
SimBiology®

User's Guide

R2023b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimBiology® User's Guide
© COPYRIGHT 2005–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Updated for Version 1.0.1 (Release 2006a)
May 2006 Online only Updated for Version 2.0 (Release 2006a+)
September 2006 Online only Updated for Version 2.0.1 (Release 2006b)
March 2007 Online only Rereleased for Version 2.1.1 (Release 2007a)
September 2007 Online only Rereleased for Version 2.1.2 (Release 2007b)
October 2007 Online only Updated for Version 2.2 (Release 2007b+)
March 2008 Online only Updated for Version 2.3 (Release 2008a)
October 2008 Online only Updated for Version 2.4 (Release 2008b)
March 2009 Online only Updated for Version 3.0 (Release 2009a)
September 2009 Online only Updated for Version 3.1 (Release 2009b)
March 2010 Online only Updated for Version 3.2 (Release 2010a)
September 2010 Online only Updated for Version 3.3 (Release 2010b)
April 2011 Online only Updated for Version 3.4 (Release 2011a)
September 2011 Online only Updated for Version 4.0 (Release 2011b)
March 2012 Online only Updated for Version 4.1 (Release 2012a)
September 2012 Online only Updated for Version 4.2 (Release 2012b)
March 2013 Online only Updated for Version 4.3 (Release 2013a)
September 2013 Online only Updated for Version 4.3.1 (Release 2013b)
March 2014 Online only Updated for Version 5.0 (Release 2014a)
October 2014 Online only Updated for Version 5.1 (Release 2014b)
March 2015 Online only Updated for Version 5.2 (Release 2015a)
September 2015 Online only Updated for Version 5.3 (Release 2015b)
March 2016 Online only Updated for Version 5.4 (Release 2016a)
September 2016 Online only Updated for Version 5.5 (Release 2016b)
March 2017 Online only Updated for Version 5.6 (Release 2017a)
September 2017 Online only Updated for Version 5.7 (Release 2017b)
March 2018 Online only Updated for Version 5.8 (Release 2018a)
September 2018 Online only Updated for Version 5.8.1 (Release 2018b)
March 2019 Online only Updated for Version 5.8.2 (Release 2019a)
September 2019 Online only Updated for Version 5.9 (Release 2019b)
March 2020 Online only Updated for Version 5.10 (Release 2020a)
September 2020 Online only Updated for Version 6.0 (Release 2020b)
March 2021 Online only Updated for Version 6.1 (Release 2021a)
September 2021 Online only Updated for Version 6.2 (Release 2021b)
March 2022 Online only Updated for Version 6.3 (Release 2022a)
September 2022 Online only Updated for Version 6.4 (Release 2022b)
March 2023 Online only Updated for Version 6.4.1 (Release 2023a)
September 2023 Online only Revised for Version 23.2 (R2023b)

SimBiology Apps
1

Keyboard Shortcuts for SimBiology Model Builder 1-2
Shortcuts for Diagram . 1-2
Shortcuts for Browser Tables . 1-2

Keyboard Shortcuts for SimBiology Model Analyzer 1-4
Shortcuts for Datasheets and Tables . 1-4
Shortcuts for Running Programs . 1-4
Shortcuts for Help and Working with Project . 1-4

Message Indicator Icons in SimBiology Model Builder 1-6

Copy SimBiology Blocks . 1-7
Compartment Blocks . 1-7
Species Blocks . 1-7
Reaction Blocks . 1-7
Parameter Blocks . 1-7
Rule Blocks . 1-7

SimBiology Model Component Libraries . 1-9

Create Model of Receptor-Ligand Kinetics . 1-11
Open Model Builder App . 1-11
Build Model . 1-11
Simulate Model . 1-13

Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin
Model Using SimBiology Model Builder . 1-16

Glucose-Insulin Model . 1-16
Sodium-Glucose Cotransporter-2 (SGLT2) Inhibition 1-16
Incorporate Inhibitor PK by Adding and Configuring Reactions 1-16
Incorporate Inhibitor PD Using Mathematical Equation 1-21
Update Renal Excretion Reaction to Incorporate Presence of Inhibitor

Compound . 1-22
Incorporate Sudden Changes in Model Behavior Using Event 1-24
Add Doses . 1-26
Represent Biological Variability Using Variants . 1-28
Show Model Equations and Initial Conditions . 1-31
Define Observable Expressions . 1-33
Visualize Model Behavior Using Model Simulation Tool 1-35
Export Model . 1-39

Explore Biological Variability with Virtual Patients Using SimBiology
Model Analyzer . 1-41

v

Contents

Scan Dosing Regimens Using SimBiology Model Analyzer App 1-58

Undo and Redo Model Changes in SimBiology . 1-66
Model Changes in Model Analyzer App . 1-66
Undo Deletion of Model Components . 1-66
Actions Not Supported for Undoing or Redoing . 1-67

Generate SimBiology Model Report . 1-68

Generate Report for SimBiology Program Results 1-69
Check Saved Models and Data of Project . 1-70

Percentile Plot . 1-73
Display Options . 1-73
Percentiles Options . 1-73
Mean Options . 1-74
Data Options . 1-74
Interpolation Method . 1-76
Time Point Binning Method . 1-76

View and Run Program Code Generated by SimBiology Model Analyzer
. 1-78

Simulate Groups Using Doses and Variants from Data Set 1-83

Find Important Parameters for Receptor Occupancy with Global
Sensitivity Analysis Using SimBiology Model Analyzer 1-94

View and Run Generated Code by SimBiology Model Builder 1-116

Import and Export Variants and Doses from Excel to SimBiology Model
Builder . 1-124

Import Variants from Excel . 1-124
Export Variants to Excel . 1-126
Create Excel File for Variants . 1-127
Import Doses from Excel . 1-128
Export Doses to Excel . 1-131
Create Excel File for Doses . 1-132

Find Important Tumor Growth Parameters with Local Sensitivity Analysis
Using SimBiology Model Analyzer . 1-135

Calculate NCA Parameters and Fit Model to PK/PD Data Using
SimBiology Model Analyzer . 1-156

Modeling
2

What is a SimBiology Model? . 2-2
Model Definition . 2-2
Expressions . 2-2
Quantities . 2-3

vi Contents

Model Hierarchy . 2-4
Representing a Model . 2-4

Species Object . 2-5
How Species Amounts Change During Simulations 2-5
Keeping a Species Amount Unchanged . 2-5
Changing a Species Amount with a Reaction or Rule 2-5
Changing a Species Amount with a Rule When Species is Part of a Reaction

. 2-6
Keeping a Species Amount Unchanged When Species is Part of a Reaction

that Adds or Removes Mass . 2-6

Definitions and Evaluations of Reactions in SimBiology Models 2-8
Writing Reaction Expressions . 2-8
Writing Reaction Rate Expressions Explicitly . 2-9
Creating Reaction Rate Expressions Using Kinetic Law Objects 2-9
Examples of Creating Reaction Rates . 2-10
How Reaction Rates Are Evaluated . 2-11
Viewing Equations for Reactions . 2-12

Definitions and Evaluations of Rules in SimBiology Models 2-13
Overview . 2-13
Initial Assignment . 2-13
Repeated Assignment . 2-13
Algebraic Rules . 2-14
Repeated Assignment vs. Algebraic Rules . 2-14
Rate Rules . 2-14
Evaluation Order of Rules . 2-15
Conservation of Amounts During Simulation . 2-15
Writing Rule Expressions . 2-16
Considerations When Imposing Constraints . 2-16
Rate Rule Examples . 2-16

Events in SimBiology Models . 2-22
Overview . 2-22
Event Triggers . 2-22
Event Functions . 2-22
Specifying Event Triggers . 2-23
Specifying Event Functions . 2-24
Simulation Solvers for Models Containing Events 2-25
How Events Are Evaluated . 2-25
Evaluation of Simultaneous Events . 2-26
Evaluation of Multiple Event Functions . 2-27
When One Event Triggers Another Event . 2-27
Cyclical Events . 2-27
Using Events to Address Discontinuities in Rule and Reaction Rate

Expressions . 2-28

Variants in SimBiology Models . 2-29
Creating Variants Programmatically . 2-29
Creating Variants Graphically . 2-29

Doses in SimBiology Models . 2-30
Representing Doses . 2-30
Creating Doses Programmatically . 2-30

vii

Creating Doses Graphically . 2-31
Parameterized and Adaptive Doses . 2-31
Simulation Solvers for Models Containing Doses 2-32

Simulate Biological Variability of the Yeast G Protein Cycle Using Wild-
Type and Mutant Strains . 2-33

Create and Simulate a Model with a Custom Function 2-35
Overview . 2-35
Create a Custom Function . 2-36
Load the Example Model . 2-37
Add the Custom Function to the Example Model 2-37
Define a Rule to Change Parameter Value . 2-37
Add an Event to Reset the Solver at a Discontinuity and Simulate the Model

. 2-37

Component Usage . 2-41
Species Usage . 2-41
Parameter Usage . 2-41
Compartment Usage . 2-41
Observable Usage . 2-42
Unit and UnitPrefix Usage . 2-42
Abstract Kinetic Law Usage . 2-42

Evaluation of Model Component Names in Expressions 2-44
Guidelines for Naming Model Components . 2-44
Guidelines for Referencing Names in Expressions 2-45
Precedence Rules for Evaluating Quantity Names 2-45

SimBiology Model Matching Policy . 2-47
Model Quantities . 2-47
Model Expressions . 2-47
Doses and Variants . 2-47
Determine Differences in Component Properties 2-48

Compare SimBiology Models . 2-49
Compare Models Programmatically . 2-49
Compare Models in Comparison Tool . 2-49
Git Integration . 2-51

Structural Analysis
3

Model Verification . 3-2
What is Model Verification? . 3-2
When to Verify a Model . 3-2
Verifying That a Model Has No Warnings or Errors 3-2
Model Verification Example . 3-3
View Model Equations . 3-3

Conserved Moiety Determination . 3-4
Introduction to Moiety Conservation . 3-4

viii Contents

Algorithms for Conserved Cycle Calculations . 3-4
More About . 3-5

Determine Conserved Moieties in SimBiology . 3-6

Determining the Adjacency Matrix for a Model . 3-9
What Is an Adjacency Matrix? . 3-9
Get Adjacency Matrix of SimBiology Model . 3-9

Determining the Stoichiometry Matrix for a Model 3-11
What Is a Stoichiometry Matrix? . 3-11
Get Stoichiometry Matrix of SimBiology Model . 3-11

Selecting Absolute Tolerance and Relative Tolerance for Simulation . . . 3-13
Algorithm . 3-13
Absolute Tolerance Scaling . 3-13

Troubleshooting Simulation Problems . 3-15
Tips for Solving Simulation Problems . 3-15
How to Change Solver Options and Simulation Options 3-16

Simulate Model of Glucose-Insulin Response with Different Initial
Conditions . 3-18

Combine Simulation Scenarios in SimBiology . 3-24
Cartesian Combination . 3-24
Elementwise Combination . 3-24

Simulation and Analysis
4

Model Simulation . 4-3

Derive ODEs from SimBiology Reactions . 4-5

Choosing a Simulation Solver . 4-7

SUNDIALS Solvers . 4-8

Stochastic Solvers . 4-9
When to Use Stochastic Solvers . 4-9
Model Prerequisites for Simulating with a Stochastic Solver 4-9
What Happens During a Stochastic Simulation? . 4-9
Stochastic Simulation Algorithm (SSA) . 4-9
Explicit Tau-Leaping Algorithm . 4-10
Implicit Tau-Leaping Algorithm . 4-10
References . 4-11

Ensemble Runs of Stochastic Simulations . 4-12
Running Ensemble Simulations . 4-12

Configuring Simulation Settings . 4-13

ix

Simulate the Yeast Heterotrimeric G Protein Cycle 4-14

Sensitivity Analysis in SimBiology . 4-19
Sensitivity Analysis . 4-19
Global Sensitivity Analysis (GSA) . 4-19
Comparison of GSA Functions . 4-20
Local Sensitivity Analysis (LSA) . 4-21

Calculate Sensitivities Using sbiosimulate . 4-25

Perform a Parameter Scan . 4-28

Nonlinear Mixed-Effects Modeling . 4-30
What Is a Nonlinear Mixed-Effects Model? . 4-30
Nonlinear Mixed-Effects Modeling Workflow . 4-31
Specify a Covariate Model . 4-32
Specify an Error Model . 4-34
Maximum Likelihood Estimation . 4-34
Obtain the Fitting Status . 4-34

Nonlinear Regression . 4-36
What is Nonlinear Regression? . 4-36
Fitting Options in SimBiology . 4-36
Parameter Transformations . 4-38
Maximum Likelihood Estimation . 4-39
Fitting Workflow . 4-41

Supported Methods for Parameter Estimation in SimBiology 4-43

Error Models . 4-45

Progress Plot . 4-46
Progress Plot for Nonlinear Mixed-Effects Methods 4-46
Progress Plot for Nonlinear Regression Methods 4-47

Fit One-Compartment Model to Individual PK Profile 4-53

Estimate Category-Specific PK Parameters for Multiple Individuals . . . 4-59

Perform Hybrid Optimization Using sbiofit . 4-68

Fit Two-Compartment Model to PK Profiles of Multiple Individuals 4-72

Estimate the Bioavailability of a Drug . 4-79

Accelerating Model Simulations and Analyses . 4-86
What Is Acceleration? . 4-86
When to Accelerate . 4-86
Prerequisites for Accelerating Simulations and Analyses 4-86
Accelerate Simulations Programmatically . 4-87
Accelerate Simulations using SimBiology Model Analyzer 4-88
Troubleshooting Accelerated Simulations . 4-88

Noncompartmental Analysis . 4-89
Data . 4-89

x Contents

Dosing . 4-89
Calculating NCA Parameters . 4-94

Stochastic Simulation of Radioactive Decay . 4-96

Stochastic Simulation of the Lotka-Volterra Reactions 4-101

Comparing SSA and Explicit Tau-Leaping Stochastic Solvers 4-106

Deterministic Simulation of a Model Containing a Discontinuity 4-110

Analysis of Stochastic Ensemble Data in SimBiology 4-114

Deploy a SimBiology Model Using SimFunction 4-123

Deploy a SimBiology Exported Model . 4-126

Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in
the Yeast Heterotrimeric G Protein Cycle . 4-128

Finding Conserved Quantities in a Pathway Model 4-146

Model the Population Pharmacokinetics of Phenobarbital in Neonates
. 4-154

Simulate the Glucose-Insulin Response . 4-167

Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for
Antibiotics . 4-184

Fit PK Parameters Using SimBiology Problem-Based Workflow 4-194

Perform Global Sensitivity Analysis by Computing First- and Total-Order
Sobol Indices . 4-204

Perform GSA by Computing Elementary Effects 4-212

Perform Multiparametric Global Sensitivity Analysis (MPGSA) 4-220

Pharmacokinetic Modeling
5

Pharmacokinetic Modeling Functionality . 5-2
Overview . 5-2
How SimBiology Supports Pharmacokinetic Modeling 5-2
Pharmacokinetic Modeling Examples . 5-3
Acknowledgements: Tobramycin Data Set . 5-3

Supported Files and Data Types . 5-5
Unit Conversion . 5-5
Create Data File with SimBiology Definitions . 5-5

xi

Support for Importing NONMEM Formatted Files 5-7
Supported Table Column Types in SimBiology Model Analyzer 5-10
Support for Importing Multidimensional SimData to SimBiology Model

Analyzer . 5-10

Import Tabular Data from Files . 5-11
Import Data from Text File . 5-11
Importing Data from NONMEM-Formatted Files 5-12
Other Resources for Importing Data . 5-12

Create Pharmacokinetic Models . 5-14
Ways to Create or Import Pharmacokinetic Model 5-14
How SimBiology Models Represent Pharmacokinetic Models 5-14
Dosing Types . 5-15
Elimination Types . 5-17
Intercompartmental Clearance . 5-18
Unit Conversion for Imported Data . 5-19
Create a Pharmacokinetic Model Using the Command Line 5-19

Creating Reaction Rates
A

Define Reaction Rates with Mass Action Kinetics A-2
Definition of Mass Action Kinetics . A-2
Zero-Order Reactions . A-2
First-Order Reactions . A-3
Second-Order Reactions . A-3
Reversible Mass Action . A-5

Define Reaction Rates with Enzyme Kinetics . A-6
Simple Model for Single Substrate Catalyzed Reactions A-6
Enzyme Reactions with Differential Rate Equations A-6
Enzyme Reactions with Mass Action Kinetics . A-7
Enzyme Reactions with Irreversible Henri-Michaelis-Menten Kinetics . . . A-8

Models Used in Examples
B

Minimal Cascade Model for a Mitotic Oscillator . B-2
Goldbeter Model . B-2
SimBiology Model with Rate Rules . B-4
SimBiology Model with Reactions . B-6
References . B-13

Model of the Yeast Heterotrimeric G Protein Cycle B-14
Background on G Protein Cycles . B-14
Modeling a G Protein Cycle . B-15
References . B-17

xii Contents

Model of M-Phase Control in Xenopus Oocyte Extracts B-18
M-Phase Control Model . B-18
M-Phase Control Equations . B-19
SimBiology Model with Rate and Algebraic Rules B-25
SimBiology Model with Reactions and Algebraic Rules B-29
References . B-41

xiii

SimBiology Apps

• “Keyboard Shortcuts for SimBiology Model Builder” on page 1-2
• “Keyboard Shortcuts for SimBiology Model Analyzer” on page 1-4
• “Message Indicator Icons in SimBiology Model Builder” on page 1-6
• “Copy SimBiology Blocks” on page 1-7
• “SimBiology Model Component Libraries” on page 1-9
• “Create Model of Receptor-Ligand Kinetics” on page 1-11
• “Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology

Model Builder” on page 1-16
• “Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer”

on page 1-41
• “Scan Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58
• “Undo and Redo Model Changes in SimBiology” on page 1-66
• “Generate SimBiology Model Report” on page 1-68
• “Generate Report for SimBiology Program Results” on page 1-69
• “Percentile Plot” on page 1-73
• “View and Run Program Code Generated by SimBiology Model Analyzer” on page 1-78
• “Simulate Groups Using Doses and Variants from Data Set” on page 1-83
• “Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using

SimBiology Model Analyzer” on page 1-94
• “View and Run Generated Code by SimBiology Model Builder” on page 1-116
• “Import and Export Variants and Doses from Excel to SimBiology Model Builder” on page 1-124
• “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology

Model Analyzer” on page 1-135
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer”

on page 1-156

1

Keyboard Shortcuts for SimBiology Model Builder
On macOS, use the command key instead of Ctrl.

Shortcuts for Diagram
Action Shortcut
Undo Ctrl + Z
Redo Ctrl +Shift + Z
Copy block Ctrl + C
Paste block Ctrl + V
Delete block Delete
Select the next clone of a species Tab
Select the previous clone of a species Shift + Tab
Move block up by 1 pixel Up arrow
Move block down by 1 pixel Down arrow
Move block left by 1 pixel Left arrow
Move block right by 1 pixel Right arrow
Zoom in Ctrl + +
Zoom out Ctrl + –
Select usages on page 2-41 of a
quantity

Alt + Click a quantity block

Shortcuts for Browser Tables
Action Shortcut
Select all rows Ctrl + A
Copy a model component Ctrl + C
Paste a model component Ctrl + V
Expand all rows Ctrl + Shift+ Right arrow
Collapse all rows Ctrl + Shift+ Left arrow
Expand a row Ctrl + Right arrow
Collapse a row Ctrl + Left arrow
On a Variants or Doses tab, jump the
focus from the top (variants or doses)
table to the first editable field in the
next (Content or Properties) section.

