
DDS Blockset Pilot Support Package (PSP)
User Guide

ISSUE DATE: 31 July 2020

MathWorks

Application Engineering Group

Contents
1 Product Description .. 5

1.1 Acronyms ... 5
1.2 Definitions ... 5
1.3 References.. 5
1.4 Contact Information ... 5

2 Document History... 6
3 System Requirements .. 6

3.1.1 Required ... 6
3.1.2 Optional .. 7

4 Installation and Setup .. 7
4.1 Installation ... 7

4.1.1 Install RTI Connext DDS .. 7
4.1.2 Install DDS Blockset.. 8

4.2 Environment Variables ... 11
4.2.1 Windows ... 11
4.2.2 Linux .. 13
4.2.3 MacOS .. 13

4.3 Alternate Approach .. 14
4.4 Uninstall... 15

5 Getting Started .. 17
5.1 Basic Model ... 17
5.2 Complete Model ... 18

5.2.1 Create a Simulink Bus ... 19
5.2.2 Create a Simulink Model ... 19

5.3 Code Generation... 24
5.3.1 RTI DDS Target Block .. 25

5.4 RTI DDS Connext Toolbox .. 26
6 Examples .. 26

6.1 Simulink/RTI Shapes.. 26
6.1.1 Start the RTI DDS Connext Shapes Demo ... 27
6.1.2 Simulink rtwdemo_RTIShapes Model ... 28

6.2 MATLAB/RTI Shapes ... 29
7 Blockset Reference ... 31

7.1 DDS Types ... 31
7.1.1 Representing DDS Types in Simulink ... 32
7.1.2 Importing IDL into Simulink ... 33
7.1.3 Exporting Buses to IDL ... 34
7.1.4 Representing DDS Types in MATLAB ... 34
7.1.5 Importing IDL into MATLAB ... 35
7.1.6 Key Fields ... 36
7.1.6.1 Simulink ... 36
7.1.6.2 MATLAB ... 37
7.1.7 IDL “Module” Keyword .. 38

7.1.7.1 Simulink ... 38
7.1.7.2 MATLAB ... 39
7.1.7.3 Disabling Module Prefix ... 39
7.1.8 IDL Sequences .. 40
7.1.8.1 Simulink ... 40
7.1.8.2 MATLAB ... 41
7.1.9 IDL Structure Inheritance .. 43
7.1.9.1 Simulink ... 43
7.1.9.2 MATLAB ... 44
7.1.10 Simulink Data Dictionary .. 45

7.2 Simulink Blocks ... 48
7.2.1 Return codes ... 49
7.2.2 DDS Target ... 49
7.2.3 Domain Participant .. 50
7.2.4 Publisher/Subscriber ... 52
7.2.5 Data Writer ... 53
7.2.6 Data Reader... 55
7.2.7 DDSTime .. 60
7.2.8 XML Application Creation Read ... 60

7.2.9 XML App Creation Write... 62
7.3 Simulating with Accelerator Modes .. 63

7.3.1 Accelerator Mode .. 64
7.3.2 Rapid Accelerator Mode .. 64

7.4 Code Generation from Simulink Models ... 64
7.4.1 Quality of Service.. 65
7.4.2 DDS Type System ... 65

7.5 XML Application Creation ... 65
7.5.1 Code Generation ... 67

8 MATLAB Toolbox ... 69
8.1 DDS Functions .. 69
8.2 DDS Classes ... 69
8.3 MATLAB Performance ... 70

9 Topic Content Filtering ... 71
9.1 Simulink... 71
9.2 MATLAB .. 72

10 Quality of Service (QoS) ... 73
11 Limitations ... 74

11.1 Simulink... 74
11.2 MATLAB... 75
11.3 IDL Import ... 75
11.4 IDL Export ... 76

12 MacOS Support .. 76
12.1 Background .. 76

13 Updating to a New Version of DDS RTI Connext ... 79
14 Using the DDS Toolbox with MATLAB Compiler .. 79
15 Using the DDS Blockset with Raspberry Pi... 80

1 Product Description

The DDS Blockset Pilot Support Package (PSP) feature allows Simulink® and
MATLAB® models to interact with other simulation components via the OMG Data
Distribution Service (DDS) publish/subscribe interface. DDS is the first open
international middleware standard directly addressing publish-subscribe communications
for real-time and embedded systems.

The DDS Simulink blocks and MATLAB classes use RTI Connext DDS, the market
leading implementation of DDS. RTI provides the messaging backbone for the world's
most demanding real-time systems. RTI Connext™ enables applications – running on the
smallest devices and the largest enterprise servers – to seamlessly share information and
work together as one.

Blocks can be added to a Simulink model that will allow the model to interact with other
DDS participants during a simulation (via RTI Connext DDS). C/C++ code that is
generated from a Simulink model will conform to the RTI Connext DDS API. The
generated code can then be compiled and executed on any platform supported by RTI
Connext DDS or RTI Connext Micro DDS.

Similarly, instances of MATLAB RTI DDS classes can be created in MATLAB to
interact with other DDS participants during a simulation (via RTI Connext DDS). C
code generation is currently not supported for the MATLAB RTI DDS classes.

1.1 Acronyms
API – Application Programming Interface
DDS – Data Distribution System
PSP – Pilot Support Package. Customized updates to MATLAB and Simulink software
that is not yet available in the officially released version of MATLAB and Simulink.
TLC – Target Language Compiler

1.2 Definitions

1.3 References

1.4 Contact Information
• Mark McBroom – MathWorks. mark.mcbroom@mathworks.com

http://portals.omg.org/dds/
http://portals.omg.org/dds/
http://portals.omg.org/dds/
http://www.rti.com/products/index.html
mailto:mark.mcbroom@mathworks.com

2 Document History

Date Version Author Description
20 Sept 2012 1.0 MDM Initial version
18 Nov 2012 1.1 RL RTI edits
30 Nov 2012 1.2 MDM Add MATLAB Toolbox content
11 Mar 2013 1.3 MDM Add description for block return codes
15 Apr 2013 1.4 MDM Add Linux® install directions
19 Nov 2013 1.5 MDM Micro DDS support. IDL import, export. IDL

‘module’ keyword support
9 Dec 2013 1.6 MDM Add IDL sequence support
15 Mar 2014 2.2 MDM Improved sequence support for DDS Toolbox.

Add sequence support for DDS Blockset
simulation.
Add DDS.import() support for MATLAB
classes.
Add support for IDL Inheritance

4 Nov 2014 2.3 MDM Add optional rtiddsgen switches to DDS.import()
Add support for Accelerator and Rapid
Accelerator modes
Add support for topic content filtering

 2.5.0 MDM Add support for RTI Connext DDS 5.2.0 and
microDDS 2.4.4

21 Oct 2015 2.6.0 MDM Remove ability to define Topic Type for Toolbox
functions using ML Struct or Simulink.Bus

21 Mar 2016 2.8.0 MDM Add Raspberry Pi™ support
14 Apr 2016 2.8.0 MDM Add Timestamp support for Data Reader
20 Apr 2016 2.8.0 MDM Add appendix with instructions for using

MATLAB Compiler™
17 May 2016 2.8.0 MDM Add support for Simulink Data Dictionary
22 Jun 2016 2.8.0 MDM Add DDS.discoveryMonitor() feature
21 Jul 2016 2.9.0 MDM Migrate to DDS Connext 5.2.3
17 Nov 2016 3.1.0 MDM Add MacOS support
30 Jun 2017 3.5.0 MDM Simulink Data Dictionary support
29 Jan 2018 3.6.0 MDM Two new blocks that support the XML Application

Creation APIs.
14 July 2018 4.0.0 MDM Support for valuetype
23 May 2019 4.1.0 MDM Support for RTI Connext DDS 6.0.0 and DDS

Micro 3.0
26 Dec 2019 4.2.0 MDM Support for IDL unions
31 July 2020 4.3.0 MDM Support for Simulink Real-Time in R2020b

3 System Requirements
3.1.1 Required
• MATLAB version R2015b or later
• Simulink
• RTI Connext DDS version 5.1.0, 5.2.0, 5.2.3, 5.3.0, 5.3.1 or 6.0.0

3.1.2 Optional
To generate code from a Simulink model, the following products are needed:

• Simulink Coder™
• Embedded Coder®

To use Simulink with long or unsigned long data types:

• Fixed-Point Designer™

To compile and link code for RTI Connext Micro DDS:
• RTI Connext DDS Micro 2.2.3 or newer

4 Installation and Setup

4.1 Installation

4.1.1 Install RTI Connext DDS
Before installing the DDS Blockset on your computer, you should first install the RTI
Connext DDS. For details or to obtain a license, contact www.rti.com.

The DDS Blockset includes compiled C code that is linked to RTI DDS Connext
Libraries. RTI has released a number of versions of RTI DDS Connext libraries, and
each of the releases is made for different combinations of operating system/compiler
combinations. Table 1 defines the versions of RTI DDS Connext supported by each
version of MATLAB. Using a MATLAB/RTI Connext version not supported will result
in unexpected behavior, error messages and/or MATLAB crashes.
Table 2 lists the operating system version/compiler versions that the DDS blockset was
developed with. While the DDS Blockset will likely run properly with other
OS/compiler combinatinos, it is highly recommended that you use these listed in the
table.
Table 3 lists the MATLAB/DDS Micro/Compiler combinations supported by the DDS
Blockset. DDS Micro is usually distributed in source code form and the customer is
responsible for building the DDS Micro libraries. Other versions of Visual Studio that
are supported by the particular MATLAB version can be used to rebuild the DDS Micro
libraries. The user should use the mex -setup command to configure the same version of
Visual Studio as the version used to build the DDS Micro libraries.

