. Refer to section 10 for detailed information regarding
QoS profiles and code generation. If left blank, the rules for locating a default QoS
profile will be used. This link provides details.

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

" Function Block Parameters: DATA_WRITER x|

— DATA_WRITER (mask) (link)

This block writes Topic data to DDS.

The first input port must be connected to a Publisher block.

The second input port must be a bus signal of the same type as the
Topic/Bus Object Name.

The output port contains a vector of status information for each of the
DDS services called to write data to DDS.

— Parameters

Topic Type/Bus Object Name:

[shapeTypel

Topic Name:

| Circle

QoS profile (lib::profile):

| UserQosProfilesLibrary: :MonitorDefault

Sample time (-1 for inherited):
|-1

oK Cancel Help Apply

Figure 39. Data Writer Block Dialog.

7.2.6 Data Reader
This block reads data for the specified Topic/Bus Object Name/Topic Name.

e The first inport must be connected to a SUBSCRIBER block.

e The first outport contains the data read from DDS. The signal must a bus and the
same type as the Topic/Bus Object Name.

e The second outport contains a vector of status information for each of the DDS
services used to read the data. Refer to the RTI Connext DDS documentation for
explanation of the return codes from the various Connext DDS functions.

e The optional third output contains the Samplelnfo data structure. It contains a large
amount of metadata provided by DDS for the received sample. Refer to RTI
documentation for a detailed description of this data structure.

Table 10. Data Reader Return Codes.

RetCode | Description
Index
1 If
DDS DynamicDataTypeSupport new() returns NULL, DDS RETCODE ERROR else
DDS RETCODE OK
2 Status returned by DDS DynamicDataTypeSupport register type()
3 If
DDS DomainParticipant create topic_with profile() returns NULL,
DDS RETCODE ERROR else DDS RETCODE OK
4 If subscriber has not been created yet, this will return
DDS RETCODE PRECONDITION NOT MET
5 Not used
6 Status returned by DDS DomainParticipantFactory get datareader qos from profile
7 If DDS Publisher create datareader() returns NULL, DDS RETCODE ERROR, else
DDS RETCODE OK
8 If WaitSet is enabled, then return value from DDS WaitSet wait. If Filter is used, and filter
is not matched, return DDS RETCODE NO DATA, else return DDS RETCODE OK.
9 If samplelnfo.valid data = TRUE, status returned by DDS DynamicDataReader read()or
DDS DynamicDataReader take(). If sampleInfo.valid data = FALSE,
DDS RETCODE NO DATA
10 When configured for Topic filtering, if
DDS DomainParticipant create contentfilteredtopi with_filter() returns NULL,
DDS RET CODE ERROR, else DDS RETCODE OK
11 Not used.

There are 11 configuration items for this block:

e Topic Type/Bus Object Name: This is the name of the Simulink Bus object
that is the data type for input port 2. This Bus Object name will be used for the
DDS Topic Type when the Topic type is registered with DDS. Data readers
wishing to read this topic data must use the same Topic Type/Topic name
combination.

e Topic Name: This is the name that will be used, along with the Topic Type,
when registering this Topic with DDS. Data readers wish to read this topic data
must use the same Topic Type/Topic name combination.

e QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank
to use a default QoS. This link describes the rules RTI Connext DDS uses for
locating and loading QoS profiles. Refer to section 10 for detailed information
regarding QoS profiles and code generation. If left blank, the rules for locating a
default QoS profile will be used. This link provides details.

e Sample Time: The sample time controls the rate at which this topic data will
be written to DDS. If inherited, Simulink will use implicit rules for
determining the sample time.

e Outports for Sample Info: When this box is checked a third outport will be
added to output the Samplelnfo for the received data sample. The definition of
the fields in the Samplelnfo bus can be found here.

e Waitset: If this box is checked, a waitset will be used to wait for the next
available data. When not checked, the block will poll DDS for available data.
If not data is available, the block will return bDs RETCODE NO DaATa . If
waitset is enabled, a read condition will be created with the following settings.
The Simulink simulation will be blocked until data is received or a timeout
occurs. If the waitset timesout, the block will return DDS RETCODE TIMEOUT.

O DDS_NOT READ SAMPLE STATE
O DDS_ANY VIEW STATE
O DDS_ANY INSTANCE STATE

e If a waitset is enabled, this is the timeout used. Otherwise, this parameter is
ignored.

e Read()/Take(): Select read() or take() for obtaining the DDS data. Read() will
leave the DDS data in DDS memory. Take() will remove the data from DDS
memory.

e FilterType: Select from this list to enable Content Topic Filtering. Select from:
No Filter, DDS _SQLFILTER NAME or
DDS STRINGMATCHFILTER NAME.

e FilterExpression: SQL filter expression. Refer to the DDS User’s Manual for a
complete description of the SQL expression syntax.

e FilterParameters: If any parameters are used in the filter expression (i.e. %0, %],
etc.), then you must provide a cell array of strings, one for each parameter in the
filter expression. Literal constants must be in the form of a string (i.e. ‘23”).
Strings must inside single quotes (i.e. © * ‘PURPLE’ ¢ ©). Workspace variables
can be used. In this case, the workspace variable must be a string (i.e. x = ‘35’
myColor = * * ‘GREEN’ © “).

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault
https://community.rti.com/rti-doc/510/ndds/doc/html/api_dotnet/classDDS_1_1SampleInfo.html

Block Parameters: DATA_READER

— DATA_READER (mask) (link)

This block reads data for the specified Topic/Bus Object Name.

The first inport must be connected to a SUBSCRIBER block.
The first outport contains the data read from DDS. The signal
must a bus and the same type as the Topic/Bus Object Name.
The second outport contains a vector of status information for
each of the DDS services used to read the data.

— Parameters

Main | Scheduling | Filtering
Topic type/Bus Object Name:

| EnumBus

Topic Name:

|m1_.rEnum

Qo5 profile (lib::profile or leave blank for default):

Sample time (-1 for inherited):

|-1

™ Outport for Sample Info

oK cancel | el | pply

Figure 40. Data Reader Block Dialog.

" Function Block Parameters: DATA_READER

— DATA_READER (mask) (link)

of the DDS services used to read the data.

This block reads data for the specified Topic/Bus Object Name.

The first inport must be connected to a SUBSCRIBER. block.

The first outport contains the data read from DDS. The signal must a
bus and the same type as the Topic/Bus Object Name.

The second outport contains a vector of status information for each

— Parameters
Main Scheduling | Filtering
W+ WaitSet

WaitSet Timeout{sec):

|2

Read method: |Take()

oK Cancel

Help

Apply

" Function Block Parameters: DATA_READER x|

— DATA_READER (mask) (link)

This block reads data for the specified Topic/Bus Object Name.

The first inport must be connected to a SUBSCRIBER. block.

The first outport contains the data read from DDS. The signal must a
bus and the same type as the Topic/Bus Object Name.

The second outport contains a vector of status information for each
of the DDS services used to read the data.

— Parameters

Main | Scheduling Filtering

Filter Type |DDS_SQLFILTER_NAME |

Filter Expression
| 'color MATCH 20 and x > %1'

Filter Parameters

| {"PURPLE™, '50"}

oK Cancel Help Apply

Figure 41. Data Reader Block Dialog - Filtering.

