
INTRODUCTION
During the last several years, hybrid electric vehicles (HEVs) and 
battery electric vehicles (BEVs) have received considerable attention 
due to their efficiency and sustainability []. Batteries, a component of 

paramount importance for these types of vehicles, require accurate 
real-time monitoring and control in order to avoid any overcharge or 
over discharge conditions that shorten their lifespan and impact 
safety.
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ABSTRACT
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative 
compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an 
electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical 
parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is 
needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model 
needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is 
critical that the physical model adapts to parameter changes due to aging.

In this paper, we present an effective method for offline battery model parameter estimation at various battery states of health. An 
equivalent circuit with one voltage source, one resistance in series, and several RC pairs modeled the battery charging and discharging 
dynamics throughout the lifespan of the battery. Accelerated aging tests using real-world driving cycles simulated battery usage. Three 
lithium nickel-manganese-cobalt oxide (LiNiMnCoO2) cells were tested at temperatures between 35°C and 40°C, with interruptions at 
every 5% capacity degradation to run reference performance tests for tracking changes in the battery model parameters. The equivalent 
circuit-based model was validated using real-world driving cycles. The parameter estimation procedure resulted in an efficient model 
that keeps track of the battery evolution as it ages.
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The battery management system (BMS) is responsible for monitoring 
the battery state-of-charge (SOC), state-of-health (SOH), state-of-
power (SOP), and remaining useful life [2]. The BMS also performs 
thermal management, cell balancing, and attempts to avoid battery 
overcharge or under-discharge that might affect driver safety and 
shorten battery life. The battery SOC, SOH, and SOP are three key 
variables used in battery condition monitoring and energy 
management. Since electric vehicles have been on the market for a 
relatively short period of time, possible battery malfunction or severe 
fires would result in loss of market share and in a move away from 
electric vehicles. Therefore, an adaptive BMS is necessary to account 
for degradation in performance that might affect vehicle drivability 
and range of operation.

The performance and safety of HEVs and BEVs are highly dependent 
on the accurate and immediate assessment of the SOC, which is the 
amount of charge available for use by the vehicle at any time. The 
range, fuel economy, and other critical calculated performance 
criteria rely greatly on the SOC. Consequently, accurately estimating 
the SOC will ultimately improve both vehicle safety and customer 
satisfaction. The SOH is often related to the loss of rated capacity. 
When the capacity reduces to 80% of the beginning of life capacity, 
the battery is considered to have reached its end of life. Cycling and 
calendar aging cause the battery to lose its capacity.

Battery models are typically classified as one of the following: 
equivalent circuit-based models, behavioral models, or electrochemical 
models. Equivalent circuit-based models use basic RC circuit 
elements such as resistors and capacitors to model battery dynamics. 
Equivalent circuit-based models are simple, computationally efficient, 
and can be easily implemented onboard a BMS. Behavioral models 
are empirical and utilize various functions to model battery dynamics. 
In [3], Plett introduced a series of behavioral models, namely: the 
combined model, the simple model, the zero-state hysteresis model, the 
one-state hysteresis model, and the enhanced self-correcting model. 
These models can be easily optimized and they account for Ohmic 
losses, hysteresis, and polarization time constants. Electrochemical 
models utilize partial differential equations to model lithium 
intercalation inside the electrolyte and both electrodes. Since 
electrochemical models provide a physical insight of the battery 
chemistry, they are favored in SOH estimation and in tracking battery 
degradation. However, in general, electrochemical models have 
numerous parameters that are hard to set, are relatively complex, and 
require more computational power. Therefore, for their application in 
real-time BMS, these models need to be simplified and reduced to an 
appropriate level of dynamic significance [3].