Ctrl + J

Add a compartment Alt + C
Add a parameter Alt + P
Add a reaction Alt + R

1 SimBiology Apps

1-2

Action Shortcut
Add an algebraic rule Alt + A
Add an event Alt + E
Add an initial assignment rule Alt + I
Add a repeated assignment rule Alt + T
Add a rate rule Alt + L
Add an observable expression Alt + O

See Also

More About
• “SimBiology Apps”
• “Create Model of Receptor-Ligand Kinetics” on page 1-11
• “Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using

SimBiology Model Builder” on page 1-16

 Keyboard Shortcuts for SimBiology Model Builder

1-3

Keyboard Shortcuts for SimBiology Model Analyzer
On macOS, use the command key instead of Ctrl.

Shortcuts for Datasheets and Tables
Action Shortcut
Expand all rows Ctrl + Shift + Right arrow
Collapse all rows Ctrl + Shift + Left arrow
Expand a row Ctrl + Right arrow
Collapse a row Ctrl + Left arrow
Select all Ctrl + A
Cut Ctrl + X
Copy Ctrl + C
Paste Ctrl + V

Shortcuts for Running Programs
Action Shortcut
Run program F5 (for Windows®), Ctrl + Alt + R (for macOS and

Linux®)
Run program step Ctrl + Enter
Run program step and advance to next
step

Ctrl + Shift + Enter

Advance to next program step Ctrl + Shift + Down arrow

Shortcuts for Help and Working with Project
Action Shortcut
Open SimBiology documentation F1
Create new plot Ctrl + L
Create new datasheet Ctrl + D
Open SimBiology project, SBML, or data
file

Ctrl + O

Save project Ctrl + S
Save project as Ctrl + Shift + S
Close project Ctrl + E

See Also
SimBiology Model Analyzer | SimBiology Model Builder

1 SimBiology Apps

1-4

Related Examples
• “Create Model of Receptor-Ligand Kinetics” on page 1-11
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156
• “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology

Model Analyzer” on page 1-135
• “Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer” on page

1-41
• “Scan Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58

 Keyboard Shortcuts for SimBiology Model Analyzer

1-5

Message Indicator Icons in SimBiology Model Builder
The SimBiology Model Builder app uses contextual icons to provide more information about model
components in the browser tables and blocks in the Diagram tab. For instance, in a model diagram,

an icon is displayed above a reaction block if it has an error: .

For more information, pause on an icon. The following table has the complete list of contextual icons
and corresponding areas where they are displayed.

Icon Description Diagram Browser
Table

Block has an error. ✓ χ
Block has a warning or is not being used in a model. ✓ χ
Block is pinned to its current location in the model diagram. ✓ χ

Value of species, parameter, or compartment is set to be constant.
In other words, the Constant property of the species, parameter, or
compartment block is set to true.

✓ ✓

Species block has the BoundaryCondition property set to true. ✓ ✓

Species block is cloned. ✓ χ
Reaction block has the Reversible property set to true. ✓ χ
Reaction or rule or event has the Active property set to false,
which means that it does not participate in the model simulation.

✓ (for
reaction
and rule
block)

✓ (for
reaction,
rule, or
event)

, Reaction-scoped parameter shadows (i.e., takes precedence over) a
model-scoped parameter. The up arrow icon indicates the
parameter that shadows. The down arrow icon indicates the
parameter that is being shadowed.

χ ✓

Value property of species, parameter, or compartment is defined by
an assignment rule.

✓ ✓

Species value is being increased by one or more doses. You must
select the desired doses in a program to see the dosing effects.

✓ ✓

Species, parameter, or compartment value is being modified by an
event or dose.

✓ ✓

Species, parameter, or compartment value is being modified by a
variant.

✓ ✓

See Also
SimBiology Model Builder | SimBiology Model Analyzer

More About
• “SimBiology Apps”

1 SimBiology Apps

1-6

Copy SimBiology Blocks
When building models in the Diagram tab of the SimBiology Model Builder app, you can copy and
paste blocks using Ctrl + C and Ctrl + V. You can also use the context (right-click) menu. The Copy
Options from the context menu lets you decide whether to copy the connected states (or quantities)
when copying a reaction, rule, event, or observable. The default copy options are set to false, which
means that the app does not create copies of the connected states. You can also access the copy
options from Preferences > Model Building > Copy Options.

• Using Ctrl + V increases the compartment size if there is not enough space for what you are
pasting.

• Using the context menu gives you a better control of where you want the copied blocks to appear.
The app uses the current location of the mouse pointer to place the new blocks.

Note On macOS, use the command key instead of Ctrl.

Compartment Blocks
If you select a compartment and copy it, the app copies the compartment block and any blocks that
are inside the compartment, even if they are not visible or selected explicitly. The app does not copy
any blocks that lie outside the compartment, even if they are connected to the blocks within it.

Species Blocks
If you copy a species block that is dosed, the associated dose is not copied. You can add a dose to the
copied species manually in the Doses tab.

Reaction Blocks
If you select a reaction block, the app copies the reaction block, the reaction string, and the reaction
rate. The app does not create copies of the associated species and reaction rate parameters of the
reaction.

You can change the default behavior as follows. Right-click the block. Select Copy Options > Model
Building. In the Copy Options section, set When copying a reaction copy all of its states to
true.

Parameter Blocks
You can copy a parameter block. However, the block shows up in the diagram only if the parameter is
the left-hand-side of a repeated assignment rule, rate rule, or event function. For reaction rate
parameters, see “Reaction Blocks” on page 1-7.

Rule Blocks
Only repeated assignment and rate rules show up in the diagram as blocks.

 Copy SimBiology Blocks

1-7

If you copy a rule block, the app uses the original rule string for the copied block. In other words, the
copied rule block has the connections to the same blocks as the original rule block. The app does not
create copies of the associated model components.

You can change the default behavior as follows. Right-click the block. Select Copy Options > Model
Building. In the Copy Options section, set When copying a rule copy all of its states to true.

Note In the Browser tables, you can copy any model component, including the ones that do not
show up as blocks in the Diagram tab.

See Also
SimBiology Model Builder | SimBiology Model Analyzer

More About
• “SimBiology Apps”
• “Create Model of Receptor-Ligand Kinetics” on page 1-11
• “Keyboard Shortcuts for SimBiology Model Builder” on page 1-2

1 SimBiology Apps

1-8

SimBiology Model Component Libraries
The SimBiology libraries are collections of built-in kinetic laws, units, and unit prefixes that you can
use while configuring reactions and quantity units in your model.

The built-in Abstract Kinetic Laws library provides a list of predefined reaction rates that follow
particular kinetics, such as the mass action or Michaelis-Menten kinetics. The Units library provides
a list of available units and corresponding unit compositions. The Unit Prefixes library provides a list
of prefixes and corresponding exponent values for unit prefixes.

You can also add custom components to any library. For instance, you can define a custom unit and
use it in your model. These custom components are saved across sessions of MATLAB®. The libraries
are available for all SimBiology projects and are not part of any one project.

To see the list of libraries in the SimBiology Model Builder app, click Libraries on the Home tab. The
following figure shows the kinetic laws library with all available built-in kinetic laws.

See Also
SimBiology Model Builder | SimBiology Model Analyzer

 SimBiology Model Component Libraries

1-9

More About
• “SimBiology Apps”

1 SimBiology Apps

1-10

Create Model of Receptor-Ligand Kinetics
This example shows how to create and simulate a simple model of receptor-ligand kinetics using the
SimBiology Model Builder and SimBiology Model Analyzer apps.

In this model, ligand L and receptor R species form receptor-ligand complexes through reversible
binding reactions. These reactions are defined using mass action kinetics by dC

dt = kf ⋅ L ⋅ R− kr ⋅ C,
where kf and kr are forward and reverse rate constants. L, R, and C are the concentrations of the
ligand, receptor, and receptor-ligand complex, respectively.

Open Model Builder App
Click the SimBiology Model Builder icon on the Apps tab or enter simBiologyModelBuilder at
the command line.

Build Model
1 On the Home tab of the app, select Model > Create New Blank Model. Enter m1 as the name

for the model. The app creates an empty compartment unnamed and displays the compartment
on the Diagram tab.

2
Drag and drop three species blocks and one reaction block into the compartment.
Optionally, you can rename the species and compartment by double-clicking the default names.
For instance, change unnamed to cell.

3 To connect the species to the reaction, press and hold the Ctrl key (on Windows and Linux) or
the Option key (on macOS), click the species block, and drag the line.

 Create Model of Receptor-Ligand Kinetics

1-11

4 Click the reaction block to see its properties in the Property Editor pane. Set the following
parameters.

• Select Reversible > true.
• In the States table, update the values of L to 5 and R to 10. Set the units of the L, R, and C

species to nanomole/liter.
• Set the value of the forward rate parameter kf to 0.05. Set the unit to liter/nanomole/

hour.
• Set the value of the reverse rate parameter kr to 0.1 with the unit 1/hour.

1 SimBiology Apps

1-12

5 Click the cell compartment in the diagram. In the Property Editor pane, set its Units to liter.

Simulate Model
1 On the Home tab, click the Model Analyzer icon to open the SimBiology Model Analyzer app.
2 In the Model Analyzer app, select Program > Simulate Model on the Home tab. The

Program1 tab opens.
3 In the Simulation step of the program, set the Stop Time to 20 seconds because the model

reaches a saturated state after that.

 Create Model of Receptor-Ligand Kinetics

1-13

1 SimBiology Apps

1-14

4 Click Run from the Home tab.
5 Running the program plots the results in the Plot1 tab. The plot shows the simulated responses

in different colors. The program stores the simulation results in the LastRun folder of the
program.

See Also
SimBiology Model Builder | SimBiology Model Analyzer

More About
• “SimBiology Apps”
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156
• “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology

Model Analyzer” on page 1-135
• “Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer” on page

1-41
• “Scan Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58

 Create Model of Receptor-Ligand Kinetics

1-15

Incorporate SGLT2 Inhibition into Physiologically Based
Glucose-Insulin Model Using SimBiology Model Builder

This example shows how to add SGLT2 inhibition by a hypothetical compound to an existing glucose-
insulin model using SimBiology Model Builder.

Glucose-Insulin Model
This model is another SimBiology implementation of the glucose-insulin model referenced in the
“Simulate the Glucose-Insulin Response” on page 4-167 example. The model is based on the
publication by Dalla Man, et al. In their 2007 publication [1], the authors developed a model for the
human glucose-insulin response after a meal. This model describes the dynamics of the system using
ordinary differential equations. The authors used their model to simulate the glucose-insulin response
after one or more meals, for normal human subjects and for human subjects with various kinds of
insulin impairments.

Sodium-Glucose Cotransporter-2 (SGLT2) Inhibition
The SGLT2 receptor has been shown to facilitate around 50% of renal glucose reabsorption [3]. This
example assumes to have a hypothetical SGLT2 inhibitor compound that inhibits SGLT2 by 50%. A
reasonable dosing regimen and PK properties are also assumed. In this example, you incorporate the
pharmacokinetics/pharmacodynamics (PK/PD) of this inhibitor compound into the glucose-insulin
model.

Incorporate Inhibitor PK by Adding and Configuring Reactions
In the following steps, you model the compound absorption and clearance of a hypothetical SGLT2
inhibitor compound by using two reactions.

Load SGLT2 Model

Enter the following command to open the SimBiology Model Builder app with a prebuilt but
incomplete insulin-glucose model.

openExample('simbio/SGLT2SimBiologyExample')

Add and Configure Reactions

Note On macOS, use the command key instead of Ctrl.

1 Drag and drop two species blocks from the toolbar of the Diagram tab. You can place them
below the annotation block Therapy, which is just a label (text) block.

1 SimBiology Apps

1-16

2 Press Ctrl and drag a line from the first species to the second species. A reaction block appears
in between. This reaction represents the compound absorption.

3 Edit the default species name by double-clicking it. Rename species_1 to GI_SGLT2_Inhib
and species_2 to Plasma_SGLT2_Inhib.

4 Click the reaction block. In the Property Editor pane on the right, change the reaction Name to
compound_absorption.

5 In the Kinetic Law section, change the autocreated Forward rate parameter kf to
k_compound_absorption. The model already has the forward rate parameter
k_compound_absorption that was created previously. The app uses green text for parameter
names and blue text for species names in the reaction rate expression.

Tip To change the default reaction configurations, click Preferences on the Home tab. In the
preferences dialog, click Model Building. In the Reaction Building section, there are three

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-17

options to change the default kinetic law, create parameters for the kinetic law, and change the
scope of created parameters.

6 In the States table, set the units of the two species to milligram.

7 Drag and drop another reaction block from the diagram toolbar to model the compound
clearance.

8 Press Ctrl and drag a line from Plasma_SGLT2_Inhib to the reaction.

1 SimBiology Apps

1-18

Tip If the blocks are not aligned, you can align them using the alignment tools. On the Home
tab, select Diagram Tools > Diagram Alignment Tools.

9 Click the reaction block. In the Property Editor pane, change the reaction Name to
compound_clearance.

10 Update the Reaction Rate to CL/Vd*Plasma_SGLT2_Inhib. CL and Vd indicate the model
parameters for the clearance and volume of distribution, respectively.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-19

Tip

• The kinetic law for a newly added reaction is configured to MassAction by default, and the
SimBiology Model Builder app automatically creates and maps the species and parameters
needed by the reaction rate. For other kinetic laws, only parameters are created and mapped. You
need to create and map the species manually. Use the Unknown kinetic law to define a custom
reaction rate with its own parameters. You must define and add the species and parameters
needed by the custom rate.

• The MassAction and Unknown kinetic laws can have different simulation results even when the
reaction rate is the same. This can happen when you have a reversible reaction with species in
different compartments. The difference in simulation results is because of the volume-scaling
performed by SimBiology during the dimensional analysis. For details, see “Derive ODEs from
SimBiology Reactions” on page 4-5. Specifically, for MassAction, SimBiology uses
corresponding compartment volumes to multiply the forward and reverse rates. However, for
Unknown and other built-in kinetic laws, SimBiology multiplies the entire rate by only one

1 SimBiology Apps

1-20

compartment which contains the reactants. To see exactly what compartment volumes are used
for scaling, open the Equations on page 1-31 tab and check the ODEs section.

Incorporate Inhibitor PD Using Mathematical Equation
SimBiology lets you define a mathematical expression to define or update the value of a model
quantity during simulation. For details, see “Definitions and Evaluations of Rules in SimBiology
Models” on page 2-13. In the following steps, you add a repeated assignment rule to incorporate the
inhibitor pharmacodynamics by defining the renal threshold at which plasma glucose is excreted
based on the compound efficacy.

1 In the Browser pane, click the plus icon on the browser toolbar and select Add Repeated
Assignment. The app moves the focus to the last empty row in the Repeated Assignments
table.

2 Double-click the row and enter the following expression that represents the compound inhibition
based on the Hill equation:

renal_threshold = basal_renal_threshold*(1-
compound_Imax*Whole_Body.Plasma_SGLT2_Inhib^2/
(compound_IC50^2+Whole_Body.Plasma_SGLT2_Inhib^2))

The Diagram tab now shows the repeated assignment rule block for the renal_threshold
parameter.

Tip To view the entire model and pan through it, expand Model Assessment Tools in the
Browser pane and click Overview.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-21

Note

• The app shows only a parameter block for a parameter that is on the left hand side (LHS) of a
repeated assignment rule, rate rule, or event function.

• The app shows only rule blocks for repeated assignments and rate rules.
• The app uses dash-dot lines to connect the quantities on the right hand side of a rule. By

default, these lines are not shown. To display the lines, click a rule block. From the Property
Editor pane, in the Block section, set Expression Lines to show.

Update Renal Excretion Reaction to Incorporate Presence of Inhibitor
Compound
The renal excretion reaction of the model is currently defined as Plasma_Glucose ->
Urinary_Glucose_Excr_AUC with the reaction rate parameter glucose_excretion. The rate
parameter is defined by a repeated assignment rule as glucose_excretion =
(Plasma_Glucose>renal_threshold)*GFR*(Plasma_Glucose-renal_threshold), where
GFR is a glomerular filtration rate that determines the flux of the reaction and has impact on SGLT2
inhibition effect.

In the following steps, you update the renal excretion reaction to Plasma_Glucose +
Plasma_SGLT2_Inhib -> Plasma_SGLT2_Inhib + Urinary_Glucose_Excr_AUC_24hr, where
the inhibitor compound Plasma_SGLT2_Inhib is both a reactant and product of the reaction.

1 In the Diagram tab, click the gray square reaction block named Renal excretion.

2 In the Property Editor pane, update the Reaction string to Plasma_Glucose +
Plasma_SGLT2_Inhib -> Plasma_SGLT2_Inhib + Urinary_Glucose_Excr_AUC_24hr. A
dashed line now connects Plasma_SGLT2_Inhib to the reaction block on the Diagram tab.

Note SimBiology uses a dashed line to indicate that a species is both a reactant and product of a
reaction and is not being consumed by the reaction.

1 SimBiology Apps

1-22

Split and Clone Block

When there are multiple references to the same quantity, multiple lines are connected to the block. To
make the diagram clearer, you can split the block, that is, create copies of the same block, so that
each reference is connected to a different copy of the block. You can also clone a block to add another
use for it. For instance, you can first clone a species block to reference in multiple expressions. You
can then use each clone in each expression as you build the model.

In the following steps, you clone the Plasma_SGLT2_Inhib block. These steps are optional and do
not have any effect on the model behavior.

1 Click the Plasma_SGLT2_Inhib block in the diagram.
2 In the Property Editor pane, scroll to the Split section.
3 Click Clone.

4 In the Diagram tab, a cloned block appears next to the original block. Each block now has a
clone indicator.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-23

5 You can now move the dashed line to the cloned block. First click the dashed line. Press Ctrl and
drag the dashed line to the cloned block. A green plus icon appears when the line is near the
cloned block. Release the mouse to attach the line to the cloned block.

6 You can now move the cloned block closer to the Renal excretion reaction block to make the
diagram easier to read.

Incorporate Sudden Changes in Model Behavior Using Event
You can model sudden changes in model behavior based on a specified condition. For example, you
can reset a species amount at a certain time point or when a certain concentration threshold is
crossed. SimBiology lets you model such changes using a modeling component called an event. An
event lets you specify discrete transitions in quantity values that occur when a custom condition
becomes true. Such a condition is called an event trigger. Once the condition becomes true, one or
more event functions are executed. For details, see “Events in SimBiology Models” on page 2-22.

In the following steps, you reset the total amount of urinary glucose to zero every 24 hours by adding
one event trigger and five event functions.

1 SimBiology Apps

1-24

1 Click the plus icon on the Browser toolbar. Select Add Event. The app moves the focus to the
last empty row in the Events table.

2 Enter the following event trigger: time >= (num_day+1)*timeDay.
3 In the next EventFcn row, enter Urinary_Glucose_Excr_AUC_24hr = 0.