Table 1 MATLAB/DDS Version Support Matrix

 DDS Version
MATLAB Version 5.0.0/5.1.0/5.2.0/5.2.3 5.3.0/5.3.1 6.0.0/6.0.1
R2016b and earlier Yes No No
R2017a, R2017b Yes Yes No
R2018a Yes Yes Yes
R2018b and later No Yes Yes

http://www.rti.com/

Table 2 MATLAB/DDS Library Support matrix

MATLAB Version(s) OS Version(s) RTI DDS Library
R2016a, 16b, 17a, 17b Windows® 64 7, 10 x64Win64VS2013
R2018a, 18b Windows 64 7, 10 x64Win64VS2015
R2019a, 19b, 20a Windows 64 7, 10 x64Win64VS2017
R2016a, 16b, 17a Linux 64 Debian 7.x x64Linux2.6gcc4.4.5
R2017b, 18a, 18b Linux 64 Debian 8.x x64Linux2.6gcc4.4.5
R2019a, 19b, 20a Linux 64 Debian 9.x x64Linux2.6gcc4.4.5
R2016b, 17a, 17b MacOS 10.11 x64Darwin15clang7.0
R2018a MacOS x64Darwin16clang8.0
R2018b MacOS x64Darwin17clang9.0
R2019a, 19b, 20a, 20b MacOS x64Darwin17clang9.0

Table 3 Simulink Real-Time Version Support Matrix

 DDS Version
MATLAB Version 5.0.0/5.1.0/5.2.0/5.2.3 5.3.0/5.3.1 6.0.0/6.0.1
R2020b TBD TBD Yes

4.1.1.1 Support for Simulink Real-Time

Beginning in R2020b, the Simulink RTI DDS Blockset will run on a Simulink Real-Time
system. In R2020b Simulink Real-Time began using QNX as the underlying operating system.
In order to run Simulink DDS models on a Simulink Real-Time system, the user must install the
RTI DDS Connext Libraries that have been compiled for QNX. Use the RTI Launcher Package
Installer to download and install the proper library.

Table 4 MATLAB/DDS Library Support matrix

MATLAB Version(s) OS Version(s) RTI DDS Library
R2020b QNX x64QNX7.0.0qcc_gpp5.4.0

After installation, the QNX library should be located in the same directory as the host computer libraries
as shown below:

4.1.2 Install DDS Blockset
This feature supports all platforms that are supported by MATLAB. The installation
program is in the form of a MATLAB Add-On. The same installation package can be
used for Windows, Linux, and MacOS.

1. Start MATLAB.
2. If a prior version of the DDS Blockset has been installed, uninstall it.

If you see a screen like this, follow the instructions to delete remaining files:

3. Navigate to the location of the .mltbx file that you downloaded to your computer
from mathworks.com.

4. Right mouse click and select.

5. Read and accept the licensing agreement.

Once the installation is complete, the DDS Blockset will appear in the list of Add-Ons:

4.2 Environment Variables
For all platforms, the environment variables NDDSHOME and RTI_LICENSE_FILE
must be defined. NDDSHOME points to the location where RTI Connext DDS is
installed, while RTI_LICENSE_FILE is the full path to the license file. Note that the
strings should not be terminated with a semicolon.

The user must also add the location of the DDS shared libraries to the appropriate
environment variable so that the shared libraries can be located by the operating system
when invoked from MATLAB and Simulink.

4.2.1 Windows

Table 2. Example for DDS Connext 5.2.0 and later.
Env Variable Example value
NDDSHOME C:\Program Files\rti_connext_dds-6.0.1
RTI_LICENSE_FILE C:\Program Files\rti_connext_dds-6.0.1\rti_license.dat
PATH C:\Program Files\rti_connext_dds-

6.0.1\lib\x64Win64VS2017

If the user will be generating C code from a Simulink model that is targeted for RTI
Micro DDS, then the following two environment variables must also be defined:

Env Variable Example value
RTIMEHOME C:\Program Files\rti_connext_micro.2.4.10
RTIMEARCH i86Win32VS2015

4.2.2 Linux
Table 3. Example for DDS Connext 5.2.0 and later.
Env Variable Example value
NDDSHOME /usr/rti_connext_dds-6.0.1
RTI_LICENSE_FILE /usr/rti_connext_dds-6.0.1/rti_license.dat
LD_LIBRARY_PATH /usr/ rti_connext_dds-6.0.1/lib/x64Linux2.6gcc4.4.5

If the user will be generating C code from a Simulink model that is targeted for RTI
Micro DDS, then the following two environment variables must also be defined:

Env Variable Example value
RTIMEHOME /usr/rti_connext_micro.2.4.10
RTIMEARCH i86Linux2.6gcc4.4.5

4.2.3 MacOS

Table 4. Example for DDS Connext 5.2.0 and later.
Env Variable Example value
NDDSHOME /Applications/rti_connext_dds-6.0.0
RTI_LICENSE_FILE /Applications/rti_connext_dds-6.0.0/rti_license.dat
RTI_LD_LIBRARY_PATH /Applications/ rti_connext_dds-

6.0.0/lib/x64Darwin17clang9.0

DYLD_LIBRARY_PATH /Applications/ rti_connext_dds-
6.0.0/lib/x64Darwin17clang9.0

DEVELOPER_DIR /Applications/Xcode.app/Contents/Developer
JREHOME See Note 2

NOTE 1. Beginning with MacOS v10.11 (El Capitan), the use of the environment
variable DYLD_LIBRARY_PATH is restricted due to a security concern. Refer to
section 12 for details.

NOTE 2. You may need to also define JREHOME environment variable. If JREHOME
is not defined, then you will see an error message similar to this.

You will need to locate a Java Runtime Environment™ (JRE) on your computer, or install,
and then point JREHOME to the location where you installed. MATLAB also includes a
JRE. You can

also point JREHOME to the MATLAB JRE, which is located at:
<matlabroot>/sys/java/jre/maci64/jre

You can set the JREHOME environment variable at the shell prompt prior to
starting MATLAB, your you can set in MATLAB with the following command
>setenv(‘JREHOME’, fullfile(matlabroot,’sys’,’java’,’jre’,’maci64’,’jre’))

4.3 Alternate Approach
This section describes an alternate approach to setting environment variables. This
approach can be used if you do not have sufficient privilege to define environment
variables.

1. Set NDDSHOME and PATH environment variables from MATLAB. Type the
following lines at the MATLAB prompt to temporarily create two environment
variables. Update as necessary for the location in which RTI Connext DDS is installed.
Note that you will need to type these two commands each time you start MATLAB.
You can place these into a script that runs each time MATLAB starts.

> setenv('NDDSHOME','C:\Program Files\rti_connext_dds-5.2.0');
> CurrentPath = getenv('PATH');
> setenv('PATH',[CurrentPath, ';C:\Program Files\rti_connext_dds-
5.2.0\lib\x64Win64VS2012']);

2. Use alternate approach to specify license file. Following are instructions from
RTI_ConnextDDS_CoreLibraries_GettingStarted.pdf section 2.4.1. to specify the
location of the RTI License File in the QoS XML file. The following approach has been
successfully tested.

Figure 1. RTI License File Management.

4.4 Uninstall

After completing the uninstall, you will see a message similar to this.

Please follow the instructions to delete the directory in which the blockset was installed.

5 Getting Started
The DDS Blockset provides Simulink blocks for the five key DDS entities:

• Domain Participants
• Publishers
• Subscribers
• Data Writers
• Data Readers

The blockset also provides two blocks that use the XML Application Creation capability of DDS to
create Data Readers and Data Writers in conjunction with an XML configuration file.

The blocks appear in the Simulink Library Browser as shown below. Type “simulink” at
the MATLAB prompt to display the Simulink Library Browser.

Figure 2. DDS Blockset in the Simulink Library Browser.

5.1 Basic Model
Follow these steps to create a simple Simulink model that contains the Domain
Participant block:

1. Create a new Simulink model by selecting “File -> New -> Model” in the menu of
the Simulink Library Browser window.

2. Drag a Domain_Participant block into the new Simulink model.
3. Drag Terminator block and Display blocks (in the Simulink-Sinks library) into

the model. Connect as shown below.
4. Save the model file by clicking File->Save.
5. Push the Run button.

Figure 3. Simulink model with DDS Block.

If you are using the evaluation version of RTI Connext, the DOS output window should
show status like the following:

Figure 4. RTI DDS Output Window.

5.2 Complete Model
Follow these steps to create a Simulink model that publishes data to DDS and then
subscribes to the same data.
If you would rather not create the following model, it is provided as part of the PSP.
Open the model by typing: rtwdemo_DDSBasic.

5.2.1 Create a Simulink Bus
DDS Topic Types are represented in Simulink with a bus. Most DDS workflows define
Topic Types in IDL files. The first step in this workflow is to create a Simulink Bus object
from an IDL file.

DDS.import(‘BusObject.idl’);

5.2.2 Create a Simulink Model
We will now create a Simulink model that sends and receives data for the Simulink
Bus/DDS Topic type “BusObject”.
Drag and drop blocks from the DDS Blockset into a new model to look like this:

Note that for the Publisher_Subscriber block connected to the Data Writer, you will need to
double click on the block and configure it as a Publisher.

Figure 5. Example Model.

Figure 6. Publisher Block Dialog.

Next, configure the data writer block for the “BusObject” Topic Type. Double
click on each block and change the Topic Type as shown below:

Figure 7. Data Writer Block Dialog.

Now, configure the Data Reader block to read the same Topic Type and Topic Name.
These two fields must be identical to the Data Writer block.

Click on the “Scheduling Tab” and make the following changes:

Figure 8. DataReader Block Dialog.

Figure 9. Data Reader Block Dialog.

Although the model will now simulate and interact with DDS, the last step involves
writing non-zero data and then viewing the result.
Add Sine, Bus Creator, Bus Selector, and Scope blocks as shown below.

Figure 10. Example Model.

Double click on the Bus Creator block and change to the following:

Figure 11. Bus Creator Block Dialog.

Double click on the Bus Selector block and change to the following:

Figure 12. Bus Selector Block Dialog.

The model is now complete. Push the Simulate button.

Figure 13. Simulink Run Button.