In prior work [4], a battery aging study was conducted using current 
profiles at fixed C-rates to age the battery, however this did not reflect 
real-world driving conditions. Electric vehicle batteries are subjected 
to high transients resulting from vehicle acceleration and regenerative 
braking. Accordingly, this paper addresses the issue by conducting an 
aging scenario for a BEV, assuming an average North-American 
driver. These tests were conducted over a 12-month period and 

involved accelerated testing of battery lifetime at temperatures 
between 35 °C and 40 °C using current profiles from real-world 
driving cycles, such as the Urban Dynamometer Driving Schedule 
(UDDS). An equivalent circuit with one voltage source, one 
resistance in series, and several RC pairs was used to model the 
battery charging and discharging dynamics throughout the anticipated 
lifespan of the battery. This model provides a good compromise 
between model accuracy and simplicity for real-time BMS 
implementation. A parameter estimation method implemented in 
MATLAB utilized optimization functions to fit simulation results to 
experimental data. The parameter estimation procedure clearly 
showed dependencies of the equivalent circuit model parameters on 
the battery state of charge and state of life. These dependencies were 
implemented as lookup tables to be used in simulation.

This paper is organized as follows: First, we describe the electric 
vehicle model development to generate the current profile required 
for experimentation. Second, we provide a summary of the aging 
experiments. Third, we describe the experimental setup used for data 
collection. Fourth, we focus on the battery model and the 
identification of equivalent circuit model parameters during the cell's 
lifespan. Fifth, we discuss the experimental results and the cell 
changes due to aging. Finally, we outline conclusions and 
applicability of the proposed method.

ELECTRIC VEHICLE MODEL AND 
CURRENT GENERATION
This section describes the electric vehicle model used to generate the 
current profile from the velocity profile of various driving cycles. A 
mid-size BEV model, as shown in Figure 1, was modified from an 
existing hybrid vehicle model [5]. The model was developed in 
Simulink using Simscape library components. At a fully charged 
state, the driving range of the simulated BEV is approximately 200 
km. Figure 1 shows the BEV model consisting of a lithium-ion 
battery pack, a vehicle speed controller, vehicle dynamic model, 
electric motor, and DC-DC converter.

Three benchmark driving schedules were considered in this study, 
namely: a UDDS, a light duty drive cycle for high speed and high 
load (US06), and a highway fuel economy test (HWFET) [5]. The 
UDDS driving cycle is used to characterize a city driving condition. 
Its purpose is to replicate average speed, idle time, and number of 
stops for an average driver.

The US06 cycle is a high acceleration, aggressive driving cycle, and 
the HWFET embodies highway driving conditions with speeds below 
60 miles per hour [6]. The three above mentioned driving cycles are 
shown in Figure 3. A summary of these driving cycle characteristics 
such as distance, time, and average speed is provided in Table 1 [6].

The pack current profiles from these driving cycles are shown in 
Figure 3. The pack-level current profiles have been scaled down to 
the cell level while ignoring cell-to-cell balancing.
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Figure 1. All-electric, mid-size sedan simulation model in Simscape (adopted 
from [5]).

Table 1. Characteristics of UDDS, US06, and HWFET driving schedules, [6].

Figure 2. Velocity profiles for the UDDS (upper), US06 (middle), and 
HWFET (lower) cycles [6]

Figure 3. Pack current profiles for the UDDS (upper), US06 (middle), and 
HWFET (lower) cycles.

AGING STUDY OVERVIEW
Laboratory tests are conducted on battery cells, modules, and packs 
in order to assess their performance at various states of life and 
temperature conditions [7]. Data collected during these tests can be 
used to estimate battery model parameters and validate battery 
models that are essential for SOC and SOH estimation.

In this paper, two test schedules are considered: Schedule A for 
Reference Performance Tests (RPTs) and Schedule B for Aging Tests. 
The RPTs involve a static capacity test at 1C and pulse charge and 
discharge test. RPTs are conducted every 15 simulated weeks to track 
degradation in performance as the battery ages. All aging tests were 
conducted at elevated temperatures (between 35-40°C) to accelerate 
aging and thus acquire the experimental data in a reduced period of time.

Schedule A - Reference Performance Tests
RPTs capture battery cell baseline performance characteristics such 
as cell power capability, internal resistance, capacity, and time 
constants. Tests selected for the study include static capacity and 
pulse charge and discharge.
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Static Capacity Test
The static capacity test measures the battery cell capacity in 
amperehours at a constant current (CC) discharge rate. This discharge 
rate, or C-rate, is dictated by the capacity of the battery. For example, 
a 1Ah battery has a C-rate of 1C when the battery is discharged in 
one hour, i.e., with a current of 1A. This test provides a baseline for a 
fresh battery cell capacity. The test procedure follows the constant-
current constant-voltage (CCCV) protocol and consists of the 
following steps [3]:

1.	 Charge the battery at 1C rate (5.4 A) to the fully charged state 
in CCCV mode. The battery is fully charged to 4.2 V when the 
current end point is at 0.02 C (0.108 A). 