7.2.7 DDSTime

This block returns the current system time from DDS.
e Outport 1 is a Simulink Bus of type DDS Time t. The first field is int32
seconds. The second field is unit32 nanoseconds.
e Outport 2 is the return code with status of the DDS service
DDS DomainParticipant get current time().

7.2.8 XML Application Creation Read
This block uses the XML Application creation capabilities of DDS to read/take a DDS
sample. When using this approach, a single block replaces the traditional Domain
Participant/Subscriber/Data Reader blocks. Refer to 7.5 for a detailed description of the
XML Application Simulink blocks and associated XML configuration file.
There are 2 or 3 output ports for this block.

The first outport contains the status of the read/take operation. Refer to Table
7Table 7 for a description of this output port.

The second outport contains the data read from DDS. The signal is a bus
whose datatype will be obtained from the XML configuration file based on
the values entered in the block dialog.

The optional third output contains the Samplelnfo data structure. It contains a
large amount of metadata provided by DDS for the received sample. Refer to
RTI documentation for a detailed description of this data structure.

Main

Block Parameters: XmlAppRead X
XmlAppRead (mask)

This block reads data for the specified Topic/Bus Object Name.

The first inport must be connected to a SUBSCRIBER block.

The first outport contains the data read from DDS. The signal must
a bus and the same type as the Topic/Bus Object Name.

The second outport contains a vector of status information for each
of the DDS services used to read the data.

Parameters

ParticipantLibrary::Participant

Scheduling Filtering

|'myParticipantLibrary::BasicParticipant' | i

Subscriber::DataReader

|'BasicSu bscriber::BasicDataReader’ | :

] Outport for Sample Info

Sample time (-1 for inherited) |-1 | &

Cancel Help Apply

Figure 42. XML Application Create Data Reader.

There are 10 configuration items for this block:

ParticpantLibrary::Particpant: The particpant library and particpant tags from
the XML file used to define this particular XML Application Create Read
block.

Subscriber::DataReader: The subscriber and data reader tags from the XML
file used to define this data reader.

Sample Time: The sample time controls the rate at which this topic data will
be written to DDS. If inherited, Simulink will use implicit rules for
determining the sample time.

Outports for Sample Info: When this box is checked a third outport will be
added to output the Samplelnfo for the received data sample. The definition of
the fields in the Samplelnfo bus can be found here.

Waitset: If this box is checked, a waitset will be used to wait for the next

https://community.rti.com/rti-doc/510/ndds/doc/html/api_dotnet/classDDS_1_1SampleInfo.html

available data. When not checked, the block will poll DDS for available data.
If not data is available, the block will return bDs RETCODE NO DaTa . If
waitset is enabled, a read condition will be created with the following settings.
The Simulink simulation will be blocked until data is received or a timeout
occurs. If the waitset timesout, the block will return DDS RETCODE TIMEOUT.

O DDS_NOT READ SAMPLE STATE

O DDS_ANY VIEW STATE

O DDS_ANY INSTANCE STATE

If a waitset is enabled, this is the timeout used. Otherwise, this parameter is
ignored.

Read()/Take(): Select read() or take() for obtaining the DDS data. Read() will
leave the DDS data in DDS memory. Take() will remove the data from DDS
memory.

FilterType: Select from this list to enable Content Topic Filtering. Select from:
No Filter, DDS _SQLFILTER NAME or

DDS STRINGMATCHFILTER NAME.

FilterExpression: SQL filter expression. Refer to the DDS User’s Manual for a
complete description of the SQL expression syntax.

FilterParameters: If any parameters are used in the filter expression (i.e. %0, %],
etc.), then you must provide a cell array of strings, one for each parameter in the
filter expression. Literal constants must be in the form of a string (i.e. ‘23”).
Strings must inside single quotes (i.e. © * ‘PURPLE’ ©). Workspace variables
can be used. In this case, the workspace variable must be a string (i.e. x = ‘35’
myColor = * * ‘GREEN’ © “).

7.2.9 XML App Creation Write

This block uses the XML Application creation capabilities of DDS to write a DDS
sample. When using this approach, a single block replaces the traditional Domain
Participant/Publisher/Data Writer blocks. Refer to 7.5 for a detailed description of the
XML Application Simulink blocks and associated XML configuration file.

The block has 1 input port and 1 output port.

Input port 1 must be a bus signal containing the data to be written. The type of
this port must match the type defined in the XML file and referenced by the block
dialog parameters.

The first outport contains the status of the write operation. Refer to Table 7 for

a description of this output port.

Block Parameters: XmlAppWrite X

XmlAppWrite (mask)

This block writes Topic data to DDS.

The first input port must be connected to a Publisher block.

The second input port must be a bus signal of the same type as the
Topic/Bus Object Name.

The output port contains a vector of status information for each of
the DDS services called to write data to DDS.

Parameters

Participant |'myParticipantLibrary: :BasicParticipant' | :
Data Writer |'BasicPuinsher::BasicDataWriter' | H
Sample time (-1 for inherited): |-1 | i

Cancel Help Apply

Figure 43. XML Application Create Data Writer.

There are three configuration items for this block.

e ParticpantLibrary::Particpant: The particpant library and particpant tags from
the XML file used to define this particular XML Application Create Read

block.

e Publisher::DataWriter: The publisher and data writer tags from the XML file

used to define this data reader.

e Sample Time: The sample time controls the rate at which this topic data will
be written to DDS. If inherited, Simulink will use implicit rules for

determining the sample time.

7.3 Simulating with Accelerator Modes

When a Simulink model is simulated, the model can be configured to execute in one of

six different simulation modes.

ols Help

II:E';I |][> ‘@"’ |2 INu:urmaI j é (‘:f_;lv

Accelerator

Rapid Accelerator
Software-in-the-Loop (SIL)
Processor-in-the-Loop (PIL)
External

+
+
+

s

For the Accelerator and Rapid Accelerator modes, Simulink converts the Simulink model
to C code and compiles that code into a MEX file. The simulation executes the compiled
C code to achieve improved performance.

7.3.1 Accelerator Mode

Since code will be generated, compile and linked with the RTI DDS libraries, a model
configuration parameter must be set for proper compilation.

Windows:

set param(<model>, 'AccelMakeCommand', 'make rtwMEX OPTS="-DRTI WIN32"'")
Linux and MacOS:

set param(<model>, 'AccelMakeCommand', 'make rtwMEX OPTS="-DRTI UNIX"')

7.3.2 Rapid Accelerator Mode

There is not a similar configuration setting as described in the previous section for Rapid
Accelerator mode. In order to run in Rapid Accelerator mode on Linux computers, the
user will need to modify the make file and rebuild the Accelerator mode .mex file. The
make file is located in : /slprj/raccel/<model>. Edit the file <model>.mk and add the —
DRTI UNIX macro definition to the following line.

105 GEN_SAMPLE MAIN a
104

107 OPTIMIZATION FLAGS

1082 ADDITIONAL LDFLAGS

/od Jov- / DNDEEUG
109

110 ERACCEL PARARLLEL EXECUTICH = 0O

Once this is done, rerun the make file by typing the following at the MATLAB prompt:
system(‘gmake —f <model>.mk’)

This will rebuild the accelerated model MEX file. You can now return to the Simulink
model window and push the “run” button to run the Accelerated mode simulation.