When the simulation is complete, double click on the Scope block. You should see the
following:

5.3 Code Generation
With Simulink Coder and Embedded Coder licenses, code can be generated from a
Simulink model that contains DDS Blocks. Follow instructions in the MATLAB
documentation for configuring and generating code from a Simulink model. The
generated code will have calls to RTI DDS functions for each of the DDS Blocks in the
Simulink model. For example, the following code fragment is generated for a Domain
Participant block:

For a subscriber:

Figure 14. Simulink Scope Block.

http://www.mathworks.com/help/releases/R2012b/rtw/configuration-1.html
http://www.mathworks.com/help/releases/R2012b/rtw/source-code-generation.html

And for a data reader:

5.3.1 RTI DDS Target Block
By default, code generated from a Simulink model will be compatible with RTI DDS
Connext using static typing. The code for defining, registering, and accessing topic
samples will be generated by the rtiddsgen utility provided by RTI. However, the user
can override these settings by adding an RTI DDS Target block to the model.

Figure 15. DDS Target Block Dialog.

5.4 RTI DDS Connext Toolbox
The DDS Blockset PSP also includes a set of MATLAB classes that can be used to
access RTI DDS Connext from MATLAB. This section explains how to create
instances of the MATLAB DDS Connext classes.

Type the following at the MATLAB Prompt.

➢ DDS.import(‘ShapeType.idl’,’matlab’);
➢ myTopic = ShapeType;
➢ myTopic.x = int32(23);
➢ myTopic.y = int32(35);
➢ dp = DDS.DomainParticipant
➢ dp.addWriter(‘ShapeType’, ‘Square’);
➢ dp.write(myTopic);
➢ dp.addReader(‘ShapeType’, ‘Square’);
➢ readTopic = dp.take();

The workspace variable readTopic should be an object of type ShapeType. The “x” and
“y” properties of the class should have values of 23 and 35, respectively.

6 Examples
6.1 Simulink/RTI Shapes
The DDS Blockset includes a Simulink model that will interact with the RTI Shapes
Demo. This demo is installed as part of RTI Connext DDS.

6.1.1 Start the RTI DDS Connext Shapes Demo
Open the Connext Launcher:

Figure 16. RTI Connext Launcher.

Select the Shapes Demo.
Make the following selections:

1. Select Publish – Square
a. Set “initial size” = 15
b. OK

2. Select Subscribe – Circle
a. OK

3. Select Subscribe – Triangle
a. OK

When complete, your display should look like this:

Figure 17. RTI Connext Shapes Demo.

6.1.2 Simulink rtwdemo_RTIShapes Model

Start MATLAB. Before you run the RTI Shapes Simulink model, verify you have a
C/C++ compiler configured. At the MATLAB prompt, type: mex –setup.

You should be prompted for a list of available compilers. If you are using Visual Studio®,
you may need to download Microsoft® Windows SDK7.1 before Visual Studio will show
up in the list of selectable compilers. See this article link for more information.

At the MATLAB prompt, type: rtwdemo_RTIShapes

Once the model is loaded, press the run button to start the simulation.
You will now see eight triangles and eight circles appear in the RTI Shapes Demo
display. The Simulink model is computing the position, velocity, and acceleration of the
triangle and circle shapes. The positions of each of these shapes is sent to the RTI
Shapes Demo via a DDS Writer. Simulink is reading the Square that is published by the
RTI Shapes Demo and using the information from this shape to compute collisions with
the other 16 shapes being published by Simulink.

To make the demo more interesting, right-mouse click on the square shape and change
its direction and speed.

Note that the Simulink model will stop simulation after about 30 seconds. Push the run
button on the Simulink model to resume the example.

http://www.microsoft.com/downloads/details.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b&displaylang=en
http://www.mathworks.com/support/compilers/R2012b/win64.html

Figure 18. RTI Connext Shapes Demo.

6.2 MATLAB/RTI Shapes

1. Follow steps in 6.1.1 to start the RTI Shapes Demo.
2. Type the following at the MATLAB prompt to create a data reader:

% Create a MATLAB class from the ShapeType IDL definition
DDS.import(‘ShapeType.idl’,’matlab’, ‘f’);

%% create a DDS Domain participant and data reader
dp = DDS.DomainParticipant;
dp.addReader('ShapeType', 'Square');

3. Type the following at the MATLAB prompt. You will see output similar to the
following, which is the current position of the blue square in the RTI Shapes
Demo.

dp.take()

ans =

color: 'BLUE'
x: 143
y: 167

shapesize: 15

4. Type the following at the MATLAB prompt to send a purple circle to the RTI

Shapes Demo.
dp.addWriter('ShapeType', 'Circle');
myData = ShapeType;
myData.x = int32(20);
myData.y = int32(40);

myData.shapesize = int32(20);
myData.color = 'PURPLE';
dp.write(shapeData);

Figure 19. RTI Shapes Demo.

7 Blockset Reference
7.1 DDS Types
Most DDS implementations, including RTI, support definition of data types via a
language independent description language. OMG IDL is the most commonly used, but
XML and XSD are also often supported. Simulink has a set of built-in data types along
with the ability to define structured data types via Simulink Buses and enumerated data
types via Simulink enumerated data type. Similarly, MATLAB has built-in data types
along with the ability to define structured data types via MATLAB classes/structures and
enumerated data via MATLAB enumerated data types. The following table defines the
IDL, DDS and MATLAB and Simulink data type mapping and support.

Table 5. DDS Type Support in MATLAB and Simulink.

IDL DDS MATLAB
Type

Simulink Type

short DDS_TK_SHORT int16 int16
long DDS_TK_LONG int32 int32
unsigned short DDS_TK_USHORT uint16 uint16
unsigned long DDS_TK_ULONG uint32 uint32
float DDS_TK_FLOAT single single
double DDS_TK_DOUBLE double double
boolean DDS_TK_BOOLEAN logical boolean
char DDS_TK_CHAR int8 int8
octect DDS_TK_OCTECT uint8 uint8
struct DDS_TK_STRUCT MATLAB

Struct/Class
Simulink.Bus

union DDS_TK_UNION MATLAB
class

Simulink.Bus

enum DDS_TK_ENUM MATLAB
Enumeration

Simulink.Enum

string<maxlen> DDS_TK_STRING char DDS_CharArray
Note 1

sequence DDS_TK_SEQUENCE Supported Note 1
“[]” notation DDS_TK_ARRAY Supported Supported

? DDS_TK_ALIAS Not
Supported

Not Supported

long long DDS_TK_LONGLONG Supported Supported
unsigned long
long

DDS_TK_ULONGLONG Supported Supported

long double DDS_TK_LONGDOUBLE Not
Supported

Not Supported

Wchar DDS_TK_WCHAR Not
Supported

Not Supported

Wstring DDS_TK_WSTRING Not
Supported

Not Supported

valuetype DDS_TK_STRUCT MATLAB
Struct/Class

Simulink.Bus

? DDS_TK_VALUE Not
Supported

Not Supported

? DDS_TK_SPARSE Not
Supported

Not Supported

? DDS_TK_RAW_BYTES Not
Supported

Not Supported

? DDS_TK_RAW_BYTES_KEYED Not
Supported

Not Supported

Note 1: For code generation, only Dynamic Data type mode is supported. For static code
generation, errors will occur during code generation and/or execution of the generated
code.
Note 2: For long long and unsigned long long support in Simulink, the Fixed-Point
Designer is required.

7.1.1 Representing DDS Types in Simulink

The DDS Simulink blocks assume that the Topic Type will always be in the form of
an IDL struct which is modeled in Simulink as a Simulink Bus. The user must create a
Simulink Bus with the desired fields/types/sizes for the Topic data to be sent and
received. If the Topic Type is defined in IDL, the user must make sure to define the
Simulink Bus with the same attributes.

It is strongly recommended that the user create Simulink Buses using the
DDS.import() utility. See section 7.1.2. This utility creates buses from struct
definitions in IDL files, including all metadata data (i.e. @key, @optional, sequence,
etc). required for proper DDS operation.

Figure 20 shows how a Topic Type with nested structures can be represented in
Simulink with a corresponding set of nested Simulink Buses.

Figure 20. Topic Type Defined by Simulink Bus.

If the Topic Type contains enumerated data types, a Simulink enumerated data type must
be created with the same name and enumerators. This link explains how to create and
use an enumerated data type.

Simulink strings do not generate code in a way that is compatible with DDS strings.
Strings are therefore treated in Simulink as a fixed length array of unsigned bytes. In
order for the Simulink Blocks to differentiate between a vector of bytes and a string, an
alias data type, DDS_CharArray, was created. This alias type is used by the DDS
Blockset infrastructure to differentiate between strings and byte vectors. DDS.import()
will import all IDL strings into a bus element with type DDS_CharArray.

7.1.2 Importing IDL into Simulink
The recommended technique for creating buses in Simulink is to import the DDS type
definitions from a DDS IDL or XML file using the DDS.import() function. By default,
the buses will be created in the MATLAB base workspace. The ‘sldd’ option will import
the buses into the user specified Simulink Data Dictionary.

• DDS.import(‘IDL/XML file name’)
• DDS.import(‘IDL/XML filename’, ‘f’) – ‘f’ overwrites any existing objects in the

workspace.
• DDS.import(‘IDL/XML filename’, ‘sldd’, ‘myData.sldd’)
• DDS.import(‘IDL/XML filename’, ‘-ppDisable’) : –ppDisable command line

switch to disable IDL preprocessor for rtiddsgen.

http://www.mathworks.com/help/releases/R2012b/simulink/ug/using-enumerated-data-in-simulink-models.html

Table 5 defines IDL keywords/XML tags that are supported by the DDS.import
command and the resulting MATLAB and Simulink entity created. Note that the classes
DDS.Bus, DDS.Parameter, and DDS.AliasType are derived from built-in classes
Simulink.Bus, Simulink.Parameter, and Simulink.AliasType. These derived classes hold
additional meta data needed for proper interaction with DDS, such as key field,
sequence, and IDL module.

Table 6. IDL Import/Export Keyword Support for Simulink.

IDL Keyword XML tag Simulink Comment
struct <struct> DDS.Bus
valuetype <valuetype> DDS.Bus
n/a <member> DDS.BusElement
enum <enum> Simulink.Enum A dynamic enum will be created.
const <const> DDS.Parameter
typedef <typedef> DDS.AliasType
union <union> Simulink.Bus A bus to hold the discriminator and a

sub-bus to hold all union cases.

7.1.3 Exporting Buses to IDL
DDS topics defined with buses can be exported to DDS IDL with the function
DDS.export(<busName>). Table 5 describes the Simulink entities that will be exported.