2.	 Let the battery rest for one hour in order to allow for voltage 
and current stabilization. 

3.	 Discharge sequence at a constant current 1C rate until the 
voltage reaches the battery minimum limit of 2.8 V as 
recommended by the manufacturer. 

4.	 Let the battery rest with no load for one hour.

Pulse Charge and Discharge Test
The pulse charge and discharge test characterizes the battery voltage 
response (cell dynamics) at various states of charge and current rates. 
The test comprises a series of discharge and charge pulses across the 
full SOC range. The test procedure is summarized as follows:

1.	 Charge the battery to a fully charged state. 
2.	 Let the battery rest for one hour for voltage and current 

stabilization [3]. 
3.	 Discharge the battery with pulses of 1% of capacity from 100% 

to 90% SOC at 1C rate and allow for one-hour rest periods 
between pulses. 

4.	 In the 90% to 10% SOC range, discharge the battery by 5% 
capacity steps at 1C rate and allow for four hours rest between 
cycles. 

5.	 In the range between 10% and 0% SOC, discharge the battery 
by pulses of 1% of capacity at 1C rate while allowing a one-
hour rest between cycles.

Schedule B - Aging (Cycle Life) Tests
The purpose of aging tests is to study the process of battery 
degradation due to multiple charge and discharge cycles [7] 
mimicking a driver's behavior in real-world driving conditions. The 
present study combines UDDS, US06, and HWFET driving schedules 
(Table 2). These tests are defined based on a target velocity profile 
and its corresponding current profile for an all-electric, midsize sedan 
vehicle modeled in Simscape.

Schedule B consists of a combination of driving cycles that discharge 
the battery down to 25% SOC. The test is conducted at elevated 
temperatures in the range of 35°C - 40°C to accelerate aging. The 
description of Schedule B for both weekday and weekend is as shown 
in Figure 4 and Figure 5, respectively [8].

Table 2. Aging Schedule B scenario [8]

Figure 4. Schedule B: One weekday of driving with errands.
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Current profile, voltage, and SOC from one aging week are shown in 
Figure 6. The SOC varies from 25% to 90% every day. The battery is 
then fully charged at the end of each day. Current values range from 
- 2C to 2C and voltages from 3.6V to a maximum of 4.2V. Current, 
SOC, and Voltage for one weekday of driving are shown in Figure 7, 
and for one weekend of driving are shown in Figure 8.

Figure 5. Schedule B: One weekend day driving.

Figure 6. 

Figure 6. (cont.) Voltage (upper), current, and SOC (lower) for one aging 
week - Schedule B.

Figure 7. Voltage (upper), current, and SOC (lower) for one weekday - 
Schedule B.

Figure 8. Voltage (upper), current, and SOC (lower) for one weekend - 
Schedule B.

Experimental Setup
Figure 9, Figure 10, and Figure 11 show the experimental setup utilized 
for the tests. The setup includes a 3-channel Arbin BT2000 tester, three 
NMC lithium polymer battery cells, three environmental chambers, an 
AVL Lynx data acquisition system, and AVL Lynx user interface 
software. AVL Lynx software is used for setting up the test procedure 
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and for data acquisition. Variables such as battery current, voltage, and 
temperatures during charging, discharging, and rest phases are acquired 
at a maximum frequency of 50 Hz.

Figure 9. Arbin BT2000 Cycler along with Espec and Thermotron 
environmental chambers

Figure 10. Experimental setup including cyclers, environmental chambers, 
and data acquisition systems.

Battery cells are placed in environmental chambers in order to 
perform the test at controlled temperature.

Each battery was independently tested using a separate tester channel. 
Figure 11 shows the Arbin tester. The tester has three independent 
channels. The cycler can operate in two voltage operation ranges, 
namely: 0-5V and 0-20 V. The cycler can also operate in three 
different current ranges: 0-400 A, 0-40 A, and 0-5 A.