7.4 Code Generation from Simulink Models

This section provides additional information on the code generated from Simulink
models containing DDS Blocks

7.4.1 Quality of Service

When the DDS Target is set to RTI Connext DDS, the generated code will use the same
QoS profile specified in the DDS Block mask and used during simulation. RTT Connext
DDS Micro does not support QoS profiles. As a result, the QoS profile specified in the
Block dialog will be ignored. Rather, the generated code will have hard-code QoS
settings, along with a preprocessor macro that the user can define to over-ride the default
settings, if desired. Following is an example code fragment for a Domain participant
block:

#if defined(SIMULINK_DOMAIN PARTICIPANT 0_QOS)
SIMULINE DCMAIN PARTICIPANT O QOS

N

— ———‘fMa::ro to over-ride
f* use default Qos */ ‘ default QGS

struct DDS DomainParticipantQos dp gos =
DDS DomainParticipantQos INITIALIZER;

char* peer = "127.0.0.1"; /* default to loopba

ck */
CSAPI Stdio snprintf(dp gos.discovery.discovery.name, 2, "MATLAE") ;
DDS StringSeq set maximum(&dp gos.discovery.initial peers,1); N
DD5S StringSeq set length(&idp gos.discovery.initial peers,1): Default .
*DDS_StringSeq_get_reference(Edp_qos.discovery.initialqpae;; 1 [338

DDS String dup(peer); T
dp gos.resource limits.max destination ports = 32;
dp gos.resource limits.max receive ports = 327
dp gos.resource limits.local topic allocation = 2;
dp gos.resource limits.local type allocation = 27
dp gos.resource limits.local reader allocation = 1:

dp gos.resource limits.local writer allocation = 1;
dp gos.resource limits.remote participant allocation = &;
dp gos.resource limits.remote reader allocation = 8;

dp gos.resource limits.remote writer allocation = 87

mEnum B.DCHMATH PARTICIPANT = DDS DomainParticipantFactory create participant
(D5 _TheParticipantFactory, 0, &dp gos, NULL, DDS_STATUS MASE NOHNE) ;

Figure 44. DDS Connect Micro DDS QoS Example.

7.4.2 DDS Type System

The Simulink blockset supports two options for generating the code that registers the
DDS Topic Types: Static and Dynamic. For the Static type system, the rtiddsgen utility
is used to generate C code to statically define Topic Type and C code to read/write
samples between the DDS memory and the applications memory.

With the Dynamic type system, the DynamicData APIs are used to register Topic Types
and send/receive sample data. Applications that use the DynmaicData API will be slower
than the Static type system.

7.5 XML Application Creation

RTI Connext DDS Professional includes a set of APIs that allow an application to create DDS entities
(participants, subscribers, publishers, readers, writers) from an XML file. This is accomplished by adding
additional information into the XML file that previously contained QoS information. Error! Reference
source not found.Figure 46 contains an example Application Creation XML file. The highlighted tags

from the XML file are entered into the dialog box for the XMLAppWrite Simulink block shown in Error!
Reference source not found.Figure 47.

4 E} <Lypes>

5 <struct name="BasicType">

[<member name="x" type="int3I2"/>

7 <member name="y" type="int3IZ2"/ >

8 </struct>

] </types>

10

11 <domain library name="MathWorks">

12 <domain name="BasicDomain" domain id="0">

13 <register type name="BasicT Registered" type ref="Basi pe"S >

14 <topic name="BasicTopicName" register_type_ref="BasicTyp Registered"/>
15 </domain>

16 </domain library>

17

18 <domain participant libra®fy name="myParticipantLibrary

19 <domain participant me="BasicParticipant” domajj.Ef="MathWorks::BasicDomain">
20 <publisher name="BasicPublisher

21 <data writer name="EBasicDataWriter" topic_:ef="333;c?cp;cﬂame"ﬁ>
22 </publisher>

23 <subscriber name="BasicSubscriber">

24 <data reade®.pame="EasicDataReader' #Bpic ref="BasicTopicName">
25 </data_ reader>

26 </subscriber>

27 </domain participant>

28 <fdomain_participant_library>

Figure 45. Example Application Creation XML File.

§E| Block Parameters: XmlAppRead X
XmlAppRead (mask)

This block reads data for the specified Topic/Bus Object Name.

The first inport must be connected to a SUBSCRIBER block.

The first outport contains the data read from DDS. The signal must a
bus and the same type as the Topic/Bus Object Name.

The second outport contains a vector of status information for each
of the DDS services used to read the data.

Parameters

Main Scheduling Filtering
ParticipantLi - icipant
(EnyParticipantLibrary: :BasicParticipa nt') | i
— —
Subscriber: :DataReader

_____-————_————-.-___
q 'BasicSubscriber: :BasicData Reeicl@ | i

[outport for Sample Info

Sample time (-1 for inherited) |-1 | i

Cancel Help Apply

Figure 46. XML Application Create Data Reader Block Dialog.

The XML file can be created with a text editor, or it can be created using the RTI System Designer. Refer
to rti.com for more details on RTI System Designer. Error! Reference source not found. Figure 48 shows
RTI System Designer being used to edit the XML file shown in Error! Reference source not found.Figure
46.

(]

r t' e . = Current Project: mAtomic
\ Projects...

Types QoS Domain Participant Structured XML

«” Expand © New library (2]
Domain participant name: myParticipant

|:| Referenced Participant Libraries

Participant Libraries Participant Qos: Default QoS
=] myParticipantLibrary
(yEarticlpant Publications Subscriptions
= myPublisher
.. myDataWriter ji
= mySubscriber Publishers
4 myDataReader
Publisher Name Qos
mvPiihlisher Nefault OnS
Data Writers

Figure 47. RTI System Designer.

Note that the XML file also contains data type information. When using XML Application Creation blocks,
an IDL file is no longer required. The following utility can be used to convert an IDL file to equivalent
XML format.

DDS.Utilities.convertIDLtoXML (<myIDL.id1>)

RTI DDS uses the same rules used for QoS XML files to locate and load the XML file. For
example, the content shown in Figure 47. Example Application Creation XML File.can be placed
in USER_QOS_PROFILES.xml in the current MATLAB working directory.

Once the XML file has been created, the DDS.import() utility must be used to create buses in the
MATLAB workspace/Simulink Data Dictionary that will be used by your Simulink model. Simply
call the DDS.import() utility for the XML file that contains your XMP Application Creation
information. For example, of you have placed your XML code into USER_QOS_ PROFILES.xml,
then the following command will create corresponding buses/enums.

DDS.Import (‘USER QOS PROFILES.xml’)

7.5.1 Code Generation
The XmlApp DDS blocks support both the Static and Dynamic type systems for code generation,
but simulation in Simulink uses only Dynamic Type system. The XML files used with the
XmlApp blocks must be set up differently depending on whether Dynamic or Static typing is being
used. Since simulation with the XmlAPP blocks uses only Dynamic type system, if the code is
generated using the Static type system, the XML file must be modified.