4 To add a second event function to the same event, go to the Property Editor pane of the event.
In the Event Fcns table, double-click the empty row and enter the following: num_day =
num_day + 1.

5 Add three more event functions as follows:

• Plasma_Glucose_Conc_AUC_24hr = 0
• Vmax_dep_glucose_util = Vmax_dep_glucose_util_baseline
• beta_glucose_signal = beta_glucose_signal_baseline

.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-25

Add Doses
SimBiology lets you model the increase in the amount of a species due to a stimulus such as an oral
or intravenous administration of a drug. To model such an increase in a species amount, use the dose
on page 2-30 modeling component. In the following steps, you model the intake of the inhibitor
drug, such as one time per day for x numbers of days, by dosing the GI_SGLT2_inhib species.

1 In the Browser pane, click the Show doses icon on the toolbar.

The Doses tab appears. In the Doses section, each row represents a dose. The Type column lets
you choose between Repeat Dose (default) and Schedule Dose. The Active column lets you
select which doses to apply when you simulate the model.

2 Double-click the Name column in the last empty row and enter SGLT2 Inhib QD.

1 SimBiology Apps

1-26

3 In the Properties section, for Target Name, enter GI_SGLT2_Inhib and select
Whole_Body.GI_SGLT2_Inhib.

4 In the Dose section, enter the following:

• Amount = 300
• Rate = 0
• StartTime = timeBreakfast
• Interval = 1440
• RepeatCount = 7

5 In the Units section, enter the following:

• AmountUnits = milligram
• RateUnits =
• TimeUnits = minute

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-27

Represent Biological Variability Using Variants
You can model biological variability using a modeling component called a variant on page 2-29. A
variant is a collection of quantities with alternative values. For instance, in this example, you can
have a set of parameter values for a type 2 diabetic patient and another set of values for a patient
without type 2 diabetes.

For the purposes of this example, the model already has two variants. In the following steps, you open
the Variants tab, where you can edit or add more variants.

• In the Browser pane, click the Show variants icon on the toolbar.

1 SimBiology Apps

1-28

The Variants tab appears. In the Variants section, each row represents a variant. The Active
column lets you select which variants to apply when you simulate the model. You can select
multiple variants, and if there are duplicate specifications for a quantity value, the last occurrence
for the value in the array of variants is used during simulation. The app applies the variants in the
order that they appear in the table from top to bottom. Reordering the variants can change the
initial conditions because the variants are applied in the new order. Make sure that you provide
the correct order when you simulate the model in the Model Analyzer app. The Value column in
the Content section shows the final quantity value after applying all variants that you have
selected.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-29

• By default, the Content section shows only those quantities being modified by the variant. To see
all model quantities, select Show all quantities in the model in the Display section.

1 SimBiology Apps

1-30

Show Model Equations and Initial Conditions
You can view the underlying system of equations, namely, ordinary differential equations (ODEs) and
rules that represent the model. SimBiology derives the ODEs from model reactions, and the ODEs
define what quantities to integrate during model simulation. For details, see “Model Simulation” on
page 4-3.

You can use the model equations and initial conditions to debug a model. For instance, you can check
the initial conditions of ODEs to see if the quantity values are initialized as you expect. You can also
see how SimBiology corrects the dimensions of ODEs by dividing the right-hand-sides of equations
with compartment volumes. The volume-correction information can help you debug unexpected
simulation results, especially when you have a multicompartment model with different compartment
volumes.

To view the model equations, click the Show model equations icon on the toolbar of the Browser
pane.

The app opens the Equations tab.

Reaction Fluxes

By default, the app embeds the reaction fluxes when it displays in the model equations. Clear the
Embed Fluxes check box to see the Fluxes section separately.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-31

Generally, reaction fluxes are equivalent to reaction rates except that the dimensions of fluxes are
always amount/time. The dimensions of reaction rates can be in concentration/time or
amount/time. For details, see “Derive ODEs from SimBiology Reactions” on page 4-5.

Initial Conditions

You can view the initial conditions of model quantities, namely compartments, species, and
parameters. The initial conditions are the quantity values at simulation time = 0. On the toolbar of
the Browser pane, select View model documents options > Show Model Initial Conditions.

The app adds a column named Initial Condition to the Compartments and Species table and
Parameters table.

1 SimBiology Apps

1-32

Define Observable Expressions
SimBiology lets you perform postsimulation calculations by defining and evaluating custom
expressions. Such an expression is called an SimBiology.Observable. In the following steps, you
add observable expressions to the model to calculate the Cmax and mean values of the concentration-
time profile of the plasma glucose.

1 Click the plus icon on the browser toolbar. Select Add Observable. The app moves the focus to
the last empty row in the Observables table.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-33

2 Double-click the empty row and enter the following expression to get the Cmax value:
Cmax_plasma_glucose = max(Plasma_Glucose_Conc).

3 Enter the Units of the observable as milligram/deciliter in Property Editor.

4 Double-click the next empty row and enter the following expression to get the mean value:
Mean_plasma_glucose = mean(Plasma_Glucose_Conc).

1 SimBiology Apps

1-34

5 Enter the Units of the observable as milligram/deciliter in Property Editor.

Visualize Model Behavior Using Model Simulation Tool
You can visualize the model dynamics by using the Model Simulation tool. The tool provides a
convenient way to simulate the model and plot the time courses of model quantities or observables,
without having to run a simulation program in the Model Analyzer app.

The Model Simulation tool is located on the right-hand side of the app beneath the Property
Editor pane. In the following steps, you plot the time courses of the species Plasma_Glucose_Conc
and GI_SGLT2_Inhib.

Note If you have not completed the prior model building steps, you can load the completed project
instead to continue this tutorial.

1 Enter the following command at the command line:

openExample('simbio/SGLT2SimBiologyExample')
2 SimBiology Model Builder opens with the incomplete SGLT2 model loaded.
3 Click Open and navigate to the current folder. Select the project file named

SGLT2_model.sbproj.

1 Click the arrow next to the tool name which is located below the Property Editor pane.

2 Click Add Plot on the toolbar.
3 Plot1 appears. Double-click the cell under Component Name and type:

Plasma_Glucose_Conc
4 As you type, the app provides suggestions. Select Whole_Body.Plasma_Glucose_Conc.

5 Select Options > Define Active Variants for Simulation. It opens the Variants tab.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-35

6 Select Type 2 diabetic in the Variants table.

7 Select Options > Define Active Doses for Simulation. It opens the Doses tab. Select
Daily Breakfast, Daily Lunch, Daily Evening, and SGLT2 Inhib QD in the Doses table.

8 Click Run on the tool bar to see the time course of the species.

1 SimBiology Apps

1-36

9 To export the plot, point the mouse to the top right corner of the table and click the options menu
icon. Click Export Plot from the list.

10 You can also use the context menu of a model quantity to add them to an existing plot or a new
plot in the simulation tool. Go to the Diagram tab (or in the Browser pane), right-click the
GI_SGLT2_Inhib species and select Plot State > Plot1. The species is now added to the plot.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-37

11 Click Run again to update the plot.

1 SimBiology Apps

1-38

Export Model
SimBiology Model Builder lets you export the model to various file formats. You can:

• Export the model to the MATLAB workspace. Once the model is in the workspace, you can work
on it programmatically. For more command-line examples, see “Build and Verify Models”.

• Export the model to an SBML file.
• Generate a model report on page 1-68 that summarizes the various details of the model.
• Export just the model diagram.
• Export the model components to Excel® files.

On the Home tab, in the Model section, select Export.

 Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder

1-39

Tip If you have previously open the example, you can find the completed model in
SGLT2_model.sbproj which is located in a subfolder of the current running release Examples
folder.

References
[1] Dalla Man, Chiara, Robert A. Rizza, and Claudio Cobelli. “Meal Simulation Model of the Glucose-

Insulin System.” IEEE Transactions on Biomedical Engineering 54, no. 10 (October 2007):
1740–49. https://ieeexplore.ieee.org/document/4303268.

[2] Dalla Man, Chiara, M. Camilleri, and C. Cobelli. “A System Model of Oral Glucose Absorption:
Validation on Gold Standard Data.” IEEE Transactions on Biomedical Engineering 53, no. 12
(December 2006): 2472–78. https://ieeexplore.ieee.org/document/4015600.

[3] Wright, Ernest M., Donald D. F. Loo, and Bruce A. Hirayama. “Biology of Human Sodium Glucose
Transporters.” Physiological Reviews 91, no. 2 (April 2011): 733–94. https://
journals.physiology.org/doi/full/10.1152/physrev.00055.2009.

See Also
SimBiology Model Analyzer | SimBiology Model Builder

More About
• “Create Model of Receptor-Ligand Kinetics” on page 1-11
• “SimBiology Apps”

1 SimBiology Apps

1-40

https://ieeexplore.ieee.org/document/4303268
https://ieeexplore.ieee.org/document/4015600
https://journals.physiology.org/doi/full/10.1152/physrev.00055.2009
https://journals.physiology.org/doi/full/10.1152/physrev.00055.2009

Explore Biological Variability with Virtual Patients Using
SimBiology Model Analyzer

This example shows how to generate and simulate virtual patients using the SimBiology Model
Analyzer app. In this example, a virtual patient is represented as a single realization of model
parameters. The example uses a tumor growth model [1] to explore the variability of some model
parameters that influence the tumor growth and investigate various dosing regimens to control it.
This example requires Statistics and Machine Learning Toolbox™.

Tumor Growth Model

The model used in this example is a SimBiology® implementation of the pharmacokinetic/
pharmacodynamic (PK/PD) model by Simeoni et al. It quantifies the effect of anticancer drugs on
tumor growth kinetics from in vivo animal studies. The drug pharmacokinetics are described by a
two-compartment model with IV bolus dosing and linear elimination (ke) from the Central
compartment. Tumor growth is a biphasic process with an initial exponential growth followed by
linear growth. The growth rate of the proliferating tumor cells is described by

L0 × x1

1 +
L0
L1

× w
ψ

1
ψ

L0, L1, and Ψ are tumor growth parameters, x1 is the weight of the proliferating tumor cells, and w is
the total tumor weight. In the absence of any drugs, the tumor consists of proliferating cells only, that
is, w = x1. In the presence of an anticancer agent, a fraction of the proliferating cells is transformed
into nonproliferating cells. The rate of this transformation is assumed to be a function of the drug
concentration in the plasma and an efficacy factor k2. The nonproliferating cells x2 go through a
series of transit stages (x3 and x4) and are eventually cleared from the system. The flow-through of
the transit compartments is modeled as a first-order process with the rate constant k1.

The SimBiology model makes these adjustments to the pharmacodynamics of tumor growth:

• Instead of defining the tumor weight as the sum of x1, x2, x3, and x4, the model defines the tumor
weight by the reaction named Increase, null → tumor_weight, with the reaction rate
2 × L1 × L0 × x1

2

L1 + 2 × L0 × x1
× tumor_weight. tumor_weight is the total tumor weight, x1 is the weight of the

proliferating tumor cells, and L0, and L1 are tumor growth parameters [2].
• Similarly, the model defines the decrease in tumor weight by the reaction named Decay,

tumor_weight → null, with the reaction rate k1*x4. The constant k1 is the forward rate parameter,
and x4 is the last species in the series of transit reductions in tumor weight.

• ke is a function of the clearance and the volume of the central compartment: ke = Cl_Central/
Central.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-41

Description of Virtual Population

The virtual population in this example is represented by virtual patients, specified as distinct sets of
patient-specific parameter values. Suppose that, based on prior knowledge or sensitivity analysis of
the model (for example, see “Find Important Tumor Growth Parameters with Local Sensitivity
Analysis Using SimBiology Model Analyzer” on page 1-135), the tumor growth is sensitive to these
model parameters: L0, L1, w0, k1, k2, and Cl_Central. Assuming that these biological parameters
follow the lognormal distribution (and must always be positive), you can generate virtual patients that
represent different parameter values drawn from the joint lognormal distribution.

The lognormal distribution uses these parameters:

• mu – Mean of logarithmic values
• sigma – Standard deviation of logarithmic values

For details, see “Lognormal Distribution” (Statistics and Machine Learning Toolbox). In this example,
sigma is assumed to be 0.01 for all the parameters. For a small sigma value, the mean of a lognormal
distribution is approximately equal to the log of the model value. Hence, this example assumes that
mu for each parameter is the log of the model value.

1 SimBiology Apps

1-42

Dosing Strategies

In this example, an anticancer drug is used to control the tumor growth. Each virtual patient receives
the same amount of the drug on the same schedule. The tumor growth response is simulated for each
patient. Dose amounts are then varied to find the range of dose amounts that can suppress the tumor
growth of many virtual patients in the population.

Load Tumor Growth Model

Enter the following command to open the tumor growth model in SimBIology Model Analyzer. In the
Browser pane of the app, the Models folder contains the Tumor Growth Model.

openExample('simbio/VirtualPatientsSimBiologyModelAnalyzerExample')

Define Joint Probability Distribution to Generate Samples to Represent Virtual Patients

The following steps show how to draw sample values from the joint probability distribution for model
parameters that are sensitive to tumor growth. These sample values represent virtual patients.

Create a program to draw sample values from the joint lognormal distribution for tumor growth
sensitive parameters: L0, L1, w0, k1, k2, and Cl_Central.

On the Home tab, select Program > Generate Samples. A new program opens.

In the Variants section of the program, select parameterEstimates, which contains the estimated
parameter values.

Keep the Doses section as is so that no doses are selected.

In the Generate Samples step, click the plot button to disable default plot generation. You will plot
the samples later on.

In the Parameter Set section, set Type to values from a distribution.

Set Number Of Samples to 25.

Double-click the empty cell in the Component Name column, and enter L0.

Change Distribution for L0 to Lognormal. By definition, mu is the mean of logarithmic values. So,
change mu to -0.5644, which is log(Current Value) or log(0.5687). Change sigma to 0.01. For a small
sigma value, the mean of a lognormal distribution is approximately equal to log(Current Value). For
details, see “Lognormal Distribution” (Statistics and Machine Learning Toolbox).

Double-click the empty cell in the Component Name column, and add L1. Repeat the same process
to change the distribution to lognormal and set the mu and sigma values. Similarly, add w0, k1, k2,
and ke. This table lists the corresponding mu values of these parameters that you can copy and paste
in the software. Change sigma to 0.01 for each parameter.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-43

For Sampling Options, use the default option: random sampling with rank correlation
matrix, where the matrix is an identity matrix.The following figure shows the Parameter Set
section with the parameters configured.

1 SimBiology Apps

1-44

(Optional) Save the project under a new name by selecting Save > Save Project As on the Home
tab.

Define Dosing Strategies

Add the dosing information as another parameter set by specifying different dose amount—
specifically, six dose amounts that are equally spaced from 5 to 35 mg. Then combine the doses with
the first parameter set (virtual patients) using the Cartesian combination method. This method
combines every virtual patient with every dose amount to generate a total of 150 iterations (or
simulation scenarios). For details, see “Combine Simulation Scenarios in SimBiology” on page 3-24.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-45

At the bottom of the Generate Samples step, click Add parameter set to scan. Another parameter
set (PS2) appears.

Double-click the empty cell in the Component Name column, and type interval. A list of choices
appears. Select interval_dose.Amount.

Set Type to Individual Values and set Values to [5:6:35].

Near the top of the Generate Samples step, under Parameter Set Combinations, ensure that the
Combination type is set to cartesian to combine PS1 and PS2.

Generate and Visualize Parameter and Dose Combinations

Once you have defined the joint lognormal distribution for model parameters, range of dose amounts,
and the combination method, you can run the step to generate the different parameters and dose
combinations.

Click the Run this program step button to generate samples.

Tip: You can run every program execution step separately. An execution step includes the run button
next to the name the step. Running an individual step is especially helpful if the program contains

1 SimBiology Apps

1-46

multiple steps and you want to see the intermediate results from a particular step. By doing so, you
can make adjustments as needed before running the next step or the whole program. To run the
whole program, click the Run button on the Home tab.

By default, the app stores the generated samples in the LastRun folder of the program.

Visualize the generated samples. In the Browser pane on the left, expand the Program1 folder.
Expand the LastRun folder, and then click samples. In the Plot section on the Home tab, click Plot
Matrix. The plot shows the distribution of each parameter varied around its model value, except the
dose amounts, which appear in a uniform range. Note that your plot might vary from the plot shown
here due to randomness.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-47

Note: You can enable default plot generation to display the plot automatically every time you run the
step. To do so, click the plot button at the top of the Generate Samples step. Keep in mind that
when the program step has a lot of samples, plotting all the samples can be time consuming.

Display the generated virtual patients and dose combinations numerically in a tabular format. On the
Home tab, click New Datasheet. From the LastRun folder of the program, drag samples into the
new datasheet. Each row of the table represents a simulation scenario with different model
parameter values and dose amounts.

Perform Monte Carlo Simulations

Once you have the samples ready, you can simulate the model to explore the tumor growth of virtual
patients receiving different dose amounts.

Go back to the program by clicking the Program1 tab.

Click the (+) icon at the upper left and click Simulation.

1 SimBiology Apps

1-48

In the Model setup step, in the Variants section, make sure that parameterEstimates is selected.
Also make sure that no doses are selected in the Doses section. In the States To Log section, click
the option for viewing the states, and then clear all check boxes except [Tumor Growth
Model].tumor_weight.

At the top of the Simulation step (scroll down to see this step), click the Run this program step
button to simulate the model.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-49

The app simulates the generated scenarios from the Generate Samples step that you ran previously.
You do not need to rerun that step. Once the simulation finishes, the app saves the simulation results
in the LastRun folder and opens Plot2, showing a percentile plot of the simulation result.

In the Property Editor pane, under Style, click Time. Each line in the plot represents the tumor
weight profile of each simulation scenario.

1 SimBiology Apps

1-50

The plot shows that the tumor weight profiles appear in groups, corresponding to different dose
amounts. To better visualize this observation, you can slice the data by dose amounts. To do so, you
can use the Slice Data table, which contains a summary of slicing variables that are currently being
used in the plot and their corresponding plot styles.

Tip: Plots are backed by data that are currently present in the app workspace. Plots are not
snapshots. When the data (either experimental data or simulation results) is removed or changed, the
plots are also updated according to the changes in the underlying data.

In the Visual Channels table of Property Editor, double-click L0 and select interval_dose Amount.

Tip: You can slice data using different slicing variables. Each slicing variable appears in the plot with
a different visual style (or channel) such as color, line style, and axes position. Slicing variables can
represent attributes of data, such as responses or scenarios (that is, groups or simulation runs).
Slicing variables can also be covariates or parameter values associated with a scenario or group. By
default, the app provides slicing variables for different response variables and different scenarios in
the plotted data. You can add other visual styles (or channels) for sets of responses and associated
parameter or covariate variables.

Double-click the empty cell in the Style column and select Grid.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-51

The app updates Plot2 to show each dose amount on its own axes.

1 SimBiology Apps

1-52

The plot shows that different dose amounts play critical roles in the tumor growth of virtual patients.
From this plot, you can obtain some initial insights into the optimal dose amounts and dose
scheduling. For instance, suppose that the target tumor weight to reach is 0.5 grams. The simulation
results indicates that a dose amount of 23 milligrams or larger can achieve that goal (you can fine-
tune the range of dose amounts further by tweaking it in the Generate Samples step of the
program). You can use this information in combination with existing drug toxicity information (not
discussed in this example) to get a dosing regimen that satisfies both efficacy and safety
requirements, for instance.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-53

Postprocess Simulation Data

You can also postprocess the simulation results to look at the correlation between dose amounts and
the tumor weight in another way.