7.1.4 Representing DDS Types in MATLAB

Topic Types in MATLAB are represented by MATLAB classes. The MATLAB class for
a Topic Type is required when creating a data reader or data writer using the addReader()
or addWriter() method.

A MATLAB class must be created for each IDL structure in the Topic Type. The classes
must contain a “properties” section to define the type and size of each element. Optional
methods can be provided to indicate key fields (see section 7.1.6.2), sequences, and IDL
module keyword information. Note each IDL structures, including the top structure for
the Topic Type, must each be represented with a MATLAB class.

Although the classes can be created with a text editor, it is strongly recommended that
the user create MATLAB classes using the DDS.import() utility. See section 7.1.5 for
details. This utility creates MATLAB classes from struct definitions in IDL files,
including all metadata data (i.e. @key, @optional, sequence, etc.) required for proper
DDS operation.

Figure 21. Topic Type Defined with MATLAB Class.

7.1.5 Importing IDL into MATLAB

The DDS.import() utility can be used to automatically create MATLAB classes
from an IDL or XML file.

DDS.import(‘HelloWorld.idl’,’matlab’)
DDS.import(‘HelloWorld.idl’,’matlab’, ‘f’)
where:

• ‘HelloWorld.idl’ – IDL file containing Topic Type(s)
• ‘f’ – Force over-write if file already exists
• ‘matlab’ – create MATLAB classes for each Topic Type.

Table 7. IDL Import/Export Keyword Support for MATLAB.

IDL Keyword XML tag MATLAB Comment
struct <struct> MATLAB class Filename will be

<module>_<struct>.m
Struct elements become
properties of the class.

valuetype <valuetype> MATLAB class Filename will be
<module>_<struct>.m Struct
elements become properties of
the class.

enum <enum> MATLAB class Filename will be
<module>_<enum>.m

const <const> N/A If used to define size of a
structure, value will be hard
coded in the property
dimensions.

typedef <typedef> N/A All typedefs in the IDL file
will be resolved to build-in
MATLAB types, nested
classes or enums. These
resolved types will be used
when defining class
properties.

module <module> Class method
getIDModule().

Optional

Union <union> MATLAB class A class to hold the discriminator
and a sub-class to hold all union
cases.

7.1.6 Key Fields

7.1.6.1 Simulink
The DDS Blockset has support for key fields. DDS Topic Types are modeled in Simulink
using the data class DDS.Bus and DDS.BusElement, which are derived from the built-in
classes Simulink.Bus and Simulink.BusElement. The DDS.BusElement class has an
additional property for holding key field information.

If a Topic has a key, DDS can use that information to determine which data object is
being affected by your write operation. This allows DDS to implement QoS policies that
properly manage the information maintained by the system. The DDS Blocks will use
this key information when registering the DDS Topic Type. As a result, readers of data
being published by a write block can implement code to register instances for each key.
However, the DDS read block currently does not register separate instances for each key
field value.

Figure 22. Key Field representation in a Simulink Bus.

7.1.6.2 MATLAB

MATLAB classes define key fields via a static method “getKeyFields” must be
added to the class definition to identify key fields. Following is an example class
for the RTI Shapes Demo. This file is in the
<matlabroot>/toolbox/psp/examples/DDSBlockset directory and is used for the
demo mldemo_RTIShapes.m The first field (“color”) is a key field.

Figure 23. Topic Type and Key Fields defined with MATLAB Class.

7.1.7 IDL “Module” Keyword
The IDL that is used to define DDS Topic Types can include the “module” keyword.
This keyword is analogous to the C++ namespace keyword and it allows user to scope an
IDL identifier. When a structure is defined within an IDL module, the resulting DDS
fully qualified Topic Type name is: module::struct. For example, in the following IDL
example, the DDS Topic Type name would be: top::middle::inner::Image

The following sections describe how the IDL modules and the double colon operator are
mapped to Simulink and MATLAB.

7.1.7.1 Simulink
Simulink does not support double colon operator, and also does not support package
directories. Bus, aliases, parameters, and enumerations that are created in the base
workspace will have the IDL module as a prefix. For the example, IDL file shown in
Figure 24, the DDS.Bus would be named ‘top_middle_inner_Image’.
The module information needs to be retained and used when registering the Topic Type
with DDS. The module information is captured in the ‘Module” property of the data
object as shown below.

Figure 25. IDL Module Keyword in Simulink Bus.

Figure 24 IDL Module Keyword

7.1.7.2 MATLAB

MATLAB does not support double colon operator. MATLAB classes created for IDL
structs and enumerations will have the IDL module as a prefix. For the example, IDL file
in the previous section, the MATLAB class would be named
“top_middle_inner_Image.m”. The module information needs to be retained and used
when registering the Topic Type with DDS. The information is returned by the
“getIDLModule()” method in the MATLAB class. For example, an IDL struct named
“ice::AbsoluteTime” would be imported as a MATLAB class named
“ice_AbsoluteTime.m” as shown below.

7.1.7.3 Disabling Module Prefix
Some IDL files may have many nested <module> keywords. In these situations, it is
possible that the resulting object name or class name exceeds the MATLAB limit of 63
characters due to the large number of module names prefixed to the identifier. If the
identifiers are unique, this problem can be resolved by removing the prefixes from object
names or class names.

The following MATLAB preference can be used to prevent <module> names from being
used as prefixes.

setpref('DDSBlockset','ModulePrefix', ‘false’);

To restore default behavior in which the module names are used as prefixes:

setpref('DDSBlockset','ModulePrefix', ‘true);

Figure 26. IDL Module Keyword in MATLAB Class.

7.1.8 IDL Sequences

IDL supports the concept of a variable length vector, called a sequence. This section
describes how to interact with Topic Types that utilize sequences.

7.1.8.1 Simulink

Sequence information for Simulink is captured as the “Dimensions Mode” property of a
Simulink Bus Element as shown in Figure 28. Note that the “Dimension” field must be
set to the maximum size of the sequence. Support for sequences is limited to Simulink
support for variable sized signals. Specifically:

• Simulink does not allow a nested bus to be a sequence. It must have fixed length.
• Simulink does not allow an element in a nested array of buses to be a sequence.

An error will be displayed if a Simulink model uses a bus that has one of these unsupported
sequence patterns. The user will have to modify the IDL file to replace sequences with
fixed length vectors.

Figure 27. IDL Sequence Example.

7.1.8.2 MATLAB

An additional method getSequenceFields() must return true for each field that is a
sequence. When specifying the size of the property in the MATLAB class, you must
specify the maximum sequence length from the IDL file.

For the MATLAB class syntax, sequence lengths less than the maximum sequence
length are supported.

Figure 28. IDL Sequence in a Simulink Bus.

To send a sequence length less than the maximum length using classes, follow these
steps:

• Create an instance of the class
• Set the values for the sequence element.
• Write the class instance using the write() method.

Following is an example using the Latency class in Figure 34.

Note that sequences of structures are also supported. Following is an example MATLAB
class that has an element (struct_seq) which is itself a sequence of structures.

Figure 29. Example data writer using sequences.

Figure 30. MATLAB classes used to define sequences of IDL structures.

7.1.9 IDL Structure Inheritance
IDL has the concept inheritance in which a structure definition inherits structure elements
from a base structure definition. For example, the IDL code in Figure 31 defines a struct
StructA2 that inherits from StructB2.

This section describes how inheritance can be represented in Buses and MATLAB
classes.

7.1.9.1 Simulink

A property in the DDS.Bus is used to indicate fields inherited from a base structure
definition and the name of the base structure.

For the previous example, the DDS Bus definition in Figure 28 would be created. Note
that:

1. The field vIntA from struct StructB2 have been merged into Bus StructA2
2. The metadata field “BaseType” for bus SructA2 references the base struct/bus

StructB2
3. The field vIntA has the meta data “Inherited” set to true

Figure 31. IDL Structure Inheritance.

Figure 32. IDL Inheritance in Simulink.

7.1.9.2 MATLAB
It is highly recommended that the DDS.import() utility be used to create MATLAB
classes from IDL to ensure the MATLAB classes are constructed properly. A MATLAB
class will be created for each IDL structure. MATLAB class inheritance is used to
represent IDL inheritance.

Figure 33. IDL Inheritance in MATLAB.

7.1.10 Unions
Unions are represented in Simulink and MATLAB as a bus/structure with two fields, one to
hold the discriminator and a second to hold the union data. The union data itself will be a sub
bus/struct that has a field for each case of the union. This convention is consistent with the
layout of the union code generated by rtiddsgen.

7.1.10.1 Simulink
Two buses are used to represent a union in Simulink. This convention was chosen to agree with the C
data structures that rtiddsgen creates when generating code for IDL unions. One bus will be created
with the same name as the union. This bus will always have 2 fields, _d and _u. The _d field holds
the value of the discriminator. In the following example, the discriminator is a short integer, which in
Simulink is int16. The second field, _u, is a sub-bus which has a field for each union member. The
sub-bus is named the same as the IDL union name, with a suffix of “_u”. In this example, there are
two union members, UA_Short and UA_Char. The value of the _d field indicates which of the union
member fields are active.

To properly simulate and generate code for unions, additional metatdata is stored in the DDS.Bus and
DDS.Buselement data objects. This metadata is automatically populated by the DDS.import()
function. However, if users manually create buses, they must properly set these additional fields for
proper operation:

7.1.10.2 MATLAB
Two MATLAB classes are used to represent a union in MATLAB. The only difference between the
MATLAB classes and the Simulink bus described in the previous section is the names of the
discriminator and union. MATLAB does not allow variables to begin with an underscore, so the
underscore is moved to a suffix as shown below.

7.1.11 Simulink Data Dictionary

The DDS Blockset is compatible with the Simulink Data Dictionary. The following
steps should be followed:

1. Import IDL information inth a Simulink Data Dictionary using the
DDS.import command. See section 7.1.2.

2. Link the data dictionary to your Simulink model
a. set_param(‘myModel’,’DataDictionary’,’myDD.sldd’);

3. Disable access to the base workpace (beginning in R2019a):
a. set_param(‘myModel’, 'EnableAccessToBaseWorkspace',’off’)

Beginning in R2019a, if the user wants to access both the SLDD and the base workspace from
the Smiulink model, the user must also uncheck this box in the SLDD using the Model
Explorer

Figure 34 Simulink Data Dictionary - controlling access to base workspace

7.1 Simulink Blocks

Figure 35. DDS Blockset.