The following example shows the changes required to an XML file that is set up for Dynamic type
system to be compatible with code generated for the Static type system:

=
Different ¥ML code is required based on whether dynamic or static
type system is used. Comment out one of the following sectionas.
Note that SImulink simulation only works with with Dynamic Typeing.
However, generated code can be either Dynamic or Static as
specified int he DDS Target block.

Dynamic Type System
—>
<domain_library name="MathWorks">
<domain name="Bagi i =S5

er type name="BasicTypeRegistered"” r.ype_ref="B'aaicT e
<topic name="BasicTopicName"™ reglster_type_rw
</domain> '
</domain_library>

€
Static Type System

<domain_library name="MathWorka">

<domain name="BasicDomain" domain_id="0"> T
<topic name="BasicTopicName" regisr.er_type_ref
</domain> T
</domain_library>

8 MATLAB Toolbox

Refer to 7.1.3 for a detailed description of how to define Topic Types for the
MATLAB toolbox.

Refer to the DDS Blockset documentation in MATLAB for a detailed description of each
class and method

8.1 DDS Functions

DDS.discoveryMonitor Return a list of particpants, publishers and subscribers for a given domainID

DDS.export Export a Simulink Bus to an IDL file.

DDS.getProfiles Returns a list of all available QoS profiles.

DDS.import Import IDL file into Simulink Bus or MATLAB or Class

DDS.rtiddsgen Generate C code for the provided IDL file using RTI DDS Connext rtiddsgen
DDS.version Return version of RTI Connext DDS and micro DDS

8.2 DDS Classes

DDS.DomainParticipant

-Address : uint64

+Profile : String

+Publishers : DDS.Publisher
+Subscribers : DDS.Subscribers

< +Status : DDS_RETCODE_TYPE <

1 +addPublisher() 1

+addSubscriber()

+addWriter()

+addReader()

+read()

+take()

+write()

0 * o *
DDS.Publisher DDS.Subscriber

-Address : uint64 -Address : uint64
+Profile : String +Profile : String
+Writers : DDS.DataWriter +Readers : DDS.DataReader
+Status : DDS_RETCODE_TYPE Status : DDS_RETCODE_TYPE
+addWriter() +addReader()
+write() +take()

0. +read()

191
0| * ol *
DDS.DataWriter DDS.DataReader

-Address : uint64 -Address : uint64
+Profile : String
+TopicType : String
+TopicName : String +TopicName : String
+Status : DDS_RETCODE_TYPE +Filter : DDS.ContentFilter
+write() +WaitSet : Boolean
+WaitSetTimeout : int32
+Status : DDS_RETCODE_TYPE
+take()
+read()

+Profile : String
+TopicType : String

8.3 MATLAB Performance

By default, the DDS MATLAB functions uses class instances to send/receive sample
data. However, MATLAB handles structures more efficiently than MATLAB classes.
If you will be sending/receiving samples at a high rate, it is recommended that you
convert class instances to structures before sending data and that you provide a

preallocated structure for receiving data. Use the function DDS.Utilities.toStruct to
convert a DDS class instance to a struct. Following is an example:

>DDS.import(‘ShapeType.idl’,’matlab’);

>myShape = ShapeType; % create an instance of ShapeType class
>myShape.x = int32(10);

>myShape.y = int32(20);

>myShape.shapesize = int32(25);

>myShape.color = ‘RED’;

>myShapeStruct = DDS.Utilities.toStruct(myShape);
>

>dp = DDS.DomainParticipant;
>dp.addWriter(‘ShapeType’,’Circle’);
>dp.write(myShapeStruct)

>

>dp.addReader(‘ShapeType’, Triangle’);
>sampleStruct = dp.read(myShapeStruct);

9 Topic Content Filtering

Both the Simulink blockset and MATLAB toolbox support content filtering on topic data.
In both cases, the filter is defined and applied to the data reader.

9.1 Simulink

Filtering for the Data Read block is available on the “Filtering” tab of the block dialog.
Refer to section 7.2.5 for details of the block.

The example model rtwdemo RTIShapesRead that is part of the PSP demonstrates topic
filtering with the RTI Shapes Demo.

¥, rowdemo_RTIShapesRead N =10
Fle Edit View Display Diagram Simulation Aralysis Code Tools Help
&~ @ Ee-E-wgOP - - 3 & @ -
rtwdeme_RTTShapesiicad |
© |[Pa|rtwdemo_RTIShapesRead hd
@
£ Thismodel subscribesto Circle Topicthat is compatible with
the RT| Shapes Demo. To see thisin the RTI ShapesDemo, setitup in the
=

default domain (domain ID 0) to publish a YELLOW circle._

r t ' The Data Reader is configured to filter color of YELLOW and x > 25

[

[4]

DDS Target

> k=0
’ ub g i
—_— = > XY Graph
= . ' oro1~| =
A~ = g Terminatori
<> =
t Terminat
o PUBLISHER/SUBSCRIBER2 oo
= Terminator2
DOMAIN_PARTICIPANT
1
»
Ready [134% FixedStepDiscrete

In this example, a topic filter is defined.

[Function Block Parameters: Circle x|

—DATA_READER (mask) (link)

This block reads data for the specified Topic/Bus Object Name.

The first inport must be connected to a SUBSCRIBER block.

The first outport contains the data read from DDS. The signal must a
bus and the same type as the Topic/Bus Object Name.

The second outport contains a vector of status information for each
of the DDS services used to read the data.

—Parameters

Main | Scheduling Filtering

Filter Type |DDS_SQLFILTER_NAME =l

Filter Expression

| 'color MATCH %0 and x > %1'

Filter Parameters

I{myCUIUr, myLimit}

oK | Cancel Help Apply

9.2 MATLAB

Filtering for the MATLAB DDS is only supported when using MATLAB classes to
define DDS Topic Types. Before creating a Data Reader, the user must first create and
initialize the topic filter using the DDS.contentFilter class. In the following example, a
content filter is created to look for all YELLOW shapes with x position > 25.

>> myFilter = DDS.contentFilter;

>» myFilter.FilterExpression = 'color MATCH %0 and x > %1°';
>» myFilter.FilterParameters = {'"'YELLOW'""', "25"'"};

>» myFilter

nyFilter =
contentFilter with properties:
FilterType: 'DDS SQLFILTER NWAME'

FilterExpression: 'color MATCH %0 and x > %1°
FilterParameters: {''YELLOW'' '25'}

Once the filter is defined, a Data Read is created with this newly created filter as follows:

>» dp = DD5.DomainParticipant;

>» dp.addReader ('ShapeType', 'myShape', 'UzerfQosProfileslibrary::MonitorDefaunlt’',
[1, true, 3, ReadMethodType.TREE, [] ‘m’

10 Quality of Service (QoS)

DDS provides a significant amount of configurability for DDS operation via Quality of
Service parameters. To simplify the DDS Blockset/Toolbox, QoS profiles are used for
configuring QoS parameters for Simulink and MATLAB. Simulink and MATLAB
follow the RTI DDS Connext rules for file name and path search rules to locate QoS
profile libraries. The DDS Blockset provides a function for determining the list of
available profiles.
e DDS.getProfiles — returns a list of available QoS profiles. Refer to RTT Connext
DDS documentation for rules on defining and naming profile libraries.
The code generated from a Simulink model for a DDS block will have one of two forms,
based on whether or not a QoS Profile is specified. For example, QoS profile
myLibrary::myProfile is specified for a Domain Participant, the generated code will look
like this:

DDS DomainParticipantFactory create participant with profile(
DDS TheParticipantFactory,
23,
"myLibrary",
"myProfile",
NULL,
DDS_STATUS MASK NONE) ;

If the QoS Profile is left blank, the code is generated to use a default QoS profile:

DDS DomainParticipantFactory create participant (
DDS TheParticipantFactory,
23,
&DDS_ PARTICIPANT QOS DEFAULT,
NULL,
DDS_STATUS MASK NONE) ;

This link explains how the values for a default QoS profile are determined.