Figure 11. Arbin Cycler channels: channels equipped with voltage sensor and 
status indicator light.

PARAMETER IDENTIFICATION
An automated parameter estimation procedure [9] tracked the change 
in equivalent circuit parameters throughout the aging process. In 
addition, the method proposed in [10] increased the robustness of the 
estimation. The same approach was applied to each set of 
characterization data at 0, 15, 30, and 45 weeks of cycling. This 
estimation process is explained in detail in the following sections.

Equivalent Circuit Topology
An important part of the modeling process is choosing the equivalent 
circuit topology. The number of R-C pairs used in the equivalent 
circuit determines the capability of the model to match the measured 
transient responses. We performed an analysis on all of the relaxation 
events to determine the best accuracy we could achieve for the 
different number of R-C pair topologies.

Analyzing the Complexity and Accuracy Tradeoffs
Automating the process of curve fitting exponential decay equations 
to each relaxation period allowed for an efficient analysis of the cell 
dynamics. This analysis involved trying fittings using 1 to 5 
exponential time constants (TC), each associated with R-C pairs in 
the circuit. A sample result at beginning of life is shown in Figure 12.
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Figure 12. Relaxation curve fit.

By inspection, it was clear that the case of one time constant was 
much worse than all other options. Figure 13, Figure 14, and Figure 
15 show a close-up of these results for one minute after a charge 
pulse that raised SOC from 55% to 60% at different stages of aging.

Figure 13. Relaxation curve fit at beginning of life.

Figure 14. Relaxation curve fit at middle of life (15 weeks).

Figure 15. Relaxation curve fit at end of life (45 weeks).

Two conclusions arose from these results. First, we decided that three 
time constants was the minimum needed to achieve reasonable 
accuracy for the aging study. Second, we found that a more complex 
model structure was required to achieve equivalent accuracy at 
end-of-life due to additional physical processes as a result of the 
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aging process. For example, to keep the maximum voltage residual in 
the curve fit approximately 1 mV, we needed a 3 TC at beginning of 
life and a 5 TC by end of life.

Figure 16 shows a schematic of the 3 TC equivalent circuit used at 
beginning of life stages.

Figure 16. Equivalent circuit model with 3 R-C branches.

We used custom Simscape blocks for each element based on the 
technique described in [11]. Each of the circuit elements required a 
lookup table with SOC, SOH, temperature, and current as inputs. On 
the other hand, at the parameter estimation stage, each dataset varied 
only the SOC, keeping temperature, current, and SOH constants, so 
we used single input lookup tables in the model used for estimation 
purposes, as shown in Figure 17.

Figure 17. Single input lookup table for resistance.

Pulse Characterization Data
The pulse characterization data included a sequence of charge or 
discharge pulses, followed by a relaxation period, as shown in Figure 18.

The tests exercised the cells over their full SOC range, observing at 
the same time the manufacturer’s specified voltage limits. The pulse 
widths were set to charge or discharge approximately 2% or 5% of 
the cell’s rated capacity. At high and low SOC range, we used 2% 
pulse widths to better capture the abrupt changes in circuit 
parameters. In the mid-SOC range, we used 5% pulse widths to 
balance testing time versus the number of SOC points, e.g., 
resolution, on the parameter curves we would later obtain.

These tests allowed the transient dynamics of the R-C equivalent 
circuit to be isolated and observed at different SOC values. The pulse 
sequence was performed at a single operating point regarding the 
temperature, current, and SOH conditions. Figure 19 shows a simple 
example of how the elements of a 1 TC equivalent circuit affect the 
voltage response.

Figure 18. Pulse discharge characterization data.

Figure 19. Schematic illustration of the relationship between observed voltage 
dynamics and a model equivalent circuit to reproduce those dynamics.

Automating the Parameter Estimation

Identification of Pulse and Relaxation Events
To perform parameter estimation, the first step is to automatically 
identify the pulse and relaxation events in the experimental data. Our 
MATLAB code observed the measured current for the pulse sequence 
characterization data and located the exact transition points. Our 
algorithm used this feature to characterize the portions of the data as 
a pulse event or a relaxation. The identification points for a single 
pulse are shown in Figure 20.
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Figure 20. Automated identification results for the pulse and relaxation events.