Go back to the program by clicking the Program1 tab. Click the (+) icon near the top of the program
and select Calculate Observables under Postprocessing.

A Postprocessing: Calculate Observables step appears below the Simulation step.

Double-click the first cell in the Name column. Enter stat1.

In the Expression column, enter the following expression:
min(vertcat(nan,tumor_weight(time>=7))). The expression returns the minimum tumor
weight after the first dose applied at day 7 from each simulation. Note: Anytime you add an
expression to the Observables table in the step, the expression is automatically added as an
observable object to the corresponding model.

In the Units column, enter gram.

Rerun the simulation step by clicking the run button at the top of the step. The app simulates and
evaluates the stat1 expression for each simulation scenario or iteration, and generates the following
plot. The x-axis represents the parameters and the y-axis represents the minimum tumor weight.
Each dot represents a simulation scenario. The plot also shows that there is no correlation between
the tumor size and the values of various model parameters, except for the dose amounts (the
rightmost subplot).

1 SimBiology Apps

1-54

Show only the dose amount subplot. In the Plot Settings, clear all check boxes in the Parameters
table, except interval_dose Amount.

In the Grid section, select both to show the grids for both the x- and y-axis.

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-55

The plot confirms that higher dose amounts control the tumor growth better. These initial simulation
results indicate that the dose amounts of 23 mg or larger could reach the hypothetical tumor weight
threshold of 0.5 grams or lower. You can further adjust the range of dose amounts in the Generate
Samples step.

Tip: To interactively explore the plotted data, export the plot to a separate figure window by selecting
Export Plot from the context (right-click) menu of the plot.

This example shows you how to generate samples to represent virtual patients and perform Monte
Carlo simulations to explore the model response on tumor growth under different dose amounts. The
simulation results indicate a range for dose amounts and dose schedules that controls the tumor
growth for various virtual patients. You could further adjust the dosing regimens so that the doses
stay within some known efficacy and toxicity thresholds. For a similar analysis, see the example “Scan
Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58.

References
[1] Simeoni, Monica, Paolo Magni, Cristiano Cammia, Giuseppe De Nicolao, Valter Croci, Enrico

Pesenti, Massimiliano Germani, Italo Poggesi, and Maurizio Rocchetti. “Predictive
Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models
after Administration of Anticancer Agents.” Cancer Research 64, no. 3 (February 1, 2004):
1094–1101.

1 SimBiology Apps

1-56

[2] Koch, Gilbert, Antje Walz, Gezim Lahu, and Johannes Schropp. “Modeling of Tumor Growth and
Anticancer Effects of Combination Therapy.” Journal of Pharmacokinetics and
Pharmacodynamics 36, no. 2 (April 2009): 179–97.

See Also
SimBiology Model Analyzer | Observable

More About
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156
• “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology

Model Analyzer” on page 1-135
• “Scan Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58

 Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer

1-57

Scan Dosing Regimens Using SimBiology Model Analyzer App

This example shows how to assess the efficacy and toxicity of various dose amounts in the SimBiology
Model Analyzer app by using the target (receptor) occupancy as a biomarker. The example uses the
target-mediated drug disposition (TMDD) model [1] with slight modifications.

Target-Mediated Drug Disposition (TMDD) Model

Target-mediated drug disposition (TMDD) is a phenomenon in which a drug binds with high affinity to
its pharmacologic target site, such as a receptor or enzyme, in an interaction that is reflected in the
pharmacokinetic characteristics of the drug.

This example uses a modified TMDD model based on the model used by Mager and Jusko [1] with a
minor adjustment. The authors proposed a generic TMDD model that accounted for saturable drug-
target binding and target (or receptor) mediated elimination. Drug in the Plasma reversibly binds
with the unbound Target to form the drug-target Complex. kon and koff are the association and
dissociation rate constants, respectively. Clearance of free Drug and Complex from the Plasma is
described by first-order processes with rate constants — kel and km, respectively. Free target
turnover is described by the zero-order synthesis rate ksyn and a first-order elimination (the rate
constant, kdeg). Variants of the TMDD model have been since used to characterize the
pharmacokinetics of numerous drugs.

One adjustment made to the model presented by Mager and Jusko, is as follows.

Target occupancy (TO) is defined as TO = Complex/(Target + Complex), where TO is a parameter and
Complex and Target are species.

Load TMDD Model

Enter the following command. SimBIology Model Analyzer opens. In the Browser pane, the Models
folder contains the TMDD model.

1 SimBiology Apps

1-58

openExample('simbio/ScanDosesSimBiologyModelAnalyzerExample')

Generate Array of Doses and Simulate Model

First, create a program to generate an array of doses with different dose amounts ranging from 0 to
300 nanomoles.

Select Program > Generate Samples. In the Generate Samples step, double-click the empty cell
under Component Name and enter Daily Dose.Amount.

Under Daily Dose.Amount, set Type to MATLAB Code, and set Code to linspace(0,300,31). This
code specifies the generation of 31 doses with amounts ranging from 0 to 300 nanomoles.

Disable the plotting of dose samples by clicking the plot button, as shown in the figure.

Add a simulation step to simulate the model using the defined doses. Click the (+) icon at the upper
left of the program and select Simulation. A Simulation step appears following the Generate
Samples step.

 Scan Dosing Regimens Using SimBiology Model Analyzer App

1-59

In the Model step, click States to Log. Select TO as the only state to log by clearing all other check
boxes.

On the Home tab, click Run. Once the simulation is complete, the program plots the results in Plot1,
which shows the time course of the model response (TO) given different dose amounts.

Tip: Plots are backed by data that are currently present in the app workspace. Plots are not
snapshots. When the data (either experimental data or simulation results) is removed or changed, the
plots are also updated according to the changes in the underlying data.

Define Maximum and Minimum Target Occupancy Thresholds

Investigate which dose amounts correspond to the TO responses that lie within the safety (TO = 0.85)
and efficacy (TO = 0.15) thresholds. One approach is to add two (horizontal) threshold lines to the TO
response plot.

1 SimBiology Apps

1-60

On the Home tab, in the Project section, click New Datasheet. In the Browser pane, expand the
Program1 folder, then expand the LastRun folder.

Drag results into the new datasheet. The datasheet now shows time and TO columns with their
corresponding values.

Point to the table and add an expression by clicking the (+) icon that appears at the top right.

Note: Anytime you add an expression to a datasheet containing results from LastRun, the expression
is added as an observable object to the model. In addition, the Postprocessing: Calculate
Observables step is also added to the corresponding program that generated the LastRun data.

Double-click Name1 and rename it EfficacyThreshold.

Double-click UNITS and enter dimensionless.

Double-click the Expression cell and enter 0.15. The expression fills the column with the same
constant value (0.15) for every time point.

Similarly, add another expression column named SafetyThreshold with the expression 0.85. Expand
results in the LastRun folder. The values from these two expression columns are scalar-valued
observables and now stored in the table named scalars under results. You can now plot the
maximum and minimum threshold lines on to the existing plot Plot1.

 Scan Dosing Regimens Using SimBiology Model Analyzer App

1-61

Click the Plot1 tab. Press Ctrl and select EfficacyThreshold and SafetyThreshold variables from
the Browser pane. Drag them into the plot. The plot now shows TO profiles along with the efficacy
and safety threshold lines.

1 SimBiology Apps

1-62

Visualize Target Occupancy Responses on Separate Axes

The plot shows that certain TO responses either exceed the safety threshold or dip below the efficacy
threshold. To better visualize this observation, you can customize the plot to see each dose amount
and the corresponding TO response on separate axes.

Click Plot Settings. For Plot YLabel, enter TO as the value. In the Axes Limits section, select Link
Y-Axis to show the same set of labels on the y-axis for all subplots.

Postprocess Simulation Results

In addition to visually inspecting each response plot on separate axes, you can add a postprocessing
step to query exactly which dose amounts stay within the thresholds.

Click the Program1 tab. In the Postprocessing: Calculate Observables step, double-click the first
empty cell in the Name column and enter: feasible_doses.

In the Expression column, enter max(TO) < 0.85 & min(TO) > 0.15. Set unit to dimensionless.

Note: Anytime you add an expression to the Observables table in the step, the expression is
automatically added as an observable object to the corresponding model.

 Scan Dosing Regimens Using SimBiology Model Analyzer App

1-63

Select feasible_doses as the only observable. Clear EfficacyThreshold and SafetyThreshold. To
evaluate feasible_doses, run just the simulation step by clicking the run button at the top of the
Simulation step.

Running the program step generates the following figure. You might see a warning about dimensional
analysis not being able to performed. For the purposes of this example, you can ignore the warning.

Display both the x-grid and y-grid by clicking both in the Grid section. The x-axis represents the dose
amounts and the y-axis represents whether the dose amount generates a TO response that stays
within the safety and efficacy thresholds (with a value of 1) or not (with a value of 0).

1 SimBiology Apps

1-64

The plot shows that dose amounts ranging from 50 to 180 nanomoles provide TO responses that lie
within the desired efficacy and safety thresholds.

See Also
simbiology | Observable | SimBiology Model Analyzer

More About
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156
• “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology

Model Analyzer” on page 1-135
• “Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer” on page

1-41

References
[1] Marger, D., and W. Jusko. 2001. General pharmacokinetic model for drugs exhibiting target-

mediated drug disposition. Journal of Pharmacokinetics and Pharmacodynamics. 28: 507–532.

 Scan Dosing Regimens Using SimBiology Model Analyzer App

1-65

Undo and Redo Model Changes in SimBiology
While a model is open in one (or both) of the SimBiology apps, you can undo and redo model building
and diagram configuration actions you take in the apps or at the command line. Model building
activities include changes to the model, variants, doses, and configset object (Simulation
Settings). Model diagram configuration actions include joining and splitting species blocks, and
making changes to block and line properties, such as to block position, block shape, and line color.

Regardless of whether you perform the actions in the apps or at the command line, you can undo
them only by using the Undo or Redo button in the SimBiology Model Builder app.

The action history for undo and redo is model-specific. Hence, if you have several models in a project,
each model maintains its own list of actions for undoing or redoing. Removing a model from a project
clears the action history for that model. Closing both apps clears all the action histories for all models
in the project.

Each time you undo or redo, the Model Builder app:

1 Shows a message in the status bar indicating what the last modification was.
2 Changes the focus as follows:

• If a model property or model diagram is changed, the Diagram tab is open and selected.
• If a variant property is changed, the Variants tab is open and selected.
• If a dose property is changed, the Doses tab is open and selected.
• If the change is in the model configset object (or Simulation Settings of the app), the app

shows only the message in the status bar and does not change the focus.

Model Changes in Model Analyzer App
You can undo model changes made within the Model Analyzer app. You still need to use the Undo and
Redo buttons in the Model Builder app. Specifically, you can undo the following actions originating
from the Model Analyzer app:

• Adding or modifying observables in the Postprocessing: Calculate Observables step
• Committing slider values for quantities and doses from the Explorer to the model
• Creating variants from the slider, estimated parameter values, or simulation data

Undo Deletion of Model Components
You can undo and redo the deletion of model components (such as species or parameters) of a model
but the deletion of a model object is not supported for undoing and redoing. You can delete a model
component by using the Delete key or context menu option in the Model Builder app or by calling
the delete function at the command line.

At the command line, if you have a variable referencing a model component that you have deleted,
after undoing the deletion, you need to do an additional step to retrieve the model component using
dot indexing, get, or sbioselect. This step lets you continue using the variable to update the
properties of the model component.

1 SimBiology Apps

1-66

To illustrate this point, consider a model m1 open in the Model Builder app and exported to the
MATLAB workspace. You have a variable s1 referencing a model species and you use s1 to change the
species properties, such as its value.

s1 = sbioselect(m1,'Type','species','Name','s1');
s1.Value = 10;
delete(s1);

After the delete call, s1 is displayed as a handle to the deleted species.

>> s1

s1 =

 handle to deleted Species

Next, you click Undo in the Model Builder app. The species shows up again in the app. However, at
the command line, s1 still displays as a handle to the deleted species. You cannot use s1 to change the
species properties as before. To retrieve the species, you need to use get, dot indexing, or
sbioselect.

% Retrieve the species using dot indexing
s1 = m1.Species(1);
% Or retrieve using sbioselect
s1 = sbioselect(m1,'Type','species','Name','s1');
% Continue using the variable to change the object properties
s1.Units = 'microgram/milliliter';

Note If you delete the nth model component in the model and undo the deletion, the model
component is restored as the nth component.

Actions Not Supported for Undoing or Redoing
You cannot undo or redo the following actions.

• Removal of a model from a project. You can manually add the model back by importing it from the
MATLAB workspace into the app, but you cannot undo or redo changes prior to the removal of the
model from the project.

• Deletion of a model.
• Configurations for unit, unit prefix, and abstract kinetic law.
• App-specific configurations, such as Preferences.
• Diagram configurations not specific to the model, such as zoom level or panning.

See Also
simbio.diagram.getBlock | simbio.diagram.setBlock | simbio.diagram.getLine |
simbio.diagram.setLine | simbio.diagram.splitBlock | simbio.diagram.joinBlock |
sbioselect | delete | Configset | Variant object | ScheduleDose object | RepeatDose
object | SimBiology Model Builder | SimBiology Model Analyzer | Model | removedose (model) |
removevariant (model)

 Undo and Redo Model Changes in SimBiology

1-67

Generate SimBiology Model Report
You can generate a customizable report that summarizes various details of a SimBiology model, such
as a model diagram, quantities and their corresponding values, model equations and expressions,
doses, and variants.

On the Home tab of the SimBiology Model Builder app, select Export > Generate Model Report.

Next, in the SimBiology Model Export dialog, you can customize which model information to
include in the report. Click OK and the app generates an HTML file as a report.

To export just the model diagram, select Export > Export Diagram. You can select the file format
and image size.

The app saves the customization options you chose in the project so that they are available across
MATLAB sessions for the same model. To configure the default settings of the dialog, go to
Preferences > Report Generation.

See Also
SimBiology Model Builder | SimBiology Model Analyzer

More About
• “Generate Report for SimBiology Program Results” on page 1-69

1 SimBiology Apps

1-68

Generate Report for SimBiology Program Results
For analysis results generated by each program in the SimBiology Model Analyzer, you can generate
a customizable report that contains the program setups, results, plots, and information about the
model and data used by the program.

To include the information about the model and data used by a program in the report, you need to
save such information prior to running a program. Select the corresponding save option in the Model
and Data sections of the program as shown next. These options also ensure that the report reflects
the model and data at the time the results were generated and that any subsequent modifications to
the model or data are not included in the report.

Tip Saving the model and data information increases the size of the project. You can check what
information have been saved by opening the Project tab, which shows a summary of saved models
and data and lets you remove them. For details, see “Check Saved Models and Data of Project” on
page 1-70.

After a program run, in the Browser pane, right-click the LastRun folder (or any other saved folder).
Select Generate Report.

 Generate Report for SimBiology Program Results

1-69

Next, in the Generate Report dialog, you can customize which information to include in the report.
Click OK and the app generates an HTML file as a report. The app saves the customization options
you chose in the project so that they are available across MATLAB sessions for the same program
result. To configure the default settings of the dialog, go to Preferences > Report Generation.

Check Saved Models and Data of Project
The Project tab has a summary of saved models, data, and the corresponding size information for
each program. To open the tab, do one of the following depending on whether your Browser is in the
Project view (default) or Workspace view.

• In the Browser, under the Project tab, double-click the blue Project folder to open the Project
tab with the detailed information.

1 SimBiology Apps

1-70

• In the Browser, under the Documents tab, double-click the blue Project folder.

The Project tab provides a summary of project content, corresponding sizes, and tables of saved
model and data. To remove any of the saved models or data, right-click the corresponding row under
Cached Models or Cached Data and select Delete. Once you delete, the app will not be able to
include the corresponding model or data information in future reports.

 Generate Report for SimBiology Program Results

1-71

See Also
SimBiology Model Builder | SimBiology Model Analyzer

More About
• “Generate SimBiology Model Report” on page 1-68

1 SimBiology Apps

1-72

Percentile Plot
In the SimBiology Model Analyzer app, you can visualize time course data and its corresponding
statistics using a percentile plot. The plot shows curves of summary statistics (percentiles or mean
and standard deviation) over time. You can also view the raw data along with summary statistics.

You can choose between two methods to aggregate time-varying data and compute summary
statistics. For details, see “Interpolation Method” on page 1-76 and “Time Point Binning Method” on
page 1-76.

To show a percentile plot, select a data source that contains time courses in the Browser pane, then
click percentile in the Plot section on the Home tab.

Display Options
Each response in a percentile plot has three display options, which you can configure.

• Percentiles — Shows the percentile curves. By default, the plot shows 5th and 95th percentiles.
Scan programs with more than 40 samples use percentile plots as default plots. You can change
this default cutoff in Preferences > Programs > Plots. This is the default display type for
simulation data.

• Mean — Shows the mean and standard deviation of response data at each time point. This is the
default display type for experimental data.

• Raw Data — Shows the original response data points at each time point.

Percentiles Options
The Percentiles section provides the following options to configure the percentile curves.

 Percentile Plot

1-73

Option Description
Show percentiles (%) Percentiles to plot. Enter one or more nonnegative numbers

between 0 and 100 or any MATLAB expression that results in a
nonnegative number or vector of values between 0 and 100 in
ascending order.

Show median Logical flag to show or hide the median line in the plot.
Display style Display format to show lines, shading, or both.

Mean Options
The Mean section provides the following options to configure the plots.

Option Description
Show mean Logical flag to show the mean response value at each time point.

The plot uses the marker o to represent mean values.
Show standard deviation Logical flag to show ±1 standard deviation of the response value at

each time point. The plot shows error bars to indicate the standard
deviations.

Show min/max Logical flag to show the derived minimum and maximum response
values at each time point.

To calculate these values, the app first interpolates all the time
courses to a common time vector and then calculates the statistics,
such as min, max, mean, and standard deviation, at each time
point on the common time vector across all interpolated time
courses. Hence the interpolated maximum and minimum values at
a given time point shown in the percentile plot may not match
those values of the raw data exactly.

The plot uses the marker * to indicate the minimum and maximum
values.

Display style Display format to show lines, markers, or both.

Data Options
For each data source in the percentile plot, you can select the data aggregation method and related
options in the corresponding data section of the Property Editor pane. The app provides two data
aggregation methods: interpolation and binning. It is recommended to use interpolation for
densely recorded data, such as simulated model responses. Use time point binning for sparsely
recorded data, such as experimental data.

If you are plotting multiple responses or slicing the data by a covariate or parameter, the app
performs data aggregation independently for each response or data slice. Different responses can
have different automatic interpolation or binning results.

Each data aggregation method has its own set of options. You can change these options for each data
source independently from other data sources.

1 SimBiology Apps

1-74

Interpolation

If you select interpolation as the data aggregation method, the app interpolates all time courses
onto a common time vector. The summary statistics are calculated on the interpolated data at every
time point in the common time vector. For details, see “Interpolation Method” on page 1-76. You can
also specify a custom common time vector and the interpolation method used for data aggregation.
The next table summarizes the available options.