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

11 Limitations
This section describes known limitations with the DDS Blockset/Toolbox.

11.1 Simulink

e Sequences

o Static Data Type code generation will generate incorrect code

o Sequence of IDL structs are not allowed. Simulink does not allow a
nested bus to be a sequence. It must have fixed length.

o A vector of an IDL struct that contains a sequence element is not allowed.
Simulink does not allow an element in a nested array of buses to be a
variable length.

e Simulink/Embedded Coder converts all multi-dimension arrays to one-dimension
vectors. This causes a conflict with C structures defined for multi-dimensional
arrays by rtiddsgen for Static TypeSystem. A compilation error will therefore
occur when compiling the code from a Simulink model with the struct defintions
in the .h files created by rtiddsgen.

One workaround is to not include header files from rtiddsgen into the code
generated for the Simulink model. The risk of doing this is that code from
rtiddsgen will be linked with code from Simulink model that is compiled with
different header files to define the same typedef. If there are any differences in
the struct definitions other than flattened matrices, this will likely result in a
runtime error. If the user wishes to assume this risk, then the following
preference can be enabled:

- setpref(‘DDSBlockset’,”MatrixSupport’,’true’);
This option will compile the .c files from rtiddsgen with the struct typedefs from rtiddsgen
that match the multi-dimension arrays in the IDL file. It will then compile the .c files from
the Simulink model with the struct typedefs from the flattened vectors in the struct
definitions created by Simulink Coder/Embedded Coder.

e The IDL string data type is not supported for static type code generation. While
Simulink has recently added support for strings, the code generated for strings
by Simulink Coder/Embedded coder are fixed length vectors, while code
generated by rtiddsgen expects character pointers. Strings are therefore treated
in Simulink as a fixed length array of unsigned bytes. In order for the Simulink
Blocks to differentiate between a vector of bytes and a string, an alias data type,
DDS CharArray, was created. This alias type is used by the DDS Blockset
infrastructure to differentiate between strings and byte vectors. Since static code
generation with rtiddsgen assumes the strings will be represented as character
pointers, code generation with Static Data typing will be incorrect and likely
result in a run-time error. As a result, only dynamic typing should be used.

e Model Reference. If using DDS blocks in referenced models, the following rules
must be followed:

o There must be a DDSTarget block in each referenced model

o An IDL file must be specified. The IDL file must be the same in all
referenced models. See section 7.2.1.

o The settings in the DDS Target block must be the same for all referenced
models

e Importing IDL files with #include statement. If an IDL file includes another IDL
file that is not on the MATLAB path rtiddsgen will fail. To work around this

issue, add the ‘-I’ switch to the DDS.import command as shown in the following
example:
o DDS.import('dC.idl",'-Ic:\\work\DDS\test\junk\slprj','f')

e Data Reader Callbacks are not supported in Simulink or MATLAB. The user
must use either a polling or WaitSet architecture for reading topic samples.

e Only time-based WaitSets are supported.

e Accelerated mode builds on Linux will fail with a compilation error related to
data types in the RTI DDS header files. Resolve this by changing the following
parameter setting in the model:

o set_param(model,'AccelMakeCommand', 'make_rtw MEX_OPTS="-DRTI_UNIX -
DMX_COMPAT 32"

e The Static Code Metrics report will give the following error. Currently Embedded Coder
does not support include statements to legacy header files. (1169743)
| Static Code Metrics Report

Error Report

Static code metrics report was not successfully generated because of the following errors.

File Line Description

C:\Program Files\rti_connext_dds- 39 cannot open source file "ws2tcpip.h"
5.2.3\include\ndds/osapi/osapi_socket.h

e Micro DDS does not support two or more Domain Participants in the same model
with the same Domain ID. Samples will not be exchanged between readers and
writes connected to these different Domain Participants. A crash may occur when
creating the second Domain Participant.

e The “Allow tasks to execute concurrently on target” is not supported for patterns in
which the DDS entity connections cross a model reference boundary. For
example, if the output signal from a Domain Participant block is connected to a
Publisher block in another model, Simulink will give an error indicating that this
signal is not a built-in Simulink signal and therefore cannot be a root level port.

11.2 MATLAB

e Sequences of sequences are not supported.

e MATLAB code generation is not supported. If the user wishes to generated code
for a MATLAB algorithm that includes DDS functionality, a Simulink model can
be constructed which exercises the MATLAB algorithm via a MATLAB Function
block. Any DDS function calls in the MATLAB code need to be replaced with
corresponding Simulink DDS Blocks.

e Only time-based WaitSets are supported.

11.3 IDL Import

e DDS.import() does not support IDL multiple inheritance. However, the user can
manually create Buses or MATLAB classes that represent Topics with multiple
inheritance and send/receive topics of this type. Refer to section 7.1.9 for details.

e The IDL “@Optional” keyword is not supported. The keyword will be ignored
when importing IDL into MATLAB and Simulink. Topic types used in
MATLAB and Simulink will have all fields set to mandatory. As aresult,
MATLAB and Simulink may not be able to communicate with other DDS
Participants configured to send/receive topics with Optional fields.

http://komodo.mathworks.com/main/gecko/view?Record=1169743-Unset&CURRENT_PAGE=close

e The IDL keyword @Extensibility MUTABLE EXTENSIBILITY isnot
supported.

e Ifthe IDL file has a large number of nested <module>, the workspace
objects or MATLAB classes may have identifiers longer than the 63-
character limit of MATLAB. Refer to Disabling Module Prefixfor a
workaround.

e Unions are not supported.

11.4 IDL Export

e DDS.export() supports only Simulink Buses. MATLAB classes are not supported
for export to IDL.

12 MacOS Support

Beginning with MacOS version 10.11, the System Integrity Protection (SIP) security
feature puts restrictions on the use of DYLD LIBRARY PATH to add paths to the
library search path. SIP prevents applications or spawned processes from inheriting the
DYLD LIBRARY PATH environment variable. This hardware support package relied
on DYLD LIBRARY PATH to locate the RTI Connext Libraries for S-Functions and
MEX functions. As a result, library path information is added to both RTI Connext DDS
libraries and DDS Blockset S-Functions and MEX functions based on the environment
variable RTI LD LIBRARY PATH.

DDS.Rpath.add() — Adds rpath information

DDS.Rpath.delete() — Deletes rpath information

DDS.Rpath.check() — Checks to see if libraries, sfunctions and MEX functions
have correct rpath information.