7.2.1 Return codes
Most of the DDS blocks will have an output port indicating the status of the block. The
following table defines possible values for this signal. The enumerated type
DDS_RETCODE_TYPE is available to use in Simulink and MATLAB.

Table 8. DDS Return Codes.
Enumerated Type Integer equivalent
DDS_RETCODE_OK 0
DDS_RETCODE_ERROR 1
DDS_RETCODE_UNSUPPORTED 2
DDS_RETCODE_BAD_PARAMETER 3
DDS_RETCODE_PRECONDITION_NOT_MET 4
DDS_RETCODE_OUT_OF_RESOURCES 5
DDS_RETCODE_NOT_ENABLED 6
DDS_RETCODE_IMMUTABLE_POLICY 7
DDS_RETCODE_INCONSISTENT_POLICY 8
DDS_RETCODE_ALREADY_DELETED 9
DDS_RETCODE_TIMEOUT 10
DDS_RETCODE_NO_DATA 11
DDS_RETCODE_ILLEGAL_OPERATION 12
DDS_RETCODE_NOT_ALLOWED_BY_SEC 13

7.2.2 DDS Target

This block controls the code generated for the DDS blocks in the Simulink model.
The main “DDS” tab contains general settings for controlling code generation.
This block has 6 configuration parametgers.

• DDS Target: Controls which version of DDS the generated code will be
compatible with.

o RTI Connext DDS(default)
o RTI Connext Micro DDS

• TypeSystem: Controls which type system the generated code will be compatible
with. When DDS Target is set to Micro DDS, only static typing is supported.

o Static(default)
o Dynamic

• Discovery Mode: Controls the code generated for discovering other domain
participants. Only used when DDS Target is Micro DDS.

o Static
o Dynamic

• IDL file: If the user has an IDL file for defining Topic Types used in the Simulink
model, this file can be placed here. If present, then this IDL file will be used with
rtiddsgen when TypeSystem == Static. If not provided, then Simulink will generate
an IDL file for use with rtiddsgen.

• Sample Time: Sample time for the block.

Figure 36. DDS Target Block Dialog.

7.2.3 Domain Participant
This block creates a DDS Domain Participant. Quality of Service settings are obtained
from the user specified library and profile, contained on a QoS XML file.

• Outport 1 is the address of the created Domain Participant, or NULL if not
successful.

• Outport 2 is the return code from the create_participant() DDS service. Refer to
the RTI Connext DDS documentation for explanation of the return codes from the
various Connext DDS functions.

RetCode Description
1 If

DDS_DomainParticipantFactory_create_participant_with_profile returns NULL,
DDS_RETCODE_ERROR else DDS_RETCODE_OK

There are three configuration items for this block:
• QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank to

use a default QoS. This link describes the rules RTI Connext DDS uses for locating
and loading QoS profiles. Refer to section 10 for detailed information regarding
QoS profiles and code generation. If left blank, the rules for locating a default QoS
profile will be used. This link provides details.

• Domain ID: This is the Domain ID number that will be used when creating this
domain participant.

• Sample Time: This has no effect on the operation of this block, as its logic
executes during initialization to establish a domain participant. It should be left as
-1 so that sample time is back-propagated from the data reader/writer block.

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

Figure 37. Domain Participant Block Dialog.

7.2.4 Publisher/Subscriber

This block can be configured as either a DDS Publisher or Subscriber.
• Input port 1 must be connected to a DOMAIN_PARTICIPANT block.
• Outport 1 should be connected to a DataWriter (if configured as a Publisher) or a

DataReader (if connected to a Subscriber).
• Outport 2 contains a ReturnCode for each of the DDS service called by this block.

Refer to the RTI Connext DDS documentation for explanation of the return codes
from the various Connext DDS functions.

RetCode Description
1 If

DDS_DomainParticipant_create_subscriber_with_profile
returns NULL, DDS_RETCODE_ERROR else DDS_RETCODE_OK

There are three configuration items for this block:
• Sub/Pub: Select either publisher or subscriber from the dropdown list.
• QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank to

use a default QoS. This link describes the rules RTI Connext DDS uses for locating
and loading QoS profiles. Refer to section 10 for detailed information regarding
QoS profiles and code generation. If left blank, the rules for locating a default QoS
profile will be used. This link provides details.

• Sample Time: This has no effect on the operation of this block, as its logic
executes during initialization to establish a domain participant. It should be left as

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

-1 so that sample time is back-propagated from the data reader/writer block.

7.2.5 Data Writer
This block writes Topic data to DDS.

• Input port1 must be connected to a Publisher block.
• Input port 2 must be a bus signal of the same type as the Topic/Bus Object Name.
• Output port 1 contains a vector of size 11 that holds status information for each of

the DDS services called to write data to DDS. Refer to the RTI Connext DDS
documentation for explanation of the return codes from the various Connext DDS
functions.

Figure 38. Publisher/Subscriber Block Dialog.

Table 9. DDS Return Codes for Data Writer.

RetCode Description
Index
1 If

DDS_DynamicDataTypeSupport_new() returns NULL, DDS_RETCODE_ERROR else
DDS_RETCODE_OK

2 Status returned by DDS_DynamicDataTypeSupport_register_type()

3 If
DDS_DomainParticipant_create_topic_with_profile() returns NULL,
DDS_RETCODE_ERROR else DDS_RETCODE_OK

4 If publisher has not been created yet, this will return
DDS_RETCODE_PRECONDITION_NOT_MET

5 Not used
6 Status returned by DDS_DomainParticipantFactory_get_datawriter_qos_from_profile

7 If DDS_Publisher_create_datawriter() returns NULL, DDS_RET_CODE_ERROR, else
DDS_RETCODE_OK

8 Not used
9 Not used
10 If DDS_DynamicDataTypeSupport_create_data() returns NULL,

DDS_RET_CODE_ERROR, else DDS_RETCODE_OK
11 Status returned by DDS_DynamicDataWriter_write()

There are four configuration items for this block.
• Topic Type/Bus Object Name: This is the name of the Simulink Bus object that

is the data type for input port 2. This Bus Object name will be used for the DDS
Topic Type when the Topic type is registered with DDS. Data readers wishing to
read this topic data must use the same Topic Type/Topic name combination.

• Topic Name: This is the name that will be used, along with the Topic Type, when
registering this Topic with DDS. Data readers wish to read this topic data must
use the same Topic Type/Topic name combination.

• Sample Time: The sample time controls the rate at which this topic data will be
written to DDS. If inherited, Simulink will use implicit rules for determining the
sample time.

• QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank to
use a default QoS. This link describes the rules RTI Connext DDS uses for locating
and loading QoS profiles. Refer to section 10 for detailed information regarding
QoS profiles and code generation. If left blank, the rules for locating a default QoS
profile will be used. This link provides details.

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

Figure 39. Data Writer Block Dialog.

7.2.6 Data Reader
This block reads data for the specified Topic/Bus Object Name/Topic Name.

• The first inport must be connected to a SUBSCRIBER block.
• The first outport contains the data read from DDS. The signal must a bus and the

same type as the Topic/Bus Object Name.
• The second outport contains a vector of status information for each of the DDS

services used to read the data. Refer to the RTI Connext DDS documentation for
explanation of the return codes from the various Connext DDS functions.

• The optional third output contains the SampleInfo data structure. It contains a large
amount of metadata provided by DDS for the received sample. Refer to RTI
documentation for a detailed description of this data structure.

Table 10. Data Reader Return Codes.

RetCode
Index

Description

1 If
DDS_DynamicDataTypeSupport_new() returns NULL, DDS_RETCODE_ERROR else
DDS_RETCODE_OK

2 Status returned by DDS_DynamicDataTypeSupport_register_type()
3 If

DDS_DomainParticipant_create_topic_with_profile() returns NULL,
DDS_RETCODE_ERROR else DDS_RETCODE_OK

4 If subscriber has not been created yet, this will return
DDS_RETCODE_PRECONDITION_NOT_MET

5 Not used
6 Status returned by DDS_DomainParticipantFactory_get_datareader_qos_from_profile
7 If DDS_Publisher_create_datareader() returns NULL, DDS_RETCODE_ERROR, else

DDS_RETCODE_OK
8 If WaitSet is enabled, then return value from DDS_WaitSet_wait. If Filter is used, and filter

is not matched, return DDS RETCODE NO DATA, else return DDS_RETCODE_OK.
9 If sampleInfo.valid_data = TRUE, status returned by DDS_DynamicDataReader_read()or

DDS_DynamicDataReader_take(). If sampleInfo.valid_data = FALSE,
DDS_RETCODE_NO_DATA

10 When configured for Topic filtering, if
DDS_DomainParticipant_create_contentfilteredtopi_with_filter() returns NULL,
DDS_RET_CODE_ERROR, else DDS_RETCODE_OK

11 Not used.

There are 11 configuration items for this block:
• Topic Type/Bus Object Name: This is the name of the Simulink Bus object

that is the data type for input port 2. This Bus Object name will be used for the
DDS Topic Type when the Topic type is registered with DDS. Data readers
wishing to read this topic data must use the same Topic Type/Topic name
combination.

• Topic Name: This is the name that will be used, along with the Topic Type,
when registering this Topic with DDS. Data readers wish to read this topic data
must use the same Topic Type/Topic name combination.

• QoS Profile: Specify a QoS profile name in the form of lib::profile or leave blank
to use a default QoS. This link describes the rules RTI Connext DDS uses for
locating and loading QoS profiles. Refer to section 10 for detailed information
regarding QoS profiles and code generation. If left blank, the rules for locating a
default QoS profile will be used. This link provides details.

• Sample Time: The sample time controls the rate at which this topic data will
be written to DDS. If inherited, Simulink will use implicit rules for
determining the sample time.

• Outports for Sample Info: When this box is checked a third outport will be
added to output the SampleInfo for the received data sample. The definition of
the fields in the SampleInfo bus can be found here.