Option Description
Time vector Common time vector onto which all time courses are interpolated

before calculating the summary statistics.

The default option auto option uses a common time vector which
is a vector of equidistant points between the minimum and
maximum time points specified in the data.

Alternatively, specify the time vector as a sequence of numbers or
MATLAB expression that evaluates to a vector of strictly increasing
numbers greater than or equal to zero.

Interpolation method Method used to interpolate time courses onto a common time
vector. The app calls interp1 with the specified “method” (default
is linear). For simulation data, the app treats multiple response
values at the same time point as a discontinuity and performs
piecewise interpolation between such time points. For
experimental data, the app treats these response values at the
same time point as repeated measurements and uses the mean of
all measurements at the same time point.

Show raw data fraction (%) Percentage of raw (original) time courses or data shown in the
plot. Enter a nonnegative integer between 0 and 100.

For details, see “Interpolation Method” on page 1-76.

Binning

If you select binning as the data aggregation method, the app clusters the data points into different
bins based on their time values. It calculates summary statistics for data within each bin and plots the
statistics at the centroid of each bin, which is the mean of time values of data within that bin. For
details, see “Time Point Binning Method” on page 1-76. The next table summarizes the available
options.

 Percentile Plot

1-75

Option Description
Binning method • auto — The app scans over several possible numbers of bins

and calculates the kmeans clustering solution for each of these
values. It then determines the optimal numbers of bins by
selecting the solution that minimizes the “Davies-Bouldin
Criterion” (Statistics and Machine Learning Toolbox).

• specify number of bins — As an alternative to auto, you
can specify a custom number of bins to use for the k-means
algorithm.

• specify bin edges — Specify the exact edges or boundaries
for each bin to avoid the kmeans clustering.

Show bin edges Logical flag to display vertical lines that indicate the bin
boundaries.

Show raw data fraction (%) Percentage of raw (original) time courses or data shown in the
plot. Enter an integer between 0 and 100.

For details, see “Time Point Binning Method” on page 1-76.

Interpolation Method
When you are using interpolation as the data aggregation method, the app calculates summary
statistics using the following steps.

1 The app calculates a common time vector as a vector of equidistant time points between the
minimum and maximum time points in the data across all the groups (or runs) in each data slice
or obtains the time vector by using the code specified in the Time vector option.

2 It then interpolates the response time course for each group or run onto the common time vector
using interp1 with the method specified in the Interpolation method option. For simulation
data, the app treats multiple response values at the same time point as a discontinuity and
performs piecewise interpolation between such time points. For experimental data, the app treats
data at the same time point as repeated measurements and uses the mean of all measurements at
those time points.

3 The app then calculates the corresponding statistics, such as percentiles, mean, max, standard
deviation, for each time point in the common time vector across all groups for that time point in
the interpolated time courses.

Note Because of interpolation, calculated maximum and minimum values might be different than
those values from the original data.

4 It then generates a plot using the calculated statistics against the common time vector according
to the Display style option.

Time Point Binning Method
When you are using binning as the data aggregation method, the app calculates summary statistics
using the following steps.

1 The app partitions the data into n bins using only the time values for each data point. It does not
consider any similarities in measurement values. By default, the data is binned using the kmeans

1 SimBiology Apps

1-76

algorithm, and you can also specify a custom number of bins or specific bin edges (or
boundaries).

2 The app calculates summary statistics for each bin.
3 It obtains the common time vector by calculating the mean time value for each bin.
4 The app then generates a plot using the computed statistics from step 2 against the mean time

value for each bin from step 3 according to the Display style option.

See Also
SimBiology Model Analyzer

Related Examples
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156

 Percentile Plot

1-77

View and Run Program Code Generated by SimBiology Model
Analyzer

You can generate MATLAB® code for analysis programs in SimBiology® Model Analyzer and run the
code at the command line. The following example shows how to generate code for a simulation
program, export the necessary inputs for the program to the MATLAB workspace, and run the code.

Open Bioavailability Project

Enter the following command to open the Bioavailability.sbproj file that contains a simulation
program. For details about the model, see “Estimate the Bioavailability of a Drug” on page 4-79.

openExample('simbio/RunProgramSimBiologyModelAnalyzerExample')

Generate Code for Simulation Program

In the Browser panel, double-click Simulation to open the simulation program. Note that your panel
can look slightly different than the screen shot below if you are in the Workspace view of the browser.

The program shows the details about the simulation, such as the model, the dose being used, and
simulation stop time.

In the Browser panel, right-click Simulation and select View Program Code.

1 SimBiology Apps

1-78

It opens an untitled MATLAB function file containing the code for the program. Save the file to a local
directory in your computer using the default file name (runprogram.m).

 View and Run Program Code Generated by SimBiology Model Analyzer

1-79

Export Input Arguments

Before you can run the generated code, you need to export the input arguments needed for the
program code to your MATLAB workspace.

In the Browser panel, right-click Simulation and select Export Arguments for Program Code.

Use the variable name args for the program arguments.

Run Program Code and Plot Results

In the MATLAB workspace, go to the directory where you saved runprogram.m. One way is to right-
click the file name in the MATLAB Editor and select Change Current Folder to.

1 SimBiology Apps

1-80

Run the generated code.

programResults = runprogram(args{:})

programResults =

 struct with fields:

 input: [1×1 struct]
 output: [1×1 struct]

The returned output programResults is a structure with two fields: input and output. The input
contains a structure with the fields — model, cs (simulation settings), variants, and doses — that were
used to run the program. The output contains a structure with the simulation results.

Plot the simulation results.

sbioplot(programResults.output.results)

 View and Run Program Code Generated by SimBiology Model Analyzer

1-81

See Also
SimBiology Model Analyzer

Related Examples
• “Estimate the Bioavailability of a Drug” on page 4-79

1 SimBiology Apps

1-82

Simulate Groups Using Doses and Variants from Data Set

The Group Simulation program in the SimBiology Model Analyzer app lets you simulate various
groups, such as patients, from your data set. If the data set also has dosing information and group-
specific variants, the program lets you apply them to each group during simulation. It also lets you
reuse the same program setup and perform parameter estimation. The following steps illustrate how
to simulate the tumor weight of various patients and reuse the same program configuration to
estimate some model parameters.

Load Tumor Growth Model and Data

Enter the following command to load the tumor growth model and data in SimBiology Model
Analyzer.

openExample('simbio/GroupSimulationSimBiologyModelAnalyzerExample')

In the Browser pane (if it is in the default Project View), expand the Data1 folder and double-click
Datasheet1 to open the data set.

If your browser is in the Workspace View, click Documents and double-click Datasheet1 instead.

 Simulate Groups Using Doses and Variants from Data Set

1-83

For some of the columns, the app automatically classifies them as follows:

• The ID column as group (a grouping variable).
• The Time column as independent (an independent variable).
• The Dose column as dose1 (a dosing variable). If the data has more than one dose columns, you

can classify them as dose2, dose3, and so on.

For the measured response data columns such as CentralConc, you need to manually classify them as
the dependent variables. Double-click Classification under CentralConc. Select dependent. Repeat
the same process for PeripheralConc and TumorWeight.

Tip: The data set also contains two variant columns k1 and Cl_Central, which contain group-specific
values for the parameters k1 and Cl_Central. Optionally, you can classify them as covariate.

Set up Group Simulation Program Using Doses and Variants from Data Set

Select Program > Group Simulation to open a group simulation program. The Model and Data
steps of the program have been prepopulated with Tumor Growth Model and Data1, respectively.

In the Data Map table, clear CentralConc and PeripheralConc. Keep TumorWeight selected.

Double-click the Component cell next to TumorWeight and enter tumor. Select [Tumor Growth
Model].tumor_weight from the drop down menu.

1 SimBiology Apps

1-84

Apply the doses from the data set. In the dose from data row, map the Dose column to Central.Drug
to indicate that the Drug species in the Central compartment is being dosed.

To apply group-specific variants from the data set, click the variant button . A variant
from data row appears. Double-click the cell named Column and enter the name of the variant
column from the data set to use: k1. In the next cell, enter the corresponding component name, which
is also k1.

Similarly, map the Cl_Central column.

The Variant and Dose Setup table is automatically updated to indicate that the variants and doses
from the data are now being applied to the model.

 Simulate Groups Using Doses and Variants from Data Set

1-85

Run Group Simulation

In the Simulation step, you can select whether to include the time points from the data set only,
include solver time points only, or include both during model simulation. You must select at least one
option.

• Time points contain data times within each group — Include the exact time points for each
group from data, such as the times listed in the Time column of the input data set.

• Time points contain solver time points — Include time points used by the solver during model
simulation. This option lets you define a custom stop time or pick a maximum stop time from data.
There are three choices to pick from.

a. Simulate to maximum time within each group — Use the group-specific maximum time. Each
group simulates to its own stop time.

b. Simulate to maximum time across all groups — Use a single stop time across all the groups.
The app checks all the stop times from the groups and picks the maximum.

c. Stop Time — Use a custom stop time. If the last time point of a group from the data set is greater
than the specified stop time, the program ignores the stop time and simulates until that last time
point for that group.

You can also add sliders to vary model quantity values in the Explorer panel, and the Slider
Summary section displays each of those quantities. For now, leave it empty.

To check other simulation settings, such as solver type and absolute tolerance, point the mouse to the
top right and click the option menu button. For the purposes of this example, use the default
simulation options that are already selected as shown in the following figure.

1 SimBiology Apps

1-86

Click the Run button of the step to simulate the groups.

The program opens the Plot1 tab to show the simulated tumor weight response for each group as
shown next. The solid lines are the simulation results while the dotted lines with circle markers
represent the experimental data.

 Simulate Groups Using Doses and Variants from Data Set

1-87

Estimate Parameters Using Same Setup as Group Simulation

The program lets you fit model parameters to data using the same setup you use for group simulation
without having to reconfigure or create a separate Fit Data program.

Click the Program1 tab. At the top of the Simulation step, select Simulation > Fit.

1 SimBiology Apps

1-88

Click Yes if a dialog asks whether to continue. The step changes to the Fit step.

Tip: Switching steps here removes the results of the step that you just ran. To avoid the results from
being removed, you can save the results first before switching. In the Browser panel, expand
Program1. Right-click LastRun and select Save Data.

In the Estimated Parameters table, double-click the empty row and enter L0. Similarly, enter L1 as
shown in the following figure.

At the bottom of the table, select Pooled Fit to estimate one set of parameter values for all groups.

Leave the rest of the settings as default. Note that the default estimation method is lsqnonlin if you
have Optimization Toolbox™. If you do not, the app uses fminsearch.

Click the Run button of the Fit step to estimate parameters. The program next opens several tabs for
the fit results and plots. For example, Datasheet2 contains the pooled parameter estimates and other

 Simulate Groups Using Doses and Variants from Data Set

1-89

fit statistics, such as AIC. For a more detailed fitting workflow example, see “Calculate NCA
Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on page 1-156.

Perform Group Simulation Using Parameter Estimates

You can switch back to the simulation step and simulate the groups using the pooled parameter
estimates without applying the group-specific variants this time.

Click the Program1 tab. At the top of the Fit step, select Fit > Simulation. Click Yes if a dialog shows
up to confirm. The step changes to Simulation.

In the Slider Summary section of the step, point the mouse to the top right, click the option menu
button, and select Update Sliders to Match Fit Estimates.

The table now lists L0 and L1 parameters. The Value column contains the estimated values
transferred from the previous Fit step.

Expand the Explorer panel. It now contains sliders for L0 and L1. The current value for each
parameter is displayed on the top right of the slider bar as shown next.

1 SimBiology Apps

1-90

In the Data Map table, clear the variant rows for k1 and Cl_Central.

Run the Simulation step. The program simulates the groups using the parameter estimates without
applying group-specific variants and opens Plot1.

 Simulate Groups Using Doses and Variants from Data Set

1-91

You can also explore the model behavior by moving the sliders in the Explorer panel to different
parameter values or applying just some of the group-specific variants or doses.

Tip: Each time you move a slider, the program automatically simulates by default. You can change
this default behavior by going to Preferences > Programs > Run program when slider changes
value. Set the value to false. Then the program reruns only when you hit the Run button.

See Also
SimBiology Model Analyzer

More About
• “Create Data File with SimBiology Definitions” on page 5-5
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156
• “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology

Model Analyzer” on page 1-135

1 SimBiology Apps

1-92

• “Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer” on page
1-41

• “Scan Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58

 Simulate Groups Using Doses and Variants from Data Set

1-93

Find Important Parameters for Receptor Occupancy with
Global Sensitivity Analysis Using SimBiology Model Analyzer

This example shows how to identify important parameters in a target-mediated drug disposition
(TMDD) model [1] using the Global Sensitivity Analysis (GSA) program in SimBiology Model
Analyzer. In this example, you compute Sobol indices and elementary effects, and also perform
multiparametric GSA (MPGSA) to find model parameters that the target or receptor occupancy (TO)
is sensitive to. For more information on supported sensitivity analysis features, see “Sensitivity
Analysis in SimBiology” on page 4-19. The GSA program requires Statistics and Machine Learning
Toolbox™.

Target-Mediated Drug Disposition (TMDD) Model

Target-mediated drug disposition (TMDD) is a phenomenon in which a drug binds with high affinity to
its pharmacologic target site, such as a receptor or enzyme, in an interaction that is reflected in the
pharmacokinetic characteristics of the drug.

This example uses a modified TMDD model based on the model used by Mager and Jusko [1] with a
minor adjustment. The authors proposed a generic TMDD model that accounted for saturable drug-
target binding and target (or receptor) mediated elimination. Drug in the Plasma reversibly binds
with the unbound Target to form the drug-target Complex. kon and koff are the association and
dissociation rate constants, respectively. Clearance of free Drug and Complex from the Plasma is
described by first-order processes with rate constants — kel and km, respectively. Free target
turnover is described by the zero-order synthesis rate ksyn and a first-order elimination (the rate
constant, kdeg). Variants of the TMDD model have been since used to characterize the
pharmacokinetics of numerous drugs.

One adjustment made to the model presented by Mager and Jusko, is as follows.

Target occupancy (TO) is defined as TO = Complex/(Target + Complex), where TO is a parameter and
Complex and Target are species.

1 SimBiology Apps

1-94

Load TMDD Model

Enter the following command. SimBIology Model Analyzer opens. In the Browser pane, the Models
folder contains the TMDD model.

openExample('simbio/GSASimBiologyModelAnalyzerExample')

Perform Parameter Scan to Assess Model Behavior

Before performing the global sensitivity analysis on the model, run a parameter scan to get a general
idea of how the model response (TO) behaves with respect to parameters of interest. For this
example, scan the following model parameters: km, kdeg, and kon.

Select Program > Run Scan. Go to the Generate Samples step of the program. Disable auto plot
generation by clicking the plot icon.

In the Parameter Set table, double-click the empty cell in the Component Name column. Enter km.
Change Type, Spacing, Min, Max, and # Of Steps options as shown next.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-95

Set up kdeg and kon similarly to km, except use 0.5 as the Max value.

Change Parameter Combination to cartesian. For details about the combination methods, see
“Combine Simulation Scenarios in SimBiology” on page 3-24.

1 SimBiology Apps

1-96

Click Simulation Settings on the Home tab of the app. In the Simulation Time section, change
StopTime to 2. In the States To Log section, click Clear All. Then select TO only. Click Close.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-97

Click Run on the Home tab. The program then opens the Plot1 tab. Click Time in the Property
Editor pane on the right to see the time courses of the model response (TO) with respect to different
parameter combinations of km, kdeg, and kon.

1 SimBiology Apps

1-98

Categorize the plot to make it easier to identify the sources of sensitivity. In the Property Editor
pane, under Visual Channels, change the style of km, kdeg, and kon as in the following figure. You
need to also change the style of Scenarios from Color to empty.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-99

Click Plot Settings and click Link Y-Axis to use the same Y-axis limit for all plots and to make the
plots more comparable. The plot indicates that TO is sensitive to changes in kon and km values. It
seems to be less sensitive to variations in kdeg. Optionally, you can also scan one parameter at a time
by disabling and enabling the parameters in the Parameter Set table to see the effect of each
parameter.

1 SimBiology Apps

1-100

Follow the next steps to perform GSA on these parameters to get more insights into relative
contributions of individual parameters that contribute most to the overall model behavior.

Compute Sobol Indices

The section shows you how to perform GSA by computing the first-order and total-order “Sobol
Indices” on page 4-19 of model parameters using the Global Sensitivity Analysis program.

Select Program > Global Sensitivity Analysis. By default, the program uses Sobol indices as a GSA
analysis method.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-101

Define the model parameters of interest in the Sensitivity Inputs table. Double-click the empty cell
under Component Name column and enter km.

By default, the program uses the uniform distribution to sample parameter values. To see a list of
supported distributions, click Uniform. For this example, use the uniform distribution and set the
Lower and Upper bounds to 1e-3 and 0.1, respectively.

Similarly, set up kdeg and kon as sensitivity inputs. Use 0.5 as the Upper value.

In Sampling Options, use the default values.

Tip: Sampling Types

SimBiology provides the following sampling methods.

• sobol — Use the low-discrepancy Sobol sequence to generate samples. For details, see sobolset
(Statistics and Machine Learning Toolbox).

• halton — Use the low-discrepancy Halton sequence to generate samples. For details, see
haltonset (Statistics and Machine Learning Toolbox).

1 SimBiology Apps

1-102

• latin hypercube — Use low-discrepancy Latin hypercube samples. If UseLhsDesign is also set to
true, SimBiology uses lhsdesign (Statistics and Machine Learning Toolbox). Otherwise, it uses a
nonconfigurable Latin hypercube sampler that is different from lhsdesign.

• random — Use randomly distributed samples.

In the Sensitivity Outputs table, enter TO.

Click the Run button of the Sobol Indices step.

The status bar at the bottom of the program provides the run progress and the number of runs that
have been finished.

Tip: Total Number of Runs

The total number of runs required is different depending on the number of sensitivity inputs, number
of samples, and the GSA analysis method.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-103

• For Sobol Indices, the total number of runs is: (number of sensitivity inputs + 2) ✕ number of
samples.

• For Elementary Effects, the total number of runs is: (number of sensitivity inputs + 1) ✕ number
of samples.

• For MPGSA, the total number of runs is equal to the number of samples.

The program opens the Datasheet1 and Plot2 tabs. By default, Plot2 shows the GSA Time plot of
the first-order and total-order Sobol indices for each input parameter.

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter. Based on the first-order and total-order plots, both km and
kon seem to be the sensitive parameters to TO. km seems to become more sensitive at later time
points while kon is more sensitive before time = 1. The fraction of unexplained variance plot is a flat
line, which means that there is almost no unexplained variance and most variances are accounted for
in the first-order and total-order plots.

1 SimBiology Apps

1-104

Tip: Unexplained Variance and Total Variance

The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol indices), and
the total variance is calculated using var(response), where response is the model response at every
time point.

Tip: Bar Plot

You can also see the bar plot of the Sobol indices by clicking Bar in Plot Settings. The color shading
of each bar is a histogram representing values at different times. Darker colors mean that those
values occur more often over the whole time course. This plot is especially useful to visualize the
Sobol indices of scalar responses or observables.