The DDS.Rpath.add() — Function needs to be called once after the blockset is first
installed. It will need to be rerun whenever the RTI DDS Connext libraries are moved or

updated. These functions required that the environment variable
RTI LD LIBRARY PATH be set to the location of the RTI DDS Connext libraries.

12.1 Background

This section contains a detailed description of the rpath information added to RTI
Connext DDS libraries and DDS Blockset S-Functions and MEX functions.

e The 3 RTI Connext DDS libraries used by MATLAB and Simulink are
libnddsc.dylib, libnddscpp.dylib, libnddscore.dylib. These three libraries are
updated as follows:

o (wrpath added as prefix to other RTI COnnext DDS libraries
o The install name is updated to include @rpath prefix
e All DDS Blockset S-Functions and MEX functions are updated as follows:
o (wrpath added as prefix to other RTI COnnext DDS libraries
o The location of the RTI COnnext DDS libraries is added to the rpath

Since the location of the RTI Connext Libraries on the customer’s computer is not known
when the blockset installer is prepared, a utility is provided that the customer must run
after the blockset has been installed. This utility will make the changes described above

based on the library path referenced by environment variable
RTI LD LIBRARY PATH.

Useful MacOS commands to obtain info about a dylib.

otool -L dylibname : displays list of linked libraries

otool -D dylibname : displays the id for the dylib

otool -1 dylibname : lists detailed info about dylib, including rpath.

Initially, the RTI DDS libraries have no rpath information and the install name is the
same as the library name:

Load command 14
wmd LC_FUNCTION_STARTS
cmdsize 16
dataoff 785352 .
datasize 5664 No rpath
Load command 15
cmd LC_DATA_IN_CODE
cmdsize 16
dataoff 791016
datasize @
[[mmcbroom@hat44@9maci:/sandbox/mmcbroom/rti_connext_dds-5.2,.3/1ib/x64Darwinl5clang7.0]
% otool -D Ilbnddsc dylib
1i
ibnddsc. dyllb
[[t O9maci:/sandbox/mmcbroom/rti_connext_dds-5.2.3/1ib/x64Darwinl5clang7.08]
% otool -L libnddsc.dylib
libnddsc.dylib:
Libnddsc. dyllb (compatibility version @.8.98, current version 9.0.@)

em.B.dylib (compatibility version 1.0.8, current version 1225.1.1)
llbnddscore dyllb

compatibility version 0.0.8, current version 9.8.0)

/u b pc¥+.1.dylib (compatibility version 1.8.@, current version 120.1.0)
[mEchroom@bat44ﬁgmac1 /sandbox/mmcbroom/rti_connext_dds-5.2.3/1ib/x64Darwinl5clang?.8]
%

Changes:

1. Use install name tool to add @rpath before all dependent RTI libraries:
libnddsc.dylib, libnddscore.dylib, libnddscpp.dylib

Xcrun install name tool -change libnddscore.dylib
@rpath/llbnddscore dylib libnddscore.dylib

% otool -L Igbnddsc.dylib
libnddsc.dylib:
llbndds: dyllb [compatlblllty version @.0.8, current version 0.0.0)
b b 1lib {compatlblllty var51on 1.8.8, current ver510n 1225.1.1)

(compatibility version 1. 3 B. current version 126 1 a)
[mmcbraum@bat44@9mac1 fsandbox/mmcbroom/rtl connext_dds-5.2.3/1ib/x64Darwinl5clang7.0]

2. Use install name tool to add @rpath to install name

Xcrun install name tool -id @rpath/libnddsc.dylib libnddsc.dylib

LENDIE S] F A R L L T TR P L Y L L Wl R
e

% otool -D libnddsc.dylib

..,@_Lgathﬂibnddsc. I:I:-.r'L;' E :>

DDS MEX functions and s-functions are then linked to these libraries.

1. Use install name tool Use install name tool to add location of RTI DDS
Connext libraries to rpath

compatibility version 1.0.8
Load command 15
cmd LC_FUNCTIOM_STARTS
cmdsize 16
dataoff 8488
datasize 8
Load command 16
cmd LC_DATA_IN_CODE
cmdsize 16
dataoff B496
datasize @
[[mmcbroom@batd44®imaci:~/Documents/MATLAB/Add-0ns/Toolboxes/DD5S Blockset/code]
% otool -L mexGetVersion.mexmaci6d
mexGetVersion.mexmacifg:
@rpath/libnddsc.dylib (compatibility version ©.8.@, current version 0.8.@)
@rpath/libnddscore.dylib (compatibility version ©.08.8, current version @.0.8)
@rpath/libnddscpp.dylib (compatibility version 8.8.@, current version 9.0.8)
@rpath/libmx.dylib (compatibility version 0.8.8, current version 9.90.8)
Jusr/lib/libc++.1.dylib (compatibility version 1.8.8, current version 120.1.8)
fusr/lib/libSystem.B.dylib (compatibility version 1.0.@, current version 1225.1.1)
[m;cbrocm@bat44ﬁlmaci:~/DocumentsiHﬁTLAB/Add-Ons/Toolbnxes/DDS Blockset/code]
%

cmd LU_FUNCTIUN_STARIS
cmdsize 16
dataoff 8488
datasize 8
Load command 16
cmd LCEDATA_IN_CODE
cmdsize 16
dataoff 8496
datasize @
Load command 17
cmd LC_RPATH
cmdsize 880
/sandbox/mmcbroom/rti_connext_dds-5.2.3/1ib/x64Darwinl5clang7.@ (offse
[mmcbrool i:~/Documents/MATLAB/Add-0Ons/Toolboxes/DDS Blockset
% otool -L mexGetVersion.mexmacib4d
nexGetVersion.mexmacib4:
@rpath/libnddsc.dylib (compatibility version ©.8.8, current version 9.0.9)
@rpath/libnddscore.dylib (compatibility version 8.08.0, current version 2.0.0)
@rpath/libnddscpp.dylib (compatibility version 9.8.8, current version 0.8.9)
@rpath/libmx.dylib (compatibility wversion @.@.@, current version ©.9.0)
fusr/lib/libc++.1.dylib (compatibility version 1.8.8, current version 120.1.0)
Jusr/lib/libSystem.B.dylib (compatibility version 1.8.8, current version 1225.1.1)
[mmcbroom@bat4461maci:~/Documents/HATLﬁB/Add-Ons/Toolhnxes/DDS Blockset/code] ...

If the utility to add rpath information to either the RTI DDS libraries or the DDS Blockset
sfunctions or MEX functions is not run, you will receive errors similar to the following:

=> DDS.version
Error using DDS.version
Invalid MEX-file '/home/mmcbroom/Documents/MATLAB/Add-0Ons/Toolboxes/DDS
Blockset/code/mexGetVersion.mexmaci64':
dlopen(/home/mmcbroom/Documents/MATLAB/Add-0ns/Toolboxes/DDS
Blockset/code/mexGetVersion.mexmacib4, 6): Library not loaded: @rpath/libnddsc.dylib
Referenced from: /home/mmcbroom/Documents/MATLAB/Add-0ns/Toolboxes/DDS
Blockset/code/mexGetVersion.mexmaci64
Reason: image not found.