Calculation of Initial Values

Open-Circuit Voltage and Series Resistance
In this step, we obtained initial guesses for the open-circuit voltage 
(OCV) and series resistance. These values correspond to the 
equivalent circuit elements Em and R0 from Figure 16. Our analysis 
was based on the voltages and currents at each transition between 
pulse events and relaxation.

To find the initial estimates for Em, we assumed any transients had 
settled by the end of the relaxation period. The cell's terminal voltage 
would be approaching the OCV at the given SOC. This gave us a first 
approximation that could be further adjusted in a later step. Figure 21 
shows an illustration of the data points we used to make these 
calculations for Em and R0 for the SOC 0.9 breakpoint.

Figure 21. Approximating Em and R0.

It is important to note that the R0 resistance values we calculated 
were affected by the choice of sample rate in the experimental data. 
Any portion of the transient dynamics that occurred in the finite time 
between data samples reflect the effective instantaneous voltage 
change at the transition point. Therefore, any dynamics that settled 
more quickly than we could measure in the sample rate were included 
in the initial estimate for resistance R0.

An example of the initial results at this point is shown in Figure 22.

Figure 22. Initial estimates of Em and R0 versus SOC.

Relaxation Time Constants
Next, we identified initial values for the time constants during each 
relaxation phase in the experimental data. Subtracting out the 
open-circuit voltage, the relaxation dynamics observed at the 
terminals were governed solely by the initial voltages and time 
constants. For 3 R-C pairs, the voltage results:

(1)

where V(t) was terminal voltage over time, Vini was initial relaxation 
voltage, VCn were capacitor voltages, and VCn ini were capacitor initial 
voltages beginning the relaxation.

A simple curve-fitting algorithm using the fit command in Curve 
Fitting Toolbox was implemented to determine initial values of the 
time constants. We used a fittype object with the standardized 
exponential expression of the form:

(2)

Ahmed et al / SAE Int. J. Alt. Power. / Volume 4, Issue 2 (July 2015) 241



where a1, b1, c1 were initial capacitor voltages, a2, b2, c2 were time 
constants, t was time, and Vini was voltage at the start of relaxation. 
shows an example curve fit for one relaxation result.

Figure 23. Relaxation curve fit to obtain initial time constant estimates.

Because there are many of these curve fits to process on several 
datasets and they are mutually independent, we ran these calculations 
concurrently using Parallel Computing Toolbox on an 8-core 
computer. Figure 24 shows the results for the three time constants.

Figure 24. Initial time constant estimates from the curve fitting.

R-C Pair Resistances
To determine initial values of the resistances Rn where n ≥ 1, we 
considered the transient dynamics. These resistances affected the 
voltage drop during load to the R-C pairs, but during relaxation it was 

not possible to isolate the resistance values from the R-C time 
constants. If we looked at one pulse event, the voltage response was 
driven by the series resistance and the R-C components:

(3)

This type of problem was analyzed numerically by treating the 
time-based experimental data as part of a linear system of equations 
to solve for the terminal voltage. However, we also considered that 
the resistance and capacitance values were changing during the pulse 
due to changes in SOC.

To find initial parameter values, we made the assumption that current 
was constant during the pulses. This allowed us to linearly scale the 
contributions of the parameter values from the starting SOC to the 
ending SOC during each pulse. The linear problem statement we 
posed was a matrix equation:

(4)

where the voltage contributions from each circuit element or R-C pair 
constituted the overall terminal voltage. The matrices' vertical 
dimension was time, and the horizontal dimension was SOC. The 
contribution of any given parameter showed up in the matrix only 
where it was relevant to the given SOC region in the experimental 
data. The linear system optimization problem was set up with the 
matrix equation:

(5)

where v is a column of terminal voltage values versus time, x is a 
column-based parameter vector to be computed, and C is a matrix 
that provides the fractional contribution of every lookup table 
parameter (all SOC breakpoints) at every time sample. Example 
portions of the v(t) and C(t) matrices are shown in Figure 25.

Figure 25. Linear system matrices example.

The parameter vector x was a long column matrix in the form:
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(6)

The least-squares optimization function LSQLIN in Optimization 
Toolbox was used to calculate the optimum parameter vector to 
minimize the matrix equation, using the objective:

(7)

This produced a set of parameter values for the resistances Rn where 
n ≥ 1. These values are shown in Figure 26.