• Waitset: If this box is checked, a waitset will be used to wait for the next
available data. When not checked, the block will poll DDS for available data.
If not data is available, the block will return DDS_RETCODE_NO_DATA . If
waitset is enabled, a read condition will be created with the following settings.
The Simulink simulation will be blocked until data is received or a timeout
occurs. If the waitset timesout, the block will return DDS_RETCODE_TIMEOUT.

o DDS_NOT_READ_SAMPLE_STATE
o DDS_ANY_VIEW_STATE
o DDS_ANY_INSTANCE_STATE

• If a waitset is enabled, this is the timeout used. Otherwise, this parameter is
ignored.

• Read()/Take(): Select read() or take() for obtaining the DDS data. Read() will
leave the DDS data in DDS memory. Take() will remove the data from DDS
memory.

• FilterType: Select from this list to enable Content Topic Filtering. Select from:
No Filter, DDS_SQLFILTER_NAME or
DDS_STRINGMATCHFILTER_NAME.

• FilterExpression: SQL filter expression. Refer to the DDS User’s Manual for a
complete description of the SQL expression syntax.

• FilterParameters: If any parameters are used in the filter expression (i.e. %0, %1,
etc.), then you must provide a cell array of strings, one for each parameter in the
filter expression. Literal constants must be in the form of a string (i.e. ‘23’).
Strings must inside single quotes (i.e. ‘ ‘ ‘PURPLE’ ‘ ‘). Workspace variables
can be used. In this case, the workspace variable must be a string (i.e. x = ‘35’
myColor = ‘ ‘ ‘GREEN’ ‘ ‘).

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault
https://community.rti.com/rti-doc/510/ndds/doc/html/api_dotnet/classDDS_1_1SampleInfo.html

Figure 40. Data Reader Block Dialog.

Figure 41. Data Reader Block Dialog - Filtering.

7.2.7 DDSTime
This block returns the current system time from DDS.

• Outport 1 is a Simulink Bus of type DDS_Time_t. The first field is int32
seconds. The second field is unit32 nanoseconds.

• Outport 2 is the return code with status of the DDS service
DDS_DomainParticipant_get_current_time().

7.2.8 XML Application Creation Read

This block uses the XML Application creation capabilities of DDS to read/take a DDS
sample. When using this approach, a single block replaces the traditional Domain
Participant/Subscriber/Data Reader blocks. Refer to 7.5 for a detailed description of the
XML Application Simulink blocks and associated XML configuration file.
There are 2 or 3 output ports for this block.

• The first outport contains the status of the read/take operation. Refer to Table
7Table 7 for a description of this output port.

• The second outport contains the data read from DDS. The signal is a bus
whose datatype will be obtained from the XML configuration file based on
the values entered in the block dialog.

• The optional third output contains the SampleInfo data structure. It contains a
large amount of metadata provided by DDS for the received sample. Refer to
RTI documentation for a detailed description of this data structure.

Figure 42. XML Application Create Data Reader.

There are 10 configuration items for this block:
• ParticpantLibrary::Particpant: The particpant library and particpant tags from

the XML file used to define this particular XML Application Create Read
block.

• Subscriber::DataReader: The subscriber and data reader tags from the XML
file used to define this data reader.

• Sample Time: The sample time controls the rate at which this topic data will
be written to DDS. If inherited, Simulink will use implicit rules for
determining the sample time.

• Outports for Sample Info: When this box is checked a third outport will be
added to output the SampleInfo for the received data sample. The definition of
the fields in the SampleInfo bus can be found here.

• Waitset: If this box is checked, a waitset will be used to wait for the next

https://community.rti.com/rti-doc/510/ndds/doc/html/api_dotnet/classDDS_1_1SampleInfo.html

available data. When not checked, the block will poll DDS for available data.
If not data is available, the block will return DDS_RETCODE_NO_DATA . If
waitset is enabled, a read condition will be created with the following settings.
The Simulink simulation will be blocked until data is received or a timeout
occurs. If the waitset timesout, the block will return DDS_RETCODE_TIMEOUT.

o DDS_NOT_READ_SAMPLE_STATE
o DDS_ANY_VIEW_STATE
o DDS_ANY_INSTANCE_STATE

• If a waitset is enabled, this is the timeout used. Otherwise, this parameter is
ignored.

• Read()/Take(): Select read() or take() for obtaining the DDS data. Read() will
leave the DDS data in DDS memory. Take() will remove the data from DDS
memory.

• FilterType: Select from this list to enable Content Topic Filtering. Select from:
No Filter, DDS_SQLFILTER_NAME or
DDS_STRINGMATCHFILTER_NAME.

• FilterExpression: SQL filter expression. Refer to the DDS User’s Manual for a
complete description of the SQL expression syntax.

• FilterParameters: If any parameters are used in the filter expression (i.e. %0, %1,
etc.), then you must provide a cell array of strings, one for each parameter in the
filter expression. Literal constants must be in the form of a string (i.e. ‘23’).
Strings must inside single quotes (i.e. ‘ ‘ ‘PURPLE’ ‘ ‘). Workspace variables
can be used. In this case, the workspace variable must be a string (i.e. x = ‘35’
myColor = ‘ ‘ ‘GREEN’ ‘ ‘).

7.2.9 XML App Creation Write
This block uses the XML Application creation capabilities of DDS to write a DDS
sample. When using this approach, a single block replaces the traditional Domain
Participant/Publisher/Data Writer blocks. Refer to 7.5 for a detailed description of the
XML Application Simulink blocks and associated XML configuration file.

The block has 1 input port and 1 output port.
• Input port 1 must be a bus signal containing the data to be written. The type of

this port must match the type defined in the XML file and referenced by the block
dialog parameters.

• The first outport contains the status of the write operation. Refer to Table 7 for
a description of this output port.

Figure 43. XML Application Create Data Writer.

There are three configuration items for this block.
• ParticpantLibrary::Particpant: The particpant library and particpant tags from

the XML file used to define this particular XML Application Create Read
block.

• Publisher::DataWriter: The publisher and data writer tags from the XML file
used to define this data reader.

• Sample Time: The sample time controls the rate at which this topic data will
be written to DDS. If inherited, Simulink will use implicit rules for
determining the sample time.

7.3 Simulating with Accelerator Modes
When a Simulink model is simulated, the model can be configured to execute in one of
six different simulation modes.

For the Accelerator and Rapid Accelerator modes, Simulink converts the Simulink model
to C code and compiles that code into a MEX file. The simulation executes the compiled
C code to achieve improved performance.

7.3.1 Accelerator Mode

Since code will be generated, compile and linked with the RTI DDS libraries, a model
configuration parameter must be set for proper compilation.

Windows:
set_param(<model>,'AccelMakeCommand', 'make_rtw MEX_OPTS="-DRTI_WIN32"')

Linux and MacOS:
set_param(<model>,'AccelMakeCommand', 'make_rtw MEX_OPTS="-DRTI_UNIX"')

7.3.2 Rapid Accelerator Mode
There is not a similar configuration setting as described in the previous section for Rapid
Accelerator mode. In order to run in Rapid Accelerator mode on Linux computers, the
user will need to modify the make file and rebuild the Accelerator mode .mex file. The
make file is located in : /slprj/raccel/<model>. Edit the file <model>.mk and add the –
DRTI_UNIX macro definition to the following line.

Once this is done, rerun the make file by typing the following at the MATLAB prompt:
system(‘gmake –f <model>.mk’)

This will rebuild the accelerated model MEX file. You can now return to the Simulink
model window and push the “run” button to run the Accelerated mode simulation.

7.4 Code Generation from Simulink Models
This section provides additional information on the code generated from Simulink
models containing DDS Blocks

7.4.1 Quality of Service
When the DDS Target is set to RTI Connext DDS, the generated code will use the same
QoS profile specified in the DDS Block mask and used during simulation. RTI Connext
DDS Micro does not support QoS profiles. As a result, the QoS profile specified in the
Block dialog will be ignored. Rather, the generated code will have hard-code QoS
settings, along with a preprocessor macro that the user can define to over-ride the default
settings, if desired. Following is an example code fragment for a Domain participant
block:

Figure 44. DDS Connect Micro DDS QoS Example.

7.4.2 DDS Type System
The Simulink blockset supports two options for generating the code that registers the
DDS Topic Types: Static and Dynamic. For the Static type system, the rtiddsgen utility
is used to generate C code to statically define Topic Type and C code to read/write
samples between the DDS memory and the applications memory.
With the Dynamic type system, the DynamicData APIs are used to register Topic Types
and send/receive sample data. Applications that use the DynmaicData API will be slower
than the Static type system.

7.5 XML Application Creation

RTI Connext DDS Professional includes a set of APIs that allow an application to create DDS entities
(participants, subscribers, publishers, readers, writers) from an XML file. This is accomplished by adding
additional information into the XML file that previously contained QoS information. Error! Reference
source not found.Figure 46 contains an example Application Creation XML file. The highlighted tags

from the XML file are entered into the dialog box for the XMLAppWrite Simulink block shown in Error!
Reference source not found.Figure 47.

Figure 45. Example Application Creation XML File.

Figure 46. XML Application Create Data Reader Block Dialog.

The XML file can be created with a text editor, or it can be created using the RTI System Designer. Refer
to rti.com for more details on RTI System Designer. Error! Reference source not found. Figure 48 shows
RTI System Designer being used to edit the XML file shown in Error! Reference source not found.Figure
46.

Figure 47. RTI System Designer.

Note that the XML file also contains data type information. When using XML Application Creation blocks,
an IDL file is no longer required. The following utility can be used to convert an IDL file to equivalent
XML format.

DDS.Utilities.convertIDLtoXML(<myIDL.idl>)

RTI DDS uses the same rules used for QoS XML files to locate and load the XML file. For
example, the content shown in Figure 47. Example Application Creation XML File.can be placed
in USER_QOS_PROFILES.xml in the current MATLAB working directory.

Once the XML file has been created, the DDS.import() utility must be used to create buses in the
MATLAB workspace/Simulink Data Dictionary that will be used by your Simulink model. Simply
call the DDS.import() utility for the XML file that contains your XMP Application Creation
information. For example, of you have placed your XML code into USER_QOS_PROFILES.xml,
then the following command will create corresponding buses/enums.