13 Updating to a New Version of DDS RTI Connext

When updating to a new version of RTI Connext DDS and/or RTI Connext Micro DDS,
the user need only exit MATLAB and then update the environment variables described in
section 4.2. When MATLAB is restarted, the DDS Blockset will use these environment
variables to locate the new version of RTI Connext.

14 Using the DDS Toolbox with MATLAB Compiler

MATLAB Compiler can be used to deploy MATLAB applications that utilize the DDS
Toolbox functions. The following additional files need to be added to the application.

Use the —a option of the mcc function to add the following files and directories to the .exe
created by MATLAB Compiler. Without these additional files/directories, the deployed
application will fail.

- All *.mex* files in the <matlabroot>/toolbox/psp/tools/DDSBlockset
- All .p and .m files in <matlabroot>/toolbox/psp/tools/DDSBlockset/+DDS

mcc('-v', '-a',

fullfile (matlabroot, 'toolbox', 'psp', 'tools', 'DDSBlockset'), '-a',
fullfile (matlabroot, 'toolbox', "psp', 'tools', 'DDSBlockset', '+DDS"), '-
a', 'USER QO0S PROFILES.xml', '-m', 'myScript.m');

If a QoS XML file is being used, add to the “Files installed for end user” section.

p Additional installer options

Files remirad for your application to run

| adaPublisher.m

f‘ﬂ addReader.m
f\ﬂ addReader.m

f‘ﬂ addSubscriber.m

f\ﬂ addwriter.m
f‘ﬂ addwWriter.m

E contentFilter.m

E DataReader.m

¥ Datavriter.m

E DomainParticip. ..

fa aetProfiles.m

@ mexDataRead...
@ mexDataRead. ..
@ mexDataRead...
@ mexDataRead...
[#) mexDatawvrite...
[#) mexDatavrite...
[#) mexDatawvrite...
[#) mexDatavrite...

Files installed for your end user

@ mexDomainPar. ..
@ mexDomainPar...
@ mexDomainPar. ..
@ mexDomainPar...
@ mexDomainPar. ..
@ mexGetProfile. ..
@ mexGetProfile. ..
@ mexGetVersio. ..
@ mexGetyersio. ..
@ mexPublisherC. ..

[2 DDSExample.exe || readme.txt

|R| splash.png

@ mexPublisherc...
@ mexSubscriber...
@ mexSubscriber...
) MexUtilities.m
E Publisher.m

f‘ﬂ read.m

iEl read.m

f‘ﬂ read.m

E ReadMethodT...

E ShapeType.m

|| UsER_QOS_P...

m Subscriber.m
Time.m

1) utilities.m
fa WErsian.m
F{_\l write.m

flﬂ write.m

F{_\l write.m

An example MATLAB Compiler project, DDSExample.prj, is installed in the
<matlabroot>/toolbox/psp/examples/DDSBlockset directory.

15 Using the DDS Blockset with Raspberry Pi

Steps for using Simulink DDS Blockset on Raspberry Pi:

1. Install MATLAB and Simulink Raspberry Pi support packages.

) MATLAB R2016a

HOME PLOTS A SHORTCUTS EDITOR PUBLISH VIEW

E EI‘ :3 Iz, New Wariable | Analyze Code {6} Preferences f% 2y .
E LT ol Fnd Fies & E @ @ O (% Community
[} Open Variable ~ {7 Run and Time [setPath
New New Open @We Import Save Simulink Layout Help :.') Request Support
Script v - Data Workspace |- Clear Workspace ~ [7 Clear Commands = Il paratel = -
FILE VARIABLE CODE SIMULINK ENVIRONMENT
f% Get Add-Ons I
<4‘:' B (5] ﬁ » C: » WORK » dds » toobox » psp » examples » DDSBlockset »
Current Folder @ | Workspace \ ¥ Editor - G\work\DDS\toolbox\psp\tools\DDSBlockset\DDS_RETCODE_TYPE.m @ Manage Add-Ons i
|Name £ |SVN I 1 classdef (Enumeration) DDS RETCODE TYPE < Simulink.IntH ==
2 A i - - Package Toolbox
raspberrypi_RTIShapes_... O - ERUMEEH k100 £
3 DDS_RETCODE_OK (0) o
raspberrypi_RTIShapessi... O i 5 ' Package A
elorj O 4 DDS_RETCODE_ERROR (1), ¥
:zj CounterType.idl @ 5. DDS_RETCODE_UNSUPPORTED (2}, (
2] ice.idl @ & DDS_RETCODE_BAD PARAMETER (3), B e
) .
7j midemo_DDSHistory.m e 7, DDS_RETCODE_PRECONDITION NOT_MET (4), Check for ProT TRt

) support Package Installer = |EI

Select support package to install

show: [all (71) =l

Support for: Support packages:

Kwaser CAN Devices d

LEGO MINDSTORMS | Action
Matrox Hardware

NLFrame Grabbers 1V Reinstal 16.1.0 16.1.0 Acauire sensor andimage d... MATLAB Win32,Wing4,M...
NI-845x I12C/5PI Interface i
NI-DAQmx 7 [¥ Reinstal 16.1.0 16.1.0 Run models on Raspberry Pi. Simulink Win32,Wing4,M...
NI-DCPower

MNI-DMM

NI-FGEM

MI-SCOPE

NI-Switch

NI-VISA and ICP

MI-XMET

05 Generic Video Interface
Ocean Optics Spectrometers
PEAK-System CAN Devices
Point Grey Hardware
QImaging Hardware
RTL-SDR Radio

Installed
Version

Latest S Required Supported
Version Uescnption Base Product |Host Platforms

STMicroelectronics Microcontrollers

Run raspberrypi_gettingstarted example model to confirm all hardware support
packages are installed correctly and Simulink can run.
Install DDS libraries compatible with Raspberry Pi, for example armvévfphLinux3.xgcc4.7.2, on the host

computer by downloading the .rtipkg file from rti.com and then using the RTI Package installer to instal
the libraries on the host computer where Simulink exists.

Use FTP to copy the folder rti_connext_dds-5.3.1/lib and rti_connext_dds-5.3.1/include to your
Raspberry Pi. Copy to location

/home/pi/

Alternately, you can use the functions

> DDS.Utilities. copyDDStoRaspi()

> DDS.Utilities. setRaspiSymbolicPaths()
>

E sftp://pi®172.29.66.201 - FileZilla
e

Edit View Transfer Server Bookmarks Help New version available!

|d~|[FERP 2 B&& BTN

|ﬂost: sfip:/f172.29.66.201) Username: Password: |"""0" | Port: |
Is

| I_Quid(mnnect ||Y|

Command:

Status: Listing directory fhome fpifrti_connext_dds-5.3. 1lib
Status: Directory listing successful

Status: Retrieving directory listing...