Click the Datasheet1 tab to view the tables of GSA program results. The first table shows the time
dependent responses of Sobol indices. In the second table, you can find out if any model simulation
failed during the computation by checking the Number of Successful Samples row. In this
example, there were no failed simulations as all 1000 samples were successfully simulated.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-105

Compute Elementary Effects

The following steps show you how to reuse the same program setup in the previous step to compute
the means and standard deviations of the “Elementary Effects” on page 4-20 of input parameters
with respect to the model response TO.

1 SimBiology Apps

1-106

Given that computing GSA results is often computationally expensive, save the previous Sobol indices
results before switching over to elementary effects. In the Browser panel, expand Program2. Right-
click LastRun and select Save Data. Enter the name of the data as sobol_results. Click OK.

Tip: Check Project Size

As you save more GSA results, the project size increases. To check the sizes of results from each
program and other file contents, open the Project tab by double-clicking the Project icon in the
Browser. For details, see “Check Saved Models and Data of Project” on page 1-70.

Go back to the Program2 tab. In the Sobol Indices step, under the Analysis section, select Sobol
indices > Elementary effects.

The Sensitivity Inputs table is automatically set up with the same set of parameters and their
corresponding upper and lower bounds as the previous step.

TO is the only sensitivity output. Use the default values for Grid Settings. Click the info icon to
display additional information for each option. For details about how the algorithm uses these
settings, see “Elementary Effects for Global Sensitivity Analysis”.

Use the default value (AbsoluteEffects = true) for the Output Settings as well. The program uses
the absolute elementary effects by default because the elementary effects can average out when you
calculate the mean otherwise.

Click the Run button of the Elementary Effects step. The program then opens the Datasheet2 and
Plot3 tabs. By default, Plot3 shows the GSA Time plot of the mean and standard deviation of
elementary effects for each input parameter.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-107

The mean of elementary effects explains whether variations in input parameter values have any effect
on the model response TO. The mean plots indicate km becomes more sensitive at later time points
and kon is more sensitive before time = 0.5. This trend is similar to the Sobol GSA results as well.
kdeg also shows some sensitivity but might be insignificant because mean values are much smaller
than those of km and kon. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain. For instance, the km standard deviation plot
indicates larger deviations for larger parameter values in the later stage (time > 0.5).

Tip: Param Grid Plot

Click Param Grid in Plot Settings to visualize the parameter grids and samples used to compute the
elementary effects. The grid plot provides a visual of if there was a good coverage over the parameter
domain. For this example, there was good coverage as shown in the following figure. For details on
how the grid points are selected, see “Elementary Effects for Global Sensitivity Analysis”.

1 SimBiology Apps

1-108

Tip: Bar Plot

You can also see the bar plot of the means and standard deviations of elementary effects by clicking
Bar in Plot Settings. The color shading of each bar is a histogram representing values at different
times. Darker colors mean that those values occur more often over the whole time course.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-109

Click the Datasheet2 tab to view the tables of GSA program results. The first table shows the time
dependent responses of elementary effects. In the second table, you can find out if any model
simulation failed during the computation by checking the Number of Successful Samples row. In
this example, there were no failed simulations as all 1000 samples were successfully simulated.

Perform Multiparametric GSA (MPGSA)

The following steps show you how to reuse the same program set up in the previous step to perform
“Multiparametric GSA (MPGSA)” on page 4-19 to answer the question of whether the input
parameters have any effects on the exposure (area under the curve of the TO profile) threshold for
the target occupancy.

Save the previous elementary effects GSA results before switching over to MPGSA. In the Browser
panel, expand Program2. Right-click LastRun and select Save Data. Enter the name of the data as
ee_results. Click OK.

Click the Program2 tab. In the Elementary Effects step, under the Analysis section, select MPGSA
(multi-parametric global sensitivity analysis).

1 SimBiology Apps

1-110

The stop time is set to 2 and the Sensitivity Inputs table is automatically set up with the same
number of samples (1000) and the same set of parameters, with their corresponding upper and lower
bounds as the previous GSA analysis.

Use default settings for Sampling Options and Correlation Matrix.

In the Classifiers table, double-click the empty cell in the Expression column and enter:
trapz(time,TO) <= 0.5. This expression defines an exposure (area under the curve of the TO profile)
threshold for the target occupancy. Use the default value (0.05) for Significance Level.

Click the Run button of the MPGSA step. You might see a warning about dimensional analysis not
being able to perform. For the purposes of this example, you can ignore the warning.

Tip: The GSA program enables you to perform MPGSA as a standalone analysis or as an added step
following the Sobol Indices or Elementary Effects analysis. A benefit of adding MPGSA as a
subsequent step is that it can reuse the simulation results from the previous step if possible and saves
computation time. To add MPGSA as a subsequent step, click the green plus icon at the top of the
GSA program and click MPGSA. The MPGSA subsequent step reuses the simulation results whenever
the model response (such as TO) defined in the classifier was used as the sensitivity output in the
previous step.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-111

The program then opens Datasheet3 with GSA results and Plot4 showing the bar plot of the MPGSA
results for each input parameter. To see the empirical cumulative distribution functions (eCDFs)
curves of the results, click eCDF in Plot Settings.

For each parameter, two curves show eCDFs of the accepted and rejected samples. Except for km, the
other two parameters do not seem to show a significance difference between the two curves. These
plots qualitatively show that km and kon affect the classification of samples while kdeg does not.
Quantitatively, the maximum absolute distance between two eCDFs curves is called the Kolmogorov-
Smirnov (K-S) distance. The km plot shows a large K-S distance.

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two

1 SimBiology Apps

1-112

distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples.

To assess the significance of the K-S statistic rejecting the null-hypothesis, you can examine the p-
values by looking at the bar plot. Click Bar in the Plot Settings.

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0.

The p-values for km and kon are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. The p-value of
kdeg is larger than the significance level supporting the null hypothesis that the accepted and
rejected samples come from the same distribution. To conclude, the classification of the samples is
sensitive to km and kon, not kdeg. These results are in agreement with the previous GSA results
which identify km and kon as sensitive parameters but not kdeg.

To see the exact p-value corresponding to each parameter, click Datasheet3.

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-113

Tip: Histogram of Accepted and Rejected Samples

You can also check the histogram of accepted and rejected samples to see if there are any trends.
Click the Plot4 tab. Click Histogram in the Plot Settings. The histogram of km shows that km is
primarily responsible for the sensitivity of the AUC being less than the threshold 0.5.

1 SimBiology Apps

1-114

References
[1] Marger, D., and W. Jusko. 2001. General pharmacokinetic model for drugs exhibiting target-

mediated drug disposition. Journal of Pharmacokinetics and Pharmacodynamics. 28: 507–532.

See Also
SimBiology Model Analyzer | sbiosobol | sbioelementaryeffects | sbiompgsa | ecdf |
kstest2

More About
• “Sensitivity Analysis in SimBiology” on page 4-19

 Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer

1-115

View and Run Generated Code by SimBiology Model Builder

You can generate MATLAB® code for modeling actions that you perform in the SimBiology Model
Builder app using the Code Capture tool. The tool is useful to learn how to build SimBiology models
programmatically or to automate common model building actions at the command line. The
generated code shows, for example, how to add model components, configure block properties in the
diagram, and change simulation settings programmatically. The following example shows you how to
generate code to modify model parameter values and change diagram block properties, save the code
as a function file, and run it at the command line.

Load Bioavailability Model

Enter the following command to load the bioavailability model in SimBiology Model Buidler.

openExample('simbio/CodeCaptureSimBiologyModelBuilderExample')

Generate Code for Updating Model Components and Graphical Block Properties

The next sets of instructions show you how to perform the following modeling actions and generate
equivalent MATLAB code:

• Changing values of some model parameters
• Adding a new compartment
• Changing the color of all species blocks

Open Code Capture Tool

On the Home tab of the app, select Tools > Code Capture. The app shows the generated code in the
Code tab of the Model Tools panel for your modeling actions.

1 SimBiology Apps

1-116

Alternatively, you can expand the Model Tools panel and click Code.

Tip:

• By default, the Code Capture tool continuously generates code for most modeling actions that
you do in the app. Specifically, it generates code for model component (object) changes and
diagram (graphical) changes. You can choose to generate code for object changes only, diagram

 View and Run Generated Code by SimBiology Model Builder

1-117

changes only, both, or neither (the tool is turned off when you select neither option).

• To capture code for just the actions that you are interested in learning or automating, you can first
remove any existing code right before performing those actions by clicking the Clear button of the
tool. Alternatively, you can turn off the tool and turn it back on right before the actions.

Change Model Parameter Values

In the Browser panel, scroll down to the Parameters table. Change the values of parameters F
(bioavailability of a drug) and ka (total rate of elimination) to 0.5 and 0.7, respectively.

The Code Capture tool shows the following code.

% Query object.
p1 = sbioselect(m1, 'Type', 'parameter', 'Name', 'F');
% Configure SimBiology component property.
p1.Value = 0.5;
% Query object.
p2 = sbioselect(m1, 'Type', 'parameter', 'Name', 'ka');
% Configure SimBiology component property.
p2.Value = 0.7;

1 SimBiology Apps

1-118

Add New Compartment

Drag and drop a compartment block into the diagram.

Double-click compartment_1 and rename to Brain. Drag and drop a species block into the Brain
compartment.

Double-click species_1 and rename to Drug_Brain.

The Code Capture tool shows the following code.

% Add compartment to model.
c1 = addcompartment(m1, 'compartment_1');
% Rename SimBiology component.
rename(c1, 'Brain');
% Add species to compartment.
s1 = addspecies(c1, 'species_1');
% Rename SimBiology component.
rename(s1, 'Drug_Brain');

Change Color of Species Block

Click the species Drug_Brain in the diagram. In the Property Editor pane, under the Appearance
section, click Face Color and select the green color. Click OK.

 View and Run Generated Code by SimBiology Model Builder

1-119

The Code Capture tool shows the following code.

% Configure SimBiology block property.
simbio.diagram.setBlock(s1, 'FaceColor', [0, 1, 0]);

Tip: For details about this function, see simbio.diagram.setBlock.

Save Generated Code

Click Save in the toolbar of the Code Capture tool.

1 SimBiology Apps

1-120

The app then creates an untitled function file in the MATLAB editor with the generated code in it.
Click Save and save the file to your local folder using runcode.m as the file name.

Modify Generated Code

For the purposes of this example, modify the code for the following changes:

• Change the parameter values of F and ka to different values.
• Add a new compartment called Liver with a species in it.
• Change the color of all (instead of one) species in the model to green.

In the runcode.m file, change the values of p1 (parameter F) and p2 (parameter ka).

p1.Value = 0.4;
p2.Value = 0.6;

To add a new compartment called Liver with a species named Drug_Liver, update two lines of code
to rename the compartment c1 and species s1 as follows.

rename(c1, 'Liver');
rename(s1, 'Drug_Liver');

To change the color of all species to the green color, comment out the setBlock line of code and add
two new lines of code as follows.

% simbio.diagram.setBlock(s1, 'FaceColor', [0, 1, 0]);
allSpecies = sbioselect(m1, 'Type', 'species');
simbio.diagram.setBlock(allSpecies, 'FaceColor', [0, 1, 0]);

Run Generated Code

To run runcode.m at the command line, you first need to export the corresponding model from the
app to the workspace. Go back to the Model Builder app. Select Export > Export Model to MATLAB
Workspace. Specify the model name as m1, keep the overwrite check box selected, and click OK.

 View and Run Generated Code by SimBiology Model Builder

1-121

Keep the app open because the generated code contains graphical changes. Tip: If you have only
model component (object) changes, you can optionally close the app after exporting the model to the
workspace.

Next, change the current directory to where the runcode.m file is saved. One way to do this is to go
back to the Editor window. Right-click the runcode.m tab and select Change Current Folder to.

At the command line, enter:

runcode(m1);

Go back to the Model Builder app to verify the changes you made.

Actions Not Captured

The Code Capture tool does not generate code for the following actions in the app.

• Undoing and redoing
• Copying and pasting
• Dragging or moving a block in the diagram
• Diagram layout changes from using the context menu options, such as Layout Method and

Layout Diagram
• Using the Diagram Alignment Tools to align blocks
• Configuring States To Log in Simulation Settings
• Updating the Notes section of Property Editor
• Using the Model Simulation tool (for details, see “Visualize Model Behavior Using Model

Simulation Tool” on page 1-35)

See Also
SimBiology Model Builder | simbio.diagram.getBlock | simbio.diagram.getLine |
simbio.diagram.setBlock | simbio.diagram.setLine | simbio.diagram.splitBlock |
simbio.diagram.joinBlock

1 SimBiology Apps

1-122

Related Examples
• “View and Run Program Code Generated by SimBiology Model Analyzer” on page 1-78

 View and Run Generated Code by SimBiology Model Builder

1-123

Import and Export Variants and Doses from Excel to
SimBiology Model Builder

You can store variant and dosing information in an Excel spreadsheet that you can import to the
Model Builder app and create the corresponding variants and doses for your models. You can also
export the existing variants and doses from a SimBiology model to an Excel file.

Import Variants from Excel
1 In the Model Builder app, on the Home tab, select Model > Import Model Components from

Excel.

2 Select your Excel file containing variants. In the next dialog, select Variants in the Components
table. The Properties table is then updated to show the required properties that need to be
defined in the Excel sheet. These required properties are preselected and cannot be unchecked.

Depending on if you have stored all the variants in one sheet or multiple sheets, the workflow differs
as shown next. For details on making such an Excel file, see “Create Excel File for Variants” on page
1-127.

Tip You can also generate the Excel file by exporting an existing variant on page 1-126 from your
model.

Variants in One Sheet

If you have stored the information of all the variants in one sheet, select the check box Variants
defined in one sheet and select the corresponding sheet name in the Sheet Name list.

1 SimBiology Apps

1-124

Variants in Multiple Sheets

If you have stored variants in multiple sheets, clear the check box and select which sheets to import
in the Sheet Names table.

 Import and Export Variants and Doses from Excel to SimBiology Model Builder

1-125

Export Variants to Excel
1 On the Home tab of the Model Builder app, select Export > Export Model Components to

Excel.

1 SimBiology Apps

1-126

2 In the next dialog, select Variants in the Components table. The Properties table on the right
is then updated to show which properties are exported. Each property is exported as a column in
the spreadsheet.

3 (Optional) By default, the app stores all variants in one sheet. If you want to store one variant per
sheet, clear the Write variants to one sheet check box.

Tip You can change the order of columns by pressing the up and down arrows on the right of the
Properties table.

Create Excel File for Variants
You can store the variant information in one sheet or multiple sheets within one Excel file.

Store Variants in One Sheet

The sheet must have the Type column, the Name column, and one column for each variant that
contains the variant values. Each variant column name must be the same as the corresponding

 Import and Export Variants and Doses from Excel to SimBiology Model Builder

1-127

variant name. The Type column corresponds to the model component type (species, parameter, or
compartment). The Name column is the model component name. You can leave the cell empty or use
NaN or '.' (a period) to indicate that there is no variant value for a particular component. Here is an
example of what such a sheet looks like.

Note The transposed version of this format, where each row is a variant and each column is a model
component, is not supported.

Store Variants in Multiple Sheets

Each sheet must have the following columns:

• VariantName — Name of the variant. The app uses this name when creating the variant.
• Type — Model component type (species, parameter, or compartment)
• Name — Model component name
• Value — Model component value

The next screenshot shows an example of what such an Excel file with multiple sheets looks like.

Import Doses from Excel
1 On the Home tab of the app, select Model > Import Model Components from Excel.

Select your Excel file containing the dosing information. You can store multiple schedule doses in
one or multiple sheets. All repeat doses must be saved in one sheet.

2 In the next dialog, select the dosing type stored in the Excel sheet: Schedule Doses or Repeat
Doses (or both) in the Components table. When you click Schedule Doses or Repeat Doses
row, the Properties table on the right is updated automatically to show the corresponding

1 SimBiology Apps

1-128

required properties that need to be defined in the Excel sheet. These required properties are
preselected and cannot be unchecked.

3 If the Excel sheet also has columns for the optional properties (such as Rate or AmountUnits)
that you want to import, select the corresponding check boxes in the Properties table as well.

4 For the repeat doses, select the corresponding sheet under Sheet Name.

5 For schedule doses, depending on if you have stored the schedule doses in one sheet or multiple
sheets, the workflow differs as shown next.

For details on making an Excel file for schedule or repeat doses, see “Create Excel File for Doses” on
page 1-132. Alternatively, you can export an existing dose from your model to Excel to look at it as an
example.

Schedule Doses in One Sheet

Select the check box Schedule doses defined in one sheet and select the corresponding sheet
name in the Sheet Name list.

 Import and Export Variants and Doses from Excel to SimBiology Model Builder

1-129

Schedule Doses in Multiple Sheets

Clear the check box Schedule doses defined in one sheet and select which sheets to import in the
Sheet Names table.

1 SimBiology Apps

1-130

Export Doses to Excel
1 On the Home tab of the app, select Export > Export Model Components to Excel.

 Import and Export Variants and Doses from Excel to SimBiology Model Builder

1-131

2 In the next dialog, select Repeat Doses or Schedule Doses (or both) in the Components table.
The Properties table on the right is then updated to show which properties are exported. Each
property is exported as a column in the spreadsheet.

3 (Optional) By default, the app stores all schedule doses in one sheet. If you want to store one
schedule dose per sheet, clear the Write schedule doses to one sheet check box. The repeat
doses can only be stored in one sheet. You can change the order of columns by pressing the up
and down arrows on the right of the Properties table.

Create Excel File for Doses
For Repeat Doses

Store all repeat doses in one sheet. The sheet must have one row per repeat dose and must have the
following columns:

• Name — Dose name
• TargetName — Name of the dose target

1 SimBiology Apps

1-132

• StartTime — Dose start time
• Amount — Dose amount

The optional columns are:

• Rate — Dose rate
• Interval — Time between doses
• RepeatCount — Dose repetitions
• AmountUnits — Dose amount units
• RateUnits — Dose rate units
• TimeUnits — Dose time units
• DurationParameterName — Parameter specifying length of time to administer a dose
• LagParameterName — Parameter specifying time lag for dose
• EventMode — Determining how events that change dose parameters affect in-progress dosing

Here is an example of what such a sheet looks like.

For Schedule Doses

Store all schedule doses in one sheet or use one sheet per dose. The rows in each sheet are
monotonically increasing time points with corresponding dose amounts for each schedule dose.

Regardless of using one sheet or multiple sheets, each sheet must have the following columns:

• Name — Dose name
• TargetName — Name of the dose target
• Time — Schedule dose time
• Amount — Dose amount

The optional columns are:

• Rate — Dose rate
• AmountUnits — Dose amount units
• RateUnits — Dose rate units
• TimeUnits — Dose time units
• DurationParameterName — Parameter specifying length of time to administer a dose
• LagParameterName — Parameter specifying time lag for dose

 Import and Export Variants and Doses from Excel to SimBiology Model Builder

1-133

• EventMode — Determining how events that change dose parameters affect in-progress dosing

Here is an example of storing all schedule doses in one sheet.

Here is an example of using one sheet per schedule dose.