DDS.Import(‘USER_QOS_PROFILES.xml’)

7.5.1 Code Generation
The XmlApp DDS blocks support both the Static and Dynamic type systems for code generation,
but simulation in Simulink uses only Dynamic Type system. The XML files used with the
XmlApp blocks must be set up differently depending on whether Dynamic or Static typing is being
used. Since simulation with the XmlAPP blocks uses only Dynamic type system, if the code is
generated using the Static type system, the XML file must be modified.

The following example shows the changes required to an XML file that is set up for Dynamic type
system to be compatible with code generated for the Static type system:

8 MATLAB Toolbox
Refer to 7.1.3 for a detailed description of how to define Topic Types for the
MATLAB toolbox.

Refer to the DDS Blockset documentation in MATLAB for a detailed description of each
class and method

8.1 DDS Functions

 DDS.discoveryMonitor Return a list of particpants, publishers and subscribers for a given domainID

DDS.export Export a Simulink Bus to an IDL file.

DDS.getProfiles Returns a list of all available QoS profiles.

DDS.import Import IDL file into Simulink Bus or MATLAB or Class

DDS.rtiddsgen Generate C code for the provided IDL file using RTI DDS Connext rtiddsgen

DDS.version Return version of RTI Connext DDS and micro DDS

8.2 DDS Classes

8.3 MATLAB Performance
By default, the DDS MATLAB functions uses class instances to send/receive sample
data. However, MATLAB handles structures more efficiently than MATLAB classes.
If you will be sending/receiving samples at a high rate, it is recommended that you
convert class instances to structures before sending data and that you provide a

 0 *

DDS.DomainParticipant

-Address : uint64
+Profile : String
+Publishers : DDS.Publisher
+Subscribers : DDS.Subscribers
+Status : DDS_RETCODE_TYPE

+addPublisher()
+addSubscriber()
+addWriter()
+addReader()
+read()
+take()
+write()

DDS.Publisher DDS.Subscriber

-Address : uint64
+Profile : String
+Writers : DDS.DataWriter
+Status : DDS_RETCODE_TYPE
+addWriter()
+write()

-Address : uint64
+Profile : String
+Readers : DDS.DataReader
Status : DDS_RETCODE_TYPE
+addReader()
+take()
+read()

DDS.DataWriter DDS.DataReader

-Address : uint64
+Profile : String
+TopicType : String
+TopicName : String
+Status : DDS_RETCODE_TYPE
+write()

-Address : uint64
+Profile : String
+TopicType : String
+TopicName : String
+Filter : DDS.ContentFilter
+WaitSet : Boolean
+WaitSetTimeout : int32
+Status : DDS_RETCODE_TYPE
+take()
+read()

preallocated structure for receiving data. Use the function DDS.Utilities.toStruct to
convert a DDS class instance to a struct. Following is an example:

>DDS.import(‘ShapeType.idl’,’matlab’);
>myShape = ShapeType; % create an instance of ShapeType class
>myShape.x = int32(10);
>myShape.y = int32(20);
>myShape.shapesize = int32(25);
>myShape.color = ‘RED’;
>myShapeStruct = DDS.Utilities.toStruct(myShape);
>
>dp = DDS.DomainParticipant;
>dp.addWriter(‘ShapeType’,’Circle’);
>dp.write(myShapeStruct)
>
>dp.addReader(‘ShapeType’,’Triangle’);
>sampleStruct = dp.read(myShapeStruct);

9 Topic Content Filtering
Both the Simulink blockset and MATLAB toolbox support content filtering on topic data.
In both cases, the filter is defined and applied to the data reader.

9.1 Simulink
Filtering for the Data Read block is available on the “Filtering” tab of the block dialog.
Refer to section 7.2.5 for details of the block.

The example model rtwdemo_RTIShapesRead that is part of the PSP demonstrates topic
filtering with the RTI Shapes Demo.

In this example, a topic filter is defined.

9.2 MATLAB
Filtering for the MATLAB DDS is only supported when using MATLAB classes to
define DDS Topic Types. Before creating a Data Reader, the user must first create and
initialize the topic filter using the DDS.contentFilter class. In the following example, a
content filter is created to look for all YELLOW shapes with x position > 25.

Once the filter is defined, a Data Read is created with this newly created filter as follows:

10 Quality of Service (QoS)
DDS provides a significant amount of configurability for DDS operation via Quality of
Service parameters. To simplify the DDS Blockset/Toolbox, QoS profiles are used for
configuring QoS parameters for Simulink and MATLAB. Simulink and MATLAB
follow the RTI DDS Connext rules for file name and path search rules to locate QoS
profile libraries. The DDS Blockset provides a function for determining the list of
available profiles.

• DDS.getProfiles – returns a list of available QoS profiles. Refer to RTI Connext
DDS documentation for rules on defining and naming profile libraries.

The code generated from a Simulink model for a DDS block will have one of two forms,
based on whether or not a QoS Profile is specified. For example, QoS profile
myLibrary::myProfile is specified for a Domain Participant, the generated code will look
like this:

DDS_DomainParticipantFactory_create_participant_with_profile(

DDS_TheParticipantFactory,
23,
"myLibrary",
"myProfile",
NULL,
DDS_STATUS_MASK_NONE);

If the QoS Profile is left blank, the code is generated to use a default QoS profile:

DDS_DomainParticipantFactory_create_participant(

DDS_TheParticipantFactory,
23,
&DDS_PARTICIPANT_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

This link explains how the values for a default QoS profile are determined.

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/How_to_Load_XML_Specified_QoS_Settings.htm
https://community.rti.com/forum-topic/participantqosdefault

11 Limitations
This section describes known limitations with the DDS Blockset/Toolbox.

11.1 Simulink
• Sequences

o Static Data Type code generation will generate incorrect code
o Sequence of IDL structs are not allowed. Simulink does not allow a

nested bus to be a sequence. It must have fixed length.
o A vector of an IDL struct that contains a sequence element is not allowed.

Simulink does not allow an element in a nested array of buses to be a
variable length.

• Simulink/Embedded Coder converts all multi-dimension arrays to one-dimension
vectors. This causes a conflict with C structures defined for multi-dimensional
arrays by rtiddsgen for Static TypeSystem. A compilation error will therefore
occur when compiling the code from a Simulink model with the struct defintions
in the .h files created by rtiddsgen.

One workaround is to not include header files from rtiddsgen into the code
generated for the Simulink model. The risk of doing this is that code from
rtiddsgen will be linked with code from Simulink model that is compiled with
different header files to define the same typedef. If there are any differences in
the struct definitions other than flattened matrices, this will likely result in a
runtime error. If the user wishes to assume this risk, then the following
preference can be enabled:

▪ setpref(‘DDSBlockset’,’MatrixSupport’,’true’);
This option will compile the .c files from rtiddsgen with the struct typedefs from rtiddsgen
that match the multi-dimension arrays in the IDL file. It will then compile the .c files from
the Simulink model with the struct typedefs from the flattened vectors in the struct
definitions created by Simulink Coder/Embedded Coder.

• The IDL string data type is not supported for static type code generation. While

Simulink has recently added support for strings, the code generated for strings
by Simulink Coder/Embedded coder are fixed length vectors, while code
generated by rtiddsgen expects character pointers. Strings are therefore treated
in Simulink as a fixed length array of unsigned bytes. In order for the Simulink
Blocks to differentiate between a vector of bytes and a string, an alias data type,
DDS_CharArray, was created. This alias type is used by the DDS Blockset
infrastructure to differentiate between strings and byte vectors. Since static code
generation with rtiddsgen assumes the strings will be represented as character
pointers, code generation with Static Data typing will be incorrect and likely
result in a run-time error. As a result, only dynamic typing should be used.

• Model Reference. If using DDS blocks in referenced models, the following rules
must be followed:

o There must be a DDSTarget block in each referenced model
o An IDL file must be specified. The IDL file must be the same in all

referenced models. See section 7.2.1.
o The settings in the DDS Target block must be the same for all referenced

models
• Importing IDL files with #include statement. If an IDL file includes another IDL

file that is not on the MATLAB path rtiddsgen will fail. To work around this

issue, add the ‘-I’ switch to the DDS.import command as shown in the following
example:

o DDS.import('dC.idl','-Ic:\work\DDS\test\junk\slprj','f')
• Data Reader Callbacks are not supported in Simulink or MATLAB. The user

must use either a polling or WaitSet architecture for reading topic samples.
• Only time-based WaitSets are supported.
• Accelerated mode builds on Linux will fail with a compilation error related to

data types in the RTI DDS header files. Resolve this by changing the following
parameter setting in the model:

o set_param(model,'AccelMakeCommand', 'make_rtw MEX_OPTS="-DRTI_UNIX -
DMX_COMPAT_32"')

• The Static Code Metrics report will give the following error. Currently Embedded Coder
does not support include statements to legacy header files. (1169743)

• Micro DDS does not support two or more Domain Participants in the same model
with the same Domain ID. Samples will not be exchanged between readers and
writes connected to these different Domain Participants. A crash may occur when
creating the second Domain Participant.

• The “Allow tasks to execute concurrently on target” is not supported for patterns in
which the DDS entity connections cross a model reference boundary. For
example, if the output signal from a Domain Participant block is connected to a
Publisher block in another model, Simulink will give an error indicating that this
signal is not a built-in Simulink signal and therefore cannot be a root level port.

11.2 MATLAB
• Sequences of sequences are not supported.
• MATLAB code generation is not supported. If the user wishes to generated code

for a MATLAB algorithm that includes DDS functionality, a Simulink model can
be constructed which exercises the MATLAB algorithm via a MATLAB Function
block. Any DDS function calls in the MATLAB code need to be replaced with
corresponding Simulink DDS Blocks.

• Only time-based WaitSets are supported.

11.3 IDL Import
• DDS.import() does not support IDL multiple inheritance. However, the user can

manually create Buses or MATLAB classes that represent Topics with multiple
inheritance and send/receive topics of this type. Refer to section 7.1.9 for details.