Command: od ™"

Response: MNew directory is: “/home/pijrti_connext_dds-5.3.1"

Status: Directory listing successful

Local site: | C:'Program Files'rti_connext_dds-5.3. 1Yindude’,

« | Remote site: | Jfhome fpifrti_connext_dds-5.3.1

[Reference Assemblies
[~ rti_connext_dds-53.2.3
[rti_connext_dds-53.3.0
= rti_connext_dds-5.3.1

bin

rezource

uninstall

..... rti_sysde

----- Scheduled_Instant_Restore_Point
7] SharePoint Client Components
| Softland

H- | SplunkUniversalForwarder

t

i T e W e W

Synaptics
----- SyncToy 2.1
[TechSmith
@~ | ThinkPad

T T

ros_catkin_ws
rti_connext_dds-53.3.1
? include

lib:

raspberrypiioscamera_ert_rbw

Filename 7 Filesize Filetype
IE sftpe//pi@172.29.66.201 - FileZilla
File Edit View Transfer Server Bookmarks Help MNew version available!
| @ i [Eal=.]
|A-|EBEFI s BkE LT n
|ﬂost: |sﬂD:|’1172.29.66.201‘ Username: |Dl | Password: ‘"l | Port: | | | Quickeonnect i|'|
Status: Directory listing successful
Status: Retrieving directory listing...
Command: cd “fhome/pijrti_connext_dds-5. 3. 1/libfarmvavfphLinux3.xgccd. 7.2
F.esponse: New directory is: "fhome fpifrti_connext_dds-5. 3. 1/lib/armvéviphLinux3. xgoc. 7.2
Command: Is
Status: Listing directory fhome pifrti_connext_dds-5.3. 1/lbfarmvévfphLinux3.xgcc4.7.2
Status: Directory listing successful

Local site: | C:\Program Files\yti_connext_dds-5.3. 1\ib\armv6vfphLinux3.xgcc4.7. 24

~ | Remote site: | Jhome fpifrti_connext_dds-5. 3. 1libfarmvéviphLinux 3. xgec

e Reference Assemblies
[rti_connext_dds-3.2.3
e} rti_connext_dds-5.3.0
=5 rti_connext_dds-5.3.1

include

lib
armviviphlinux3.xgecd.7.
java

S Ao AEANT

Filename +

[libnddsc.so 6,919,012
[7 libnddscd.so 14,738,938
[libnddscore.co 6,813,030
D libnddscored.zo 16,468,635

S0 File
50 File
S0 File
50 File

ros_catkin_ws
rti_connext_dds-5.3.1

2 include
& | lib
: armvivphlinua.xgecd. 7.2
Filename Filesize Fi
[libnddsc.so 6,919,013 &
libnddscore.so 6,813,030 &
[libnddscpp.so 2,065,386 S

Filename ¢ Filesize| Filetyp
include File fol
liby File fol

Create soft links to add DDS include paths to user includes. This is required for the gcc
compiler to be able to location the DDS include files.

S In —s /home/pi/rti_connext_dds-5.2.0/include/ndds /usr/local/include/ndds

S In—s /home/pi/ rti_connext_dds-5.2.0/include/ndds/advlog /usr/local/include/advlog
S In—s /home/pi/ rti_connext_dds-5.2.0/include/ndds/cdr /usr/local/include/cdr
Repeat for all directories in /home/pi/ rti_connext_dds-5.2.0/include/ndds/

S Idconfig

FhobhobhoHhoFho bbb Hh O FR b

6. If your Simulink model uses a QoS XML file, you will need to copy this file to the
Raspberry Pi. Also, if your Raspberry Pi is on a different subnet, you may need to copy
the NDDS_DISCOVERY_PEERS file to the Raspberry Pi.

Remote site: | fhome/pi

=2/

.ros
catkin_ws
raspberrypi_blink_ert_rtw
2 ros_catkin_ws

[|, rti_connext_dds-5.2.0

Filename 7 | Filesize | Filetype
ros File folder
catkin_ws File foldar
raspberrypi_blink_ert_rtw File folder
ros_catkin_ws File folder
rti_connext_dds-5.2.0 File folder

|| .bash_histary 47 BASH_HI=

|| .bash_legout 220 BASH_LOC
|| .bashrc 3,568 BASHRCF

[profile 575 PROFILEF

ind 1,913 Shell Scrip
506 File
68,392 ELFFile
75 TextDocu

136,048 ELF File
13,831 TextDocu
100,834 XML Docut

	1 Product Description
	1.1 Acronyms
	1.2 Definitions
	1.3 References
	1.4 Contact Information

	2 Document History
	3 System Requirements
	3.1.1 Required
	3.1.2 Optional

	4 Installation and Setup
	4.1 Installation
	4.1.1 Install RTI Connext DDS
	4.1.1.1 Support for Simulink Real-Time
	4.1.2 Install DDS Blockset

	4.2 Environment Variables
	4.2.1 Windows
	4.2.2 Linux
	4.2.3 MacOS

	4.3 Alternate Approach
	4.4 Uninstall

	5 Getting Started
	5.1 Basic Model
	5.2 Complete Model
	5.2.1 Create a Simulink Bus
	5.2.2 Create a Simulink Model

	5.3 Code Generation
	5.3.1 RTI DDS Target Block

	5.4 RTI DDS Connext Toolbox

	6 Examples
	6.1 Simulink/RTI Shapes
	6.1.1 Start the RTI DDS Connext Shapes Demo
	6.1.2 Simulink rtwdemo_RTIShapes Model

	6.2 MATLAB/RTI Shapes

	7 Blockset Reference
	7.1 DDS Types
	7.1.1 Representing DDS Types in Simulink
	7.1.2 Importing IDL into Simulink
	7.1.3 Exporting Buses to IDL
	7.1.4 Representing DDS Types in MATLAB
	7.1.5 Importing IDL into MATLAB
	7.1.6 Key Fields
	7.1.6.1 Simulink
	7.1.6.2 MATLAB
	7.1.7 IDL “Module” Keyword
	7.1.7.1 Simulink
	7.1.7.2 MATLAB
	7.1.7.3 Disabling Module Prefix
	7.1.8 IDL Sequences
	7.1.8.1 Simulink
	7.1.8.2 MATLAB
	7.1.9 IDL Structure Inheritance
	7.1.9.1 Simulink
	7.1.9.2 MATLAB
	7.1.10 Unions
	7.1.10.1 Simulink
	7.1.10.2 MATLAB
	7.1.11 Simulink Data Dictionary

	7.1 Simulink Blocks
	7.2.1 Return codes
	7.2.2 DDS Target
	7.2.3 Domain Participant
	7.2.4 Publisher/Subscriber
	7.2.5 Data Writer
	7.2.6 Data Reader
	7.2.7 DDSTime
	7.2.8 XML Application Creation Read

	7.2.9 XML App Creation Write
	7.3 Simulating with Accelerator Modes
	7.3.1 Accelerator Mode
	7.3.2 Rapid Accelerator Mode

	7.4 Code Generation from Simulink Models
	7.4.1 Quality of Service
	7.4.2 DDS Type System

	7.5 XML Application Creation
	7.5.1 Code Generation

	8.3 MATLAB Performance

	8 MATLAB Toolbox
	8.1 DDS Functions
	8.2 DDS Classes

	9 Topic Content Filtering
	9.1 Simulink
	9.2 MATLAB

	10 Quality of Service (QoS)
	11 Limitations
	11.1 Simulink
	11.2 MATLAB
	11.3 IDL Import
	11.4 IDL Export

	12 MacOS Support
	12.1 Background

	13 Updating to a New Version of DDS RTI Connext
	14 Using the DDS Toolbox with MATLAB Compiler
	15 Using the DDS Blockset with Raspberry Pi