Figure 26. Initial resistance estimates from the linear optimization.

At this point, we have good initial estimates for the model parameters. 
If we simulate the entire pulse sequence at this point, we typically have 
a reasonable fit to the experimental data already, just based on the 
initial guesses. This is shown in Figure 27. This facilitates the next step 
of estimating the optimum overall parameter values.

Figure 27. Experimental data and simulation results for one data set with 
initial parameter values, prior to final estimation process.

Parameter Estimation
The top level of the model was configured with current as the input 
signal with voltage and SOC outputs, as shown in Figure 28. This 
allowed us to connect the model to Simulink Design Optimization, so 
that we could estimate the final model parameters using our 
characterization data.

Figure 28. Top-level Simulink model.

We used Simulink Design Optimization to automatically loop through 
each pulse event, and estimate the optimum parameter values to 
match the measured data. This involved several setup steps:

1.	 Obtaining the transient data for each task 
2.	 Assigning the transient data from a pulse to an experiment 

object associated with the model 
3.	 Setting up each tunable parameter, including initial guess and 

valid range 
4.	 Setting up estimation settings and parallel (multicore) estimation 

capabilities 
5.	 Running the estimation task and gathering results
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The breakdown of the data into estimation tasks was done using a 
layered approach [10]. For example, the first two tasks followed the 
format shown in Figure 29.

Figure 29. Illustration of the automated estimation process that layers 
estimation tasks in a pulse-by-pulse technique.

After each task, we also simulated the result to calculate the voltages 
across each R-C pair at the sample where the next task would begin. 
This was important in cases where the voltage did not fully settle 
during relaxation before the next pulse began. The simulated voltages 
were passed on to the estimation task to use as initial conditions.

The results for one estimation task are shown in Figure 30.

Figure 30. Result of one estimation task in the automated process.

After we completed all estimation tasks for a pulse sequence, we 
simulated the Simscape model using the complete pulse sequence 
current to compare the resulting voltage to the experimental data. One 
example result is shown in Figure 31.

Figure 31. Experimental data and simulation results for one data set with 
initial parameter values, after final estimation process.

RESULTS

Lookup Tables
The output of this process was a set of lookup tables for the 
equivalent circuit parameters. For the single temperature and C-rate 
that we used, we found significant changes to the parameters. These 
tables are shown in Figure 32 (discharge) and Figure 33 (charge).

Observations
Figure 32 and Figure 33 show that the battery cell’s properties 
changed significantly due to the aging experienced in our 
experiments. Two changes appear as dominant in terms of the aging 
effect on equivalent circuit parameters: internal resistance increase, 
leading to reduced power output capabilities; and recovery time 
increase, likely the result of impaired diffusion due to the appearance 
of new solid phases within the structure of electrodes and electrolyte.

The series resistance R0 would likely have the greatest effect on the 
capabilities and application of the cell. Even after the first third of our 
aging experiment (15 weeks), the R0 resistance had approximately 
doubled from its original value, thus reducing the power capability to 
half of the original value. By 45 weeks of aging, the resistance was 
about triple the initial value. This effect was consistent across the full 
SOC range.
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Figure 32. The optimized lookup tables for the 3 R-C equivalent circuit for 
different ages at 1C discharge rate.

Figure 33. The optimized lookup tables for the 3 R-C equivalent circuit for 
different ages at 1C charge rate.

Model Validation
To assess the efficacy of the automated fitting process, model 
validation was performed using a subset of the Aging Schedule B 
drive cycle data for comparison. These drive cycles were used 
during the aging process of the battery, but were not directly used 
for parameter identification. Simulations, using the fit parameters, 
were compared with experimental battery voltage measurements 
from drive cycles. These drive cycles consist of both long-pulsed 
charge and discharge events, as well as rapid discharge cycles.

To validate the equivalent circuit battery model, the output 
terminal voltage of the model was compared to the measured 
experimental terminal voltage for identical battery current loads. 
The current load applied to both the experimental battery and the 
simulation is shown in Figure 34. The initial SOC conditions and 
static capacity of the experimental battery were used to initialize 
the simulation model. For each validation text, the experimental 
battery and the simulation began at an SOC of 86.6%.