• The IDL “@Optional” keyword is not supported. The keyword will be ignored
when importing IDL into MATLAB and Simulink. Topic types used in
MATLAB and Simulink will have all fields set to mandatory. As a result,
MATLAB and Simulink may not be able to communicate with other DDS
Participants configured to send/receive topics with Optional fields.

http://komodo.mathworks.com/main/gecko/view?Record=1169743-Unset&CURRENT_PAGE=close

• The IDL keyword @Extensibility MUTABLE_EXTENSIBILITY is not
supported.

• If the IDL file has a large number of nested <module>, the workspace
objects or MATLAB classes may have identifiers longer than the 63-
character limit of MATLAB. Refer to Disabling Module Prefixfor a
workaround.

• Unions are not supported.

11.4 IDL Export

• DDS.export() supports only Simulink Buses. MATLAB classes are not supported
for export to IDL.

12 MacOS Support
Beginning with MacOS version 10.11, the System Integrity Protection (SIP) security
feature puts restrictions on the use of DYLD_LIBRARY_PATH to add paths to the
library search path. SIP prevents applications or spawned processes from inheriting the
DYLD_LIBRARY_PATH environment variable. This hardware support package relied
on DYLD_LIBRARY_PATH to locate the RTI Connext Libraries for S-Functions and
MEX functions. As a result, library path information is added to both RTI Connext DDS
libraries and DDS Blockset S-Functions and MEX functions based on the environment
variable RTI_LD_LIBRARY_PATH.

DDS.Rpath.add() – Adds rpath information
DDS.Rpath.delete() – Deletes rpath information
DDS.Rpath.check() – Checks to see if libraries, sfunctions and MEX functions
have correct rpath information.

The DDS.Rpath.add() – Function needs to be called once after the blockset is first
installed. It will need to be rerun whenever the RTI DDS Connext libraries are moved or
updated. These functions required that the environment variable
RTI_LD_LIBRARY_PATH be set to the location of the RTI DDS Connext libraries.

12.1 Background
This section contains a detailed description of the rpath information added to RTI
Connext DDS libraries and DDS Blockset S-Functions and MEX functions.

• The 3 RTI Connext DDS libraries used by MATLAB and Simulink are

libnddsc.dylib, libnddscpp.dylib, libnddscore.dylib. These three libraries are
updated as follows:

o @rpath added as prefix to other RTI COnnext DDS libraries
o The install name is updated to include @rpath prefix

• All DDS Blockset S-Functions and MEX functions are updated as follows:
o @rpath added as prefix to other RTI COnnext DDS libraries
o The location of the RTI COnnext DDS libraries is added to the rpath

Since the location of the RTI Connext Libraries on the customer’s computer is not known
when the blockset installer is prepared, a utility is provided that the customer must run
after the blockset has been installed. This utility will make the changes described above

based on the library path referenced by environment variable
RTI_LD_LIBRARY_PATH.

Useful MacOS commands to obtain info about a dylib.
otool -L dylibname : displays list of linked libraries
otool -D dylibname : displays the id for the dylib
otool -l dylibname : lists detailed info about dylib, including rpath.

Initially, the RTI DDS libraries have no rpath information and the install_name is the
same as the library name:

Changes:

1. Use install_name_tool to add @rpath before all dependent RTI libraries:
libnddsc.dylib, libnddscore.dylib, libnddscpp.dylib

Xcrun install_name_tool -change libnddscore.dylib
@rpath/libnddscore.dylib libnddscore.dylib

2. Use install_name_tool to add @rpath to install_name

Xcrun install_name_tool -id @rpath/libnddsc.dylib libnddsc.dylib

DDS MEX functions and s-functions are then linked to these libraries.

1. Use install_name_tool Use install_name_tool to add location of RTI DDS
Connext libraries to rpath

==>

If the utility to add rpath information to either the RTI DDS libraries or the DDS Blockset
sfunctions or MEX functions is not run, you will receive errors similar to the following:

13 Updating to a New Version of DDS RTI Connext
When updating to a new version of RTI Connext DDS and/or RTI Connext Micro DDS,
the user need only exit MATLAB and then update the environment variables described in
section 4.2. When MATLAB is restarted, the DDS Blockset will use these environment
variables to locate the new version of RTI Connext.

14 Using the DDS Toolbox with MATLAB Compiler
MATLAB Compiler can be used to deploy MATLAB applications that utilize the DDS
Toolbox functions. The following additional files need to be added to the application.

Use the –a option of the mcc function to add the following files and directories to the .exe
created by MATLAB Compiler. Without these additional files/directories, the deployed
application will fail.

- All *.mex* files in the <matlabroot>/toolbox/psp/tools/DDSBlockset
- All .p and .m files in <matlabroot>/toolbox/psp/tools/DDSBlockset/+DDS

mcc('-v', '-a',
fullfile(matlabroot,'toolbox','psp','tools','DDSBlockset'), '-a',
fullfile(matlabroot,'toolbox','psp','tools','DDSBlockset','+DDS'), '-
a', 'USER_QOS_PROFILES.xml', '-m', 'myScript.m');

If a QoS XML file is being used, add to the “Files installed for end user” section.

An example MATLAB Compiler project, DDSExample.prj, is installed in the
<matlabroot>/toolbox/psp/examples/DDSBlockset directory.

15 Using the DDS Blockset with Raspberry Pi

Steps for using Simulink DDS Blockset on Raspberry Pi:

1. Install MATLAB and Simulink Raspberry Pi support packages.

2. Run raspberrypi_gettingstarted example model to confirm all hardware support
packages are installed correctly and Simulink can run.

3. Install DDS libraries compatible with Raspberry Pi, for example armv6vfphLinux3.xgcc4.7.2, on the host
computer by downloading the .rtipkg file from rti.com and then using the RTI Package installer to install
the libraries on the host computer where Simulink exists.

Use FTP to copy the folder rti_connext_dds-5.3.1/lib and rti_connext_dds-5.3.1/include to your
Raspberry Pi. Copy to location
/home/pi/

Alternately, you can use the functions
 DDS.Utilities. copyDDStoRaspi()
 DDS.Utilities. setRaspiSymbolicPaths()


4. Create soft links to add DDS include paths to user includes. This is required for the gcc
compiler to be able to location the DDS include files.
$ ln –s /home/pi/rti_connext_dds-5.2.0/include/ndds /usr/local/include/ndds
$ ln –s /home/pi/ rti_connext_dds-5.2.0/include/ndds/advlog /usr/local/include/advlog
$ ln –s /home/pi/ rti_connext_dds-5.2.0/include/ndds/cdr /usr/local/include/cdr
Repeat for all directories in /home/pi/ rti_connext_dds-5.2.0/include/ndds/
$ ldconfig

5. Create soft link for DDS library.

6. If your Simulink model uses a QoS XML file, you will need to copy this file to the
Raspberry Pi. Also, if your Raspberry Pi is on a different subnet, you may need to copy
the NDDS_DISCOVERY_PEERS file to the Raspberry Pi.

	1 Product Description
	1.1 Acronyms
	1.2 Definitions
	1.3 References
	1.4 Contact Information

	2 Document History
	3 System Requirements
	3.1.1 Required
	3.1.2 Optional

	4 Installation and Setup
	4.1 Installation
	4.1.1 Install RTI Connext DDS
	4.1.1.1 Support for Simulink Real-Time
	4.1.2 Install DDS Blockset

	4.2 Environment Variables
	4.2.1 Windows
	4.2.2 Linux
	4.2.3 MacOS

	4.3 Alternate Approach
	4.4 Uninstall

	5 Getting Started
	5.1 Basic Model
	5.2 Complete Model
	5.2.1 Create a Simulink Bus
	5.2.2 Create a Simulink Model

	5.3 Code Generation
	5.3.1 RTI DDS Target Block

	5.4 RTI DDS Connext Toolbox

	6 Examples
	6.1 Simulink/RTI Shapes
	6.1.1 Start the RTI DDS Connext Shapes Demo
	6.1.2 Simulink rtwdemo_RTIShapes Model

	6.2 MATLAB/RTI Shapes

	7 Blockset Reference
	7.1 DDS Types
	7.1.1 Representing DDS Types in Simulink
	7.1.2 Importing IDL into Simulink
	7.1.3 Exporting Buses to IDL
	7.1.4 Representing DDS Types in MATLAB
	7.1.5 Importing IDL into MATLAB
	7.1.6 Key Fields
	7.1.6.1 Simulink
	7.1.6.2 MATLAB
	7.1.7 IDL “Module” Keyword
	7.1.7.1 Simulink
	7.1.7.2 MATLAB
	7.1.7.3 Disabling Module Prefix
	7.1.8 IDL Sequences
	7.1.8.1 Simulink
	7.1.8.2 MATLAB
	7.1.9 IDL Structure Inheritance
	7.1.9.1 Simulink
	7.1.9.2 MATLAB
	7.1.10 Unions
	7.1.10.1 Simulink
	7.1.10.2 MATLAB
	7.1.11 Simulink Data Dictionary

	7.1 Simulink Blocks
	7.2.1 Return codes
	7.2.2 DDS Target
	7.2.3 Domain Participant
	7.2.4 Publisher/Subscriber
	7.2.5 Data Writer
	7.2.6 Data Reader
	7.2.7 DDSTime
	7.2.8 XML Application Creation Read

	7.2.9 XML App Creation Write
	7.3 Simulating with Accelerator Modes
	7.3.1 Accelerator Mode
	7.3.2 Rapid Accelerator Mode

	7.4 Code Generation from Simulink Models
	7.4.1 Quality of Service
	7.4.2 DDS Type System

	7.5 XML Application Creation
	7.5.1 Code Generation

	8.3 MATLAB Performance

	8 MATLAB Toolbox
	8.1 DDS Functions
	8.2 DDS Classes

	9 Topic Content Filtering
	9.1 Simulink
	9.2 MATLAB

	10 Quality of Service (QoS)
	11 Limitations
	11.1 Simulink
	11.2 MATLAB
	11.3 IDL Import
	11.4 IDL Export

	12 MacOS Support
	12.1 Background

	13 Updating to a New Version of DDS RTI Connext
	14 Using the DDS Toolbox with MATLAB Compiler
	15 Using the DDS Blockset with Raspberry Pi