See Also
SimBiology Model Builder | “Doses in SimBiology Models” on page 2-30 | “Variants in SimBiology
Models” on page 2-29

1 SimBiology Apps

1-134

Find Important Tumor Growth Parameters with Local
Sensitivity Analysis Using SimBiology Model Analyzer

This example shows how to identify important model parameters for a tumor growth model [1]. In
this example, you compute local time-dependent sensitivities of tumor growth with respect to model
parameters for an anticancer drug.

Tumor Growth Model

The model used in this example is a SimBiology® implementation of the pharmacokinetic/
pharmacodynamic (PK/PD) model by Simeoni et al. It quantifies the effect of anticancer drugs on
tumor growth kinetics from in vivo animal studies. The drug pharmacokinetics are described by a
two-compartment model with IV bolus dosing and linear elimination (ke) from the Central
compartment. Tumor growth is a biphasic process with an initial exponential growth followed by
linear growth. The growth rate of the proliferating tumor cells is described by

L0 × x1

1 +
L0
L1

× w
ψ

1
ψ

L0, L1, and Ψ are tumor growth parameters, x1 is the weight of the proliferating tumor cells, and w is
the total tumor weight. In the absence of any drugs, the tumor consists of proliferating cells only, that
is, w = x1. In the presence of an anticancer agent, a fraction of the proliferating cells is transformed
into nonproliferating cells. The rate of this transformation is assumed to be a function of the drug
concentration in the plasma and an efficacy factor k2. The nonproliferating cells x2 go through a
series of transit stages (x3 and x4) and are eventually cleared from the system. The flow-through of
the transit compartments is modeled as a first-order process with the rate constant k1.

The SimBiology model makes these adjustments to the pharmacodynamics of tumor growth:

• Instead of defining the tumor weight as the sum of x1, x2, x3, and x4, the model defines the tumor
weight by the reaction named Increase, null → tumor_weight, with the reaction rate
2 × L1 × L0 × x1

2

L1 + 2 × L0 × x1
× tumor_weight. tumor_weight is the total tumor weight, x1 is the weight of the

proliferating tumor cells, and L0, and L1 are tumor growth parameters [2].
• Similarly, the model defines the decrease in tumor weight by the reaction named Decay,

tumor_weight → null, with the reaction rate k1*x4. The constant k1 is the forward rate parameter,
and x4 is the last species in the series of transit reductions in tumor weight.

• ke is a function of the clearance and the volume of the central compartment: ke = Cl_Central/
Central.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-135

Local Sensitivity Analysis

“Sensitivity Analysis in SimBiology” on page 4-19 lets you determine which rate constants and
concentrations in a model have significant influence on the overall behavior of the model. This
example shows how to investigate which model parameters are sensitive to the tumor growth using
the built-in local sensitivity analysis program. Specifically, this example shows you how to calculate
the local sensitivity of tumor_weight species with respect to the model parameters as follows:

∂(tumor_weight)
∂(L0) , ∂(tumor_weight)

∂(L1) , ∂(tumor_weight)
∂(k1) , . . .

Calculate Local Sensitivities

Suppose that you have already calbirated tumor growth model parameters to experimental PK/PD
data and saved parameter estimates and initial conditions as a variant called parameterEstimates in
your model (as shown in this example “Calculate NCA Parameters and Fit Model to PK/PD Data Using
SimBiology Model Analyzer” on page 1-156). As a follow-up analysis, you want to find out which
model parameters are sensitive to tumor growth. The following steps show how to do so using the
built-in local sensitivity analysis program. For a global sensitivity analysis example, see “Find
Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology
Model Analyzer” on page 1-94.

1 SimBiology Apps

1-136

Load Tumor Growth Model and Data

Enter the following command to open the tumor growth model in the SimBIology Model Analyzer app.

openExample('simbio/FindTumorGrowthParametersLSASimBiologyAnalyzerExample')

Configure Calculate Sensitivities Program

First open the example. The SimBiology Model Analyzer app opens with the Tumor Growth Model
model loaded.

On the Home tab, select Program > Calculate Sensitivities. A new program opens.

In the Variants section, select parameterEstimates. This variant contains previously estimated
parameter values and initial conditions for the drug.

In the Doses section, select interval_dose. This repeat dose applies 30 mg of the drug every 4 days
starting at day 7 for a total of five times.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-137

In the States To Log section, select [Tumor Growth Model].tumor_weight only.

Tip: The context menus of the Variants, Doses and States To Log tables contain options to add the
corresponding model components and show the details of these components in the Model Builder
app. Access the context menu by right-clicking the table.

In the Simulation step, by default, the normalization method is set to Full (full
dedimensionalization), meaning that the app fully normalize the sensitivities so that they can be
compared to each other. For details, see “Normalization”. Use the default stop time (40).

Tip: You can run every program execution step separately. An execution step includes the run button
next to the name the step. Running an individual step is especially helpful if the program contains
multiple steps and you want to see the intermediate results from a particular step. By doing so, you
can make adjustments as needed before running the next step or the whole program. To run the
whole program, click the Run button on the Home tab.

In the Sensitivities to Compute section, right-click anywhere in the table and select Add All
Constant Parameters. Clear ke because it is defined as a function of the Central volume and
Cl_Central, which is already an input. Click the last empty row and type tumor. Then select [Tumor
Growth Model].tumor_weight from the list. The tumor_weight species is then added as the output.

1 SimBiology Apps

1-138

Check Initial Conditions

You can view the initial conditions of model quantities, namely compartments, species, and
parameters, before simulating a model. The initial conditions are the quantity values at simulation
time = 0 after applying the assignment rules, variants, and doses (if any at time = 0). For details, see
“Model Simulation” on page 4-3. You can use this information to debug a model and check if the
quantity values are initialized as you expect before simulating the model.

In the Browser pane, click Model.

Right-click anywhere within the Species and Compartments table or Parameters table. Select
Show Model Initial Conditions.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-139

The app shows the Initial Condition column in both quantity tables. These values are what the
program uses at time = 0 when you simulate.

1 SimBiology Apps

1-140

Next, run the program by clicking Run on the Home tab.

Visualize Sensitivity Results

After the sensitivity analysis, the program automatically generates two plot tabs Plot1 and Plot2.
Click Plot1 to view a plot of the time course of the tumor weight and other sensitivity values
d[tumor_weight]/d[parameter]. The time plots for d[tumor_weight]/d[k21] and d[tumor_weight]/

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-141

d[k12] stay relatively flat compared to other sensitivities, indicating that the tumor growth is not
sensitive to k21 and k12 parameters. The Property Editor lets you select which plots to display.

Tip: Plots are backed by data that are currently present in the app workspace. Plots are not
snapshots. When the data (either experimental data or simulation results) is removed or changed, the
plots are also updated according to the changes in the underlying data.

You can also examine the same sensitivity data by checking the magnitude of the computed
sensitivities integrated over time. The second generated plot (Plot2) shows a bar plot containing
such information. The plot shows that the tumor weight is sensitive to L0, L1, w0, k2, k1, and
Cl_Central, but not to k12 and k21.

1 SimBiology Apps

1-142

Save the sensitivity analysis results in a separate folder.

1 Click Project in the Browser pane. Expand the Program1 folder.
2 Right-click the LastRun folder. Select Save Data.
3 In the Save Data dialog, enter sa_data as the data name.

Investigate Variability of k12 and k21

First, vary values for the k12 parameter. Click the Program1 tab. Click the (+) plus at the top of the
program and select Generate Samples.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-143

The Generate Samples step appears. Disable the default plot generation by clicking the plot button
at the top of the step.

In the Parameter Set section of the step, double-click the empty cell in the Component Name, and
enter k12. Set the following options:

• Type — Range Of Values
• Spacing — linear
• Min — 1e-3
• Max — 1
• # Of Steps — 25

1 SimBiology Apps

1-144

In the Simulation step, under Sensitivities to Compute, clear all the inputs except k12. Keep
tumor_weight as the output. Also, disable the default plot generation by clicking the plot button at the
top of the step.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-145

On the Home tab, click the Run button to run the whole program.

Once the simulation finishes, the sensitivity results are stored in the LastRun folder. Expand the
LastRun folder. Click results. Then select time from the Plot section on the Home tab. The
Responses in the plot correspond to the tumor weight and the sensitivity of the tumor weight with
respect to k12. Each response is plotted using a different line style. The Scenarios correspond to
each parameter scan (simulation scenario). Each scenario is plotted using a different color.

1 SimBiology Apps

1-146

Customize the plot so that the plot uses a different color for each response instead. In the Slice Data
table, clear the Style of Scenarios by selecting empty. Set Responses to Color.

In the Responses table, clear tumor_weight and keep only the sensitivity results. The plot suggests
that the tumor weight is sensitive to some k12 parameter values when model variants different than
the estimated parameter values are explored.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-147

Plot the k12 sensitivities together with the previous sensitivity results to see how sensitive the tumor
growth is to k12 relative to other model parameters. In the Browser pane, expand the folder sa_data
that you saved previously. Then expand results.

Multiselect (Shift + Click) the sensitivity data entries for L0, L1, w0, k2, k1, and Cl_Central. Then
drag them on to the k12 sensitivity plot Plot3. The plot suggests that the tumor growth is still more
sensitive to most of the other parameters than k12.

1 SimBiology Apps

1-148

Save the results in a separate folder. Right-click LastRun and select Save Data. Enter k12_data as
the data name.

Vary k21

You can perform a similar analysis by varying k21 and comparing its results with other parameter
sensitivities.

Return to Program1. In the Generate Samples step, click Add parameter set to scan. A new
Parameter Set section appears.

Double-click the empty cell in the Component Name, and enter k21. Set the same options as k12:

• Type — Range of Values
• Spacing — linear
• Min — 1e-3
• Max — 1
• # Of Steps — 25

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-149

Disable the first parameter set (PS1). Point to the top corner of Parameter Set section of PS1 and
click the action button. Then select Disable Parameter Set.

The Parameter Set is then grayed out to indicate you have successfully disabled it.

1 SimBiology Apps

1-150

In the Simulation step, select k21 as the only input and tumor_weight as the output.

Hit Run from the Home tab to run the program again.

Once the simulation finishes, the results are automatically plotted in a new plot tab.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-151

In the Slice Data table, clear the Style of Scenarios by selecting empty. Set Responses to Color.

In the Responses table, clear tumor_weight and keep only the sensitivity results. The plot suggests
that the tumor weight is sensitive to some k21 parameter values when model variants different than
the estimated parameter values are explored.

1 SimBiology Apps

1-152

Plot k21 sensitivities together with the previous sensitivity results to compare. Click Plot3. In the
Browser pane, expand the LastRun folder. Then expand results.

Drag the k21 sensitivity data d[[Tumor Growth Model].tumor_weight]/d[k21] on to Plot3. The
plot suggests that the tumor growth is relatively more sensitive to most other parameters than k21
and k12.

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-153

This example shows how to perform sensitivity analysis to find important model parameters to which
tumor growth is sensitive. The initial analysis concludes that the tumor weight is not sensitive to
some of the parameters. The example then explores the parameter space of these less sensitive
parameters and compares the sensitivity results with those of other model parameters. You can use
such sensitivity information for other analyses, such as to perform “Explore Biological Variability with
Virtual Patients Using SimBiology Model Analyzer” on page 1-41 by varying sensitive parameters to
explore the model dynamics and biological variability.

References
[1] Simeoni, Monica, Paolo Magni, Cristiano Cammia, Giuseppe De Nicolao, Valter Croci, Enrico

Pesenti, Massimiliano Germani, Italo Poggesi, and Maurizio Rocchetti. “Predictive
Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models
after Administration of Anticancer Agents.” Cancer Research 64, no. 3 (February 1, 2004):
1094–1101.

[2] Koch, Gilbert, Antje Walz, Gezim Lahu, and Johannes Schropp. “Modeling of Tumor Growth and
Anticancer Effects of Combination Therapy.” Journal of Pharmacokinetics and
Pharmacodynamics 36, no. 2 (April 2009): 179–97.

See Also
simbiology | SimBiology Model Analyzer

More About
• “Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using

SimBiology Model Analyzer” on page 1-94
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156

1 SimBiology Apps

1-154

• “Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer” on page
1-41

• “Scan Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58

 Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

1-155

Calculate NCA Parameters and Fit Model to PK/PD Data Using
SimBiology Model Analyzer

This example shows how to perform noncompartmental analysis to calculate NCA parameters and
estimate the tumor growth model [1] parameters from experimental data using nonlinear regression
in the SimBiology Model Analyzer app.

Tumor Growth Model

The model used in this example is a SimBiology® implementation of the pharmacokinetic/
pharmacodynamic (PK/PD) model by Simeoni et al. It quantifies the effect of anticancer drugs on
tumor growth kinetics from in vivo animal studies. The drug pharmacokinetics are described by a
two-compartment model with IV bolus dosing and linear elimination (ke) from the Central
compartment. Tumor growth is a biphasic process with an initial exponential growth followed by
linear growth. The growth rate of the proliferating tumor cells is described by

L0 × x1

1 +
L0
L1

× w
ψ

1
ψ

L0, L1, and Ψ are tumor growth parameters, x1 is the weight of the proliferating tumor cells, and w is
the total tumor weight. In the absence of any drugs, the tumor consists of proliferating cells only, that
is, w = x1. In the presence of an anticancer agent, a fraction of the proliferating cells is transformed
into nonproliferating cells. The rate of this transformation is assumed to be a function of the drug
concentration in the plasma and an efficacy factor k2. The nonproliferating cells x2 go through a
series of transit stages (x3 and x4) and are eventually cleared from the system. The flow-through of
the transit compartments is modeled as a first-order process with the rate constant k1.

The SimBiology model makes these adjustments to the pharmacodynamics of tumor growth:

• Instead of defining the tumor weight as the sum of x1, x2, x3, and x4, the model defines the tumor
weight by the reaction named Increase, null → tumor_weight, with the reaction rate
2 × L1 × L0 × x1

2

L1 + 2 × L0 × x1
× tumor_weight. tumor_weight is the total tumor weight, x1 is the weight of the

proliferating tumor cells, and L0, and L1 are tumor growth parameters [2].
• Similarly, the model defines the decrease in tumor weight by the reaction named Decay,

tumor_weight → null, with the reaction rate k1*x4. The constant k1 is the forward rate parameter,
and x4 is the last species in the series of transit reductions in tumor weight.

• ke is a function of the clearance and the volume of the central compartment: ke = Cl_Central/
Central.

1 SimBiology Apps

1-156

PK/PD Data Description

The experimental (synthetic) data contains measurements from eight patients for three responses:
measured drug concentrations in the central compartment, in the peripheral compartment, and
measured tumor weight. The data also contains the dosing information, and each patient receives an
IV dose at day 7.

The data set contains the following columns.

• ID — Patient IDs
• Time — Times when measurements are taken
• CentralConc — Drug concentration in the central compartment
• PeripheralConc — Drug concentration in the peripheral compartment
• Dose — Dosing information for each patient
• k1 and Cl_Central — Variant columns which contain group-specific values for the parameters k1

and Cl_Central.

NaN values are used whenever there is no measurement or no dose is given.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-157

Load Tumor Growth Model and Data

Enter the following command to open the tumor growth model and data in SimBIology Model
Analyzer.

openExample('simbio/CalculateNCAParametersAndFitDataSimBiologyModelAnalyzerExample')

In the Browser pane of the app, the Models folder contains the Tumor Growth Model and the
Data1 folder contains the experimental data along with the dosing information.

Classify the data columns so that such variable classifications can be used by the Fit program later in
the example. The app performs automatic classifications as appropriate (such as the ID, Time, Dose
columns). But for the measured response data columns such as CentralConc, you need to manually
classify them as the dependent variables. To do so, first open the data sheet as follows. In the
Browser pane, expand the Data1 folder and double-click Datasheet1.

In the Data1 table, double-click Classification under CentralConc. Select dependent. Repeat the
same process for PeripheralConc and TumorWeight. You can leave the k1 and Cl_Central columns
unset.

Note: The app has automatically classified:

• The ID column as group (a grouping variable).
• The Time column as independent (an independent variable).
• The Dose column as dose1 (a dosing variable). If there are more than one dose columns, they can

be classified as dose2, dose3, and so on.

Visualize Experimental Data

After you load the data, you can visualize the measured responses.

In the Browser pane, click Data1.

On the Home tab, in the Plot section, click the time plot. The app generates a time plot of all three
responses, namely: CentralConc, PeripheralConc, and TumorWeight.

1 SimBiology Apps

1-158

In the default time plot, Responses correspond to the measured responses and are plotted using
different line styles. Scenarios refers to different groups (eight patients) in the data and are plotted
using different colors.

Tip: Plots are backed by data that are currently present in the app workspace. Plots are not
snapshots. When the data (either experimental data or simulation results) is removed or changed, the
plots are also updated according to the changes in the underlying data.

Customize Data Visualization

The steps in this section are optional and are not necessary for fitting. You can customize the plot to
make it clearer. For example, you can plot the PD data (TumorWeight) on a different axis than the PK
data (CentralConc and PeripheralConc). To do so, create two different groups (sets) of responses,
where the first set contains only TumorWeight and the second set contains CentralConc and
PeripheralConc.

Right-click TumorWeight (gram) in the Responses table and select Create New Set. The app
creates Set 1 and Set 2. Set 1 contains only TumorWeight, which is now plotted on a different axis
than Set 2, which contains CentralConc and PeripheralConc.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-159

The Visual Channels table now contains Sets. This table is a summary table of all slicing variables
that are currently present in the plot and their corresponding plot styles. In this current plot, the
slicing variables are Sets, Responses, and Scenarios.

Tip: You can slice data using different slicing variables. Each slicing variable appears in the plot with
a different visual style (or channel) such as color, line style, and axes position. Slicing variables can
represent attributes of data, such as responses or scenarios (that is, groups or simulation runs).
Slicing variables can also be covariates or parameter values associated with a scenario or group. By
default, the app provides slicing variables for different response variables and different scenarios in
the plotted data. You can add other visual styles (or channels) for sets of responses and associated
parameter or covariate variables.

1 SimBiology Apps

1-160

Group Responses Based on Dose Amounts

You can also group the responses based on different dose amounts that the patients receive. There
are three different dose groups: 30, 75, and 150 mg.

In the Visual Channels table, at the Dose row, double-click the empty cell and select Color. A red
indicator appears because another slicing variable (Scenarios) has the same plot style. Clear the
style (visual channel) for Scenarios by selecting empty.

In the Dose table, the app has automatically binned the dose amounts. Set Number of Bins to 3. You
can now see that the dose amount has an impact on the tumor size. The higher the dose is, the
smaller the tumor becomes.

You can also query the corresponding dose group from each line by showing its data tip. Press Ctrl
and click a blue line to display its data tip. To remove it, Ctrl + Click again anywhere on the same
line.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-161

Perform Noncompartmental Analysis (NCA)

Using the drug pharmacokinetic data, you can estimate NCA parameters. NCA is model agnostic and
can give insights into the drug pharmacokinetics without any underlying assumptions. You can use
some of the NCA results as initial estimates when calibrating the model to the data, as discussed later
in this example. For details on the list of available NCA parameters and their formulas, see
“Noncompartmental Analysis” on page 4-89.

NCA Program Setup

On the Home tab, select Program > Non-Compartmental Analysis. A new program (Program1)
appears.

The Data setup step of the program defines the data set to use for the NCA analysis. In this example,
the program automatically selects Data1.