Figure 34. Drive cycle current load used for validation studies.

A comparison of the battery terminal voltages for both the 
experimental data and the simulation output can be seen in Figure 
35 after 45 weeks of aging. As the pulse charge and discharge 
tests were conducted only with magnitude pulses of 5A, the 
parameters in the Simulink simulation are selected from a 
discharging or a charging lookup table according to the imposed 
current load. Figure 36 contains a detailed view of transient 
battery loading where the voltage residual increases as a result of 
fast dynamics.

Preliminary analysis of a unified lookup table for both charging 
discharging with interpolation between ±5A was found to not 
adequately represent the relaxation voltage recovery with 0A on 
the battery. The parameter characterization experiments used only 
pure discharge or charge scenarios, likely leading to polarization 
of active species in the battery cell. As such, the fit parameters 
represent only either charge relaxation or discharge relaxation and 
do not incorporate polarization hysteresis effects. For these 
validation studies, voltage relaxation was assumed to use the 
discharge parameters unless the battery was immediately 
subjected to a positive current.
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Figure 35. Simulation and experimental battery voltage comparison after 45 
weeks of drive cycle aging.

Figure 36. Subset of the validation study at 45 weeks of aging to  
highlight transients.

The validation study was performed for battery aging times of 0, 
15, 30, and 45 weeks. The mean and maximum residuals for each 
validation test are summarized in Table 3.

Table 3. Mean and maximum residuals for validation studies at stages of 
battery degradation.

SUMMARY AND CONCLUSIONS
An automated, multistage parameter identification technique applied 
at different aging stages of a Li ion battery enabled the determination 
of changes in the cell parameters. An accelerated aging test used 
real-world driving cycles to degrade battery cell in terms of its 
internal resistance, capacity, and response time. Pulsed tests 
performed at 0, 15, 30, and 45 simulated weeks of cycling, showed 
significant changes in the cell behavior as a result of the cycling.

An equivalent circuit-based model with one voltage source, one series 
resistance, and several R-C pairs modeled the battery charge and 
discharge dynamics. Our results indicate that aging effects demand 
changes in the equivalent circuit topology. At beginning of life, three 
time constants were found to be sufficient to reproduce cell dynamics. 
However, at the battery end-of-life, a more complex model structure 
with five R-C pairs was required to achieve comparable accuracy.

Future research will involve testing the strategy at various operating 
temperatures and verifying the technique for battery packs.
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ABBREVIATIONS/DEFINITIONS
BEV - Battery Electric Vehicle

BMS - Battery Management System

CCCV - Constant Current Constant Voltage, a method for charging 
Li-Ion batteries.

Em - voltage source of an equivalent circuit model that represents the 
open circuit voltage

EV - Electric Vehicle

HEV - Hybrid Electric Vehicle

HPPC - high-performance pulse characterization data, a type of 
experimental data which contains discharge and pulse discharges at 
different SOC values

HWFET - The Highway Fuel Economy Driving Schedule represents 
highway driving conditions under 60 mph.

LiNiMnCoO2 - Lithium Nickel-Manganese-Cobalt Oxide, a type of 
battery cell

NMC - lithium nickel-manganese-cobalt oxide, a type of battery cell

OCV - open circuit voltage (V)

PHEV - Plug-in Hybrid Electric Vehicle

Rn - variable resistor n of an equivalent circuit model

R-C branch - a portion of an equivalent circuit comprised of a 
parallel variable resistor and variable capacitor

SOC - State Of Charge as a fraction of the total cell capacity, ranging 
from 0 to 1 (or 0% to 100%)

SOH - State Of Health, an arbitrary number normally defined as 
100% meaning the battery meets its specifications and 0% meaning 
the battery is completely depleted. []

SOP - State Of Power is the capability of the battery to charge / 
discharge at a specific level.

τn - time constant n for an R-C branch of an equivalent circuit model

UDDS - The EPA Urban Dynamometer Driving Schedule, commonly 
called the “LA4” or “the city test” and represents city driving 
conditions.

US06 - The US06 is a high acceleration aggressive driving schedule 
that is often identified as the “Supplemental FTP” driving schedule.
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