The NCA execution step defines the data column associations and algorithm details. In the
Definition table, set Concentration to CentralConc. Leave the other settings unchanged.

On the Home tab, click Run. Once the NCA analysis is complete, the app opens a new datasheet
containing the results.

1 SimBiology Apps

1-162

The program also saves the results in the LastRun folder of the program by default. To access the
results, in the Browser pane, expand the Program1 folder. Then expand LastRun folder. The NCA
results are stored in the table named results. For details about calculated NCA parameters, see
“Noncompartmental Analysis” on page 4-89.

Export Results to MATLAB Workspace

You can export the NCA results to the MATLAB® workspace and perform further data analyses at the
command line.

Right-click results. Select Export Data to MATLAB Workspace.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-163

The SimBiology Data Export dialog box opens. Change the name of the variable to ncatable. Click
OK.

After you export the data to the MATLAB® workspace, you can analyze the data at the command-line.
For instance, you can calculate the average drug clearance from the NCA data and use it as the
model parameter value.

Estimate Model Parameters Using Nonlinear Regression

SimBiology provides different regression techniques to estimate model parameters based on
experimental data. This example details the steps for using the nonlinear regression method lsqnonlin
(requires Optimization Toolbox[tm]) to fit the model to the data. If you do not have Optimization
Toolbox[tm], the app uses fminsearch instead. For the purposes of the example, only some of the
PK/PD model parameters are estimated, namely: k1, L0, L1, Cl_Central, k12, and k21.

Fit Program Setup

From the Home tab, select Program > Fit Data. A new program (Program2) appears on a new tab.
The Data and Model steps have been prepopulated with Data1 and Tumor Growth Model,
respectively.

By default, the Fit step autogenerates plots after the fitting is complete. Disable the plot generation
by clicking the plot icon at the top of the Fit program step for now. The plots will be explored later in
the example.

In the Data Map table, define the mapping between the model components and the data columns
from the input data.

• The group row identifies which column in the data is a grouping variable, such as patient IDs.
• The independent row identifies which column in the data is an independent variable, such as

time.
• The response row identifies which response or measurement data column corresponds to which

model component. If there are multiple response data, you can add more response rows by

1 SimBiology Apps

1-164

clicking the Response button at the bottom of the Data Map table. To delete a response from the
table, right-click and select Delete.

• The dose from data row defines which column in the data maps to which model component as a
dose target. If there are multiple dose columns, you can add more rows by clicking the Dose
button.

• The variant from data row defines which column in the data contains alternative parameter
values for which model component. Click the Variant button to see the row or add more variants.

Note: In this example, the app uses the classification information from the data sheet of the input
data and maps the ID column as the grouping variable (defined by the group row in the table), and
Time column as an independent variable (defined by the independent row in the table). It has also
identified CentralConc, PeripheralConc, and TumorWeight as response columns.

In the first response row, next to CentralConc, double-click the cell Component, and enter
Central.Drug as the corresponding model component for that measurement data column.

Similarly, map the PeripheralConc column to Peripheral.Drug.

Map TumorWeight to [Tumor Growth Model].tumor_weight.

Map the Dose column to Central.Drug to indicate that the Drug species in the Central compartment is
being dosed.

Leave the Variant and Dose Setup table as is because there is no group-specific doses or variants
being used in this example. For details on how to use this table, see “Simulate Groups Using Doses
and Variants from Data Set” on page 1-83.

In the Fit step, define the model parameters to estimate in the Estimated Parameters table.
Double-click the empty cell in the Estimated Parameters column and type k1. The app shows model
components with matching names. Select k1 from the list.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-165

By default, the parameter is log-transformed as indicated by the transformation log. You can change
the transformation to no transformation none, probit, or logit transformation. For details, see
“Parameter Transformations” on page 4-38. For this example, keep the default log transform
because it often improves the convergence. The Initial Untransformed Value is automatically set to
the model value which is 0.5.

Enforce the biological parameters to stay positive by specifying the Untransformed Lower Bound
and Untransformed Upper Bound as 1e-5 and 10, respectively.

Similarly, add the following parameters: Cl_Central, L0, L1, k12, and k21.

Select Pooled fit to estimate one set of parameters for all patients (population fit). If you do not
select Pooled fit, the app estimates one set of parameters for each patient (individual fit).

The default error model is the constant error model. SimBiology supports constant, proportional,
exponential, and combined error models. For details, see “Error Models” on page 4-45. For now, use
the constant error model.

Keep the rest of the fitting settings unchanged. These settings are

• Estimation Method — The default method is lsqnonlin if you have Optimization Toolbox[tm]. If you
do not, the app uses fminsearch.

1 SimBiology Apps

1-166

For more information, see “Supported Methods for Parameter Estimation in SimBiology” on page 4-
43.

• Algorithm Settings — Most common options for the estimation method. Click to expand the
section and see the options. To see the description of each option, click the info icon to the right of
the header.

• Advanced Algorithm Settings — Advanced settings for the estimation method. The table is empty
by default.

Run Fit Program

After you set the fitting options, you can run the Fit step.

At the top of the Fit step, click the Run this program step button.

By default, the Fit step shows the progress of parameter estimation in a separate figure. The
progress plot shows the live status of parameter estimation and fitting quality measures such as log
likelihood. For details, see “Progress Plot” on page 4-46.

The progress plot shows that the fit converged. You can close the progress plot.

If you are using fminsearch, the fit can fail to converge due to reaching the maximum number of
iterations. You can increase MaxIter in the Algorithm Settings, but for the purposes of this
example, you can continue completing the steps without doing so.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-167

Visualize Fit Results

Once the parameter estimation is complete, the fit results are shown in a new data sheet. The
datasheet contains parameter estimates and other information related to fit quality measures, such as
AIC and BIC, which can be useful to compare the performance of different error models.

In addition to quality statistics, you can also view various fit plots, such as actual versus predicted
plots and residual distribution plots.

In the Browser pane, expand Program2 > LastRun, which contains results and simdataI. results
contains estimated parameter values and fit statistics. simdataI contains the simulated model
responses for each individual (patient or group) using the estimated parameter values.

Click results. Available fit plots are automatically listed in the Plot section on the Home tab. Then
select Act vs Pred from the list.

1 SimBiology Apps

1-168

The actual versus predicted plot appears on a separate tab. The predicted responses are plotted on
the x-axis and the observed (experimental) responses are plotted on the y-axis.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-169

You can change the plot to other supported plots by selecting one of the plots from the Style section
in the Property Editor. If you want the new plot on its own separate tab and you do not want to
reuse the existing plot tab, select the plot from the Plot section on the Home tab.

Change the plot to a residual distribution plot by selecting Res Dist in the Style section.

1 SimBiology Apps

1-170

The plot shows whether the residuals for each response are normally distributed. In an ideal normal
probability plot of residuals, the residuals line up along the diagonal line across the plot and the
histograms indicate a normal fit. However, from the plot, the residuals for all three responses,
especially CentralConc and PeripheralConc, do not seem to be normally distributed. It could be an
indication that the constant error model assumption is incorrect.

Compare Different Error Models

The following steps show how to change the error model to an exponential error model to fit the data
again and compare the fit statistics of two different error models.

Save Fit Results

Before fitting the data again using the exponential error model, save the constant error model result
in a separate folder. Otherwise, the program, by default, overwrites results from the LastRun folder
every time you run the fit.

Right-click the LastRun folder of the fit program in the Browser pane.

Select Save Data.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-171

In the Save Data dialog, enter fit_constant as the data name.

Rerun Fit With Exponential Error Model

After you save the data, you can rerun the fit program with a different error model.

Return to the fit program by clicking the Program2 tab. In the Error Model section, select
exponential.

At the top of the Fit step, click the Run this program step button.

Close the progress plot after the fit completes.

If you closed the previous datasheet (Datasheet3) that contains the fit statistics from the previous fit,
reopen the datasheet. To do so, in the Browser pane, expand Program2 > fit_constant. Then
double-click Datasheet3.

From the LastRun folder, drag results onto Datasheet3. New columns (Program2_LastRun)
containing the latest fit results are added next to the previous fit results (Program2_fit_constant).

1 SimBiology Apps

1-172

The table is updated as follows.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-173

The Statistics table compares the fit quality measures. From the comparison, both the AIC and BIC
of the fit using the exponential error model are smaller than those of the previous fit. This indicates
that the exponential error model fits the data better than the constant error model. The larger log
likelihood of the exponential error model also indicates it is a better fit.

Next, look at the residual distribution plot. Click results from the LastRun folder. Then click
Residual Dist from the Plot section on the Home tab.

1 SimBiology Apps

1-174

Compared to the residual distributions of the constant error model, the residual distributions from
the exponential error model look more normal, indicating that the exponential error model fits the
data better.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-175

Calculate Confidence Intervals

Another way to assess the quality of fit results is to compute 95% confidence intervals for the
estimated parameters and model predictions — that is, model simulation results using the estimated
parameters. This step requires Statistics and Machine Learning Toolbox™.

Click the Program2 tab. Click the green (+) icon at the upper left and select Confidence Interval. A
Confidence Interval step appears following the Fit step.

At the top of the Confidence Interval step, disable the autogeneration of plots by clicking the plot
icon. For both Parameter Confidence Intervals and Prediction Confidence Intervals, use the
default method gaussian and 95% confidence level. Click the Run this program step button to
compute confidence intervals.

For parameter confidence intervals, the supported methods are “Gaussian Confidence Interval
Calculation”, “Profile Likelihood Confidence Interval Calculation”, and “Bootstrap Confidence Interval
Calculation”. For prediction confidence intervals, the supported methods are “Gaussian Confidence
Interval Calculation for Model Predictions” and “Bootstrap Confidence Interval Calculation”.

Once completed, the results are stored as parameterCI and predictionCI in the LastRun folder of the
program. parameterCI contains 95% confidence intervals for the estimated parameters. predictionCI
contains 95% confidence intervals for the model predictions.

Plot 95% confidence intervals for the estimated parameters. Click parameterCI in the Browser pane
and select Confidence in the Plot section.

1 SimBiology Apps

1-176

The confidence interval for each estimated parameter is shown in a new plot. The plot indicates the
successful computation of the confidence intervals for all estimated parameters.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-177

Depending on the outcome (status) of the confidence interval estimation, the app plots the results
differently.

• If the status of confidence interval estimation is a success (as in the above plot), the app uses the
first default color (blue) to plot a line and a centered dot for every parameter estimate. The app
also plots a box to indicate the confidence intervals.

• If the status is constrained or estimable, the app uses the second default color (red) and plots a
line, centered dot, and box to indicate the confidence intervals.

• If the status is not estimable, the app plots only a line and a centered cross in red.
• If there are any transformed parameters with estimated values that are 0 (for the log transform)

and 0 or 1 (for the probit or logit transform), no confidence intervals are plotted for those
parameter estimates.

1 SimBiology Apps

1-178

For more details on the definitions of different statuses, see “Parameter Confidence Interval
Estimation Status”.

You can also change the Layout of the plot in Plot Settings.

• The 'split' layout displays the confidence interval for each parameter estimate on a separate axis.
• The 'grouped' layout displays all confidence intervals on one axis, grouped by parameter

estimates. Each estimated parameter is separated by a vertical black line.

In both cases, the parameter bounds defined in the original fit are marked by square brackets. The
app uses vertical dotted lines to group confidence intervals of parameter estimates that have been
computed in a common fit.

Similarly, plot 95% confidence intervals for the model predictions. Click predictionCI in the Browser
pane and select Confidence in the Plot section.

The plot indicates the successful computation of the confidence intervals because there are no red
plot. The plotting behavior differs depending on the outcome (“Status”) of the confidence interval
calculation.

• If the status is constrained or not estimable, the app uses the second default color (red) to plot the
confidence intervals.

• Otherwise, the app uses the first default color (blue) and plots the confidence intervals as shaded
areas (as in the above plot).

For details, see “Gaussian Confidence Interval Calculation for Model Predictions” and “Bootstrap
Confidence Interval Calculation”.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-179

Visualize Simulation Statistics and Overlay Experimental Data Using Percentile Plot

The percentile plot lets you visualize simulation results and statistics that can be overlaid with
experimental data. For example, you can plot 5th and 95th percentile curves of simulation data over
time instead of seeing the individual time courses. You can also visualize the mean, standard
deviation, minimum, and maximum of simulation and experimental data. For details, see “Percentile
Plot” on page 1-73.

Note: If you have not completed the prior steps that generated the required results to continue, you
can load the completed project instead by doing the next three steps. Otherwise, skip them.

1. Enter the following command at the command line:

openExample('simbio/CalculateNCAParametersAndFitDataSimBiologyModelAnalyzerExample')

2.SimBiology Model Analyzer opens with the initial project loaded.

3. Click Open and navigate to the current folder. Select project file name
"tumor_growth_fitPKPD_completed.sbproj".

In the LastRun folder of Program2, select simDataI > [Tumor Growth Model].tumor_weight.

On the Home tab, click percentile.

1 SimBiology Apps

1-180

The percentile plot shows the 5th and 95th percentile curves by default.

Select Data1 > TumorWeight. Drag and drop it on to the plot.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-181

By default, the Display type of the experimental data is automatically set to Mean, which shows the
mean measurement at each time with ±1 standard deviation. If you want to visualize only the raw
data, double-click Mean and select Raw Data. For this example, keep the Mean display.

1 SimBiology Apps

1-182

In the Percentiles section, for the Show percentiles (%) option, enter 10,80 to show the 10th and
80th percentiles.

Change Display style to Both lines and shading.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-183

In the Mean section, show the minimum and maximum response data points at each time by setting
Show min/max to true.

In the Data1 section, change Show raw data fraction (%) to 100 to show all the underlying raw
data points. You can also enter a custom percentage number. You can also see the bins used to
generate the summary statistics. Change Show bin edges to true.

The percentile plot is updated as follows. The asterisks (*) represent the calculated minimum and
maximum values after interpolation, and the dots (.) represent original data points.

1 SimBiology Apps

1-184

You can also specify a custom number of bins or specific bin edges. For instance, change Binning
method to specify number of bins. Then enter 10 for Number of time point bins. The percentile
plot is updated as follows. For details on how the app computes the underlying statistics, see
“Percentile Plot” on page 1-73.

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-185

After parameter estimation, you can set the model values to the parameter estimates and perform
other analyses. For instance, you can find out important model parameters using sensitivity analysis
(for details, see “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using
SimBiology Model Analyzer” on page 1-135) and vary the sensitive parameters to investigate model

1 SimBiology Apps

1-186

variability by using virtual patients (for details, see “Explore Biological Variability with Virtual
Patients Using SimBiology Model Analyzer” on page 1-41).

References
[1] Simeoni, Monica, Paolo Magni, Cristiano Cammia, Giuseppe De Nicolao, Valter Croci, Enrico

Pesenti, Massimiliano Germani, Italo Poggesi, and Maurizio Rocchetti. “Predictive
Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models
after Administration of Anticancer Agents.” Cancer Research 64, no. 3 (February 1, 2004):
1094–1101.

[2] Koch, Gilbert, Antje Walz, Gezim Lahu, and Johannes Schropp. “Modeling of Tumor Growth and
Anticancer Effects of Combination Therapy.” Journal of Pharmacokinetics and
Pharmacodynamics 36, no. 2 (April 2009): 179–97.

See Also
SimBiology Model Analyzer

More About
• “Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology

Model Analyzer” on page 1-135
• “Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer” on page

1-41
• “Scan Dosing Regimens Using SimBiology Model Analyzer App” on page 1-58

 Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

1-187

Modeling

• “What is a SimBiology Model?” on page 2-2
• “Species Object” on page 2-5
• “Definitions and Evaluations of Reactions in SimBiology Models” on page 2-8
• “Definitions and Evaluations of Rules in SimBiology Models” on page 2-13
• “Events in SimBiology Models” on page 2-22
• “Variants in SimBiology Models” on page 2-29
• “Doses in SimBiology Models” on page 2-30
• “Simulate Biological Variability of the Yeast G Protein Cycle Using Wild-Type and Mutant Strains”

on page 2-33
• “Create and Simulate a Model with a Custom Function” on page 2-35
• “Component Usage” on page 2-41
• “Evaluation of Model Component Names in Expressions” on page 2-44
• “SimBiology Model Matching Policy” on page 2-47
• “Compare SimBiology Models” on page 2-49

2

What is a SimBiology Model?
In this section...
“Model Definition” on page 2-2
“Expressions” on page 2-2
“Quantities” on page 2-3
“Model Hierarchy” on page 2-4
“Representing a Model” on page 2-4

Model Definition
A SimBiology model is composed of a set of expressions (reactions, differential equations, discrete
events), which together describe the dynamics of a biological system. You write expressions in terms
of quantities (compartments, species, parameters), which are also enumerated in the model.

Expressions
There are four distinct types of expressions in SimBiology:

• Reactions
• Rules
• Events
• Observables

Reactions

A reaction describes a process such as a transformation, transport, or binding/unbinding process
between reactants and products.

Example reactions include:

Creatine + ATP <-> ADP + phosphocreatine
cytoplasm.speciesA -> nucleus.speciesA

Rules

A rule is a class of mathematical expressions that include differential equations, initial assignments,
repeated assignments, and algebraic constraints.

For example, you can use a rule to:

• Specify values for model components that are required for comparison with experimental data.
For example, specify the active fraction of total protein.

• Assign values to model components based on the values of other components in the model. For
example, define a parameter's value as being proportional to a species or another parameter.

• Define mass balance equations.
• For species, use rate rules as an alternative to the differential rate expression generated from

reactions.

2 Modeling

2-2

Events

An event describes an instantaneous change in the value of a quantity (compartment, species,
parameter). The discrete transition occurs when a user-specified condition becomes true. The
condition can be a specific time or a specific time-independent condition.

For example, you can use an event to:

• Activate or deactivate a specific species (activator or inhibitor species).
• Change a parameter value based on external signals.
• Change reaction rates in response to addition or removal of a species.
• Replicate an experimental condition, such as the addition or removal of an activating agent (such

as a drug) to or from a sample.

Observable

An Observable is a mathematical expression that lets you perform post-simulation calculations. For
example, you can use an observable to:

• Compute some statistics such as area under the curve (AUC) of a drug concentration profile.
• Compute the fraction of a ligand that is bound to a receptor at each time step.

You can also use an observable as a response in simulation, data fitting, and global sensitivity
analysis.

Quantities
SimBiology uses three types of quantities in models:

• Compartments
• Species
• Parameters

Compartments

A compartment defines a physically bounded region that contains species. A compartment is
characterized by a capacity expressed as volume, area, or length. A compartment can also contain
other compartments, which adds hierarchy to a model. For example, a compartment named
cytoplasm might contain a compartment named nucleus, thereby partitioning species based on
their location.

Species

A species characterizes the state of the biological system by representing the amount (or
concentration) present in the system for that entity. Examples of species are DNA, ATP, and
creatine. Species' amounts (or concentrations) vary during a simulation as a result of their
participation in reactions, differential equations, and events. Therefore, species represent the
dynamical state of a biological system.

Parameters

A parameter is a quantity that is referred to by expressions. It typically remains constant during a
simulation. For example, parameters are used as rate constants in reactions.

 What is a SimBiology Model?

2-3

You can configure a parameter to vary during a simulation. This is useful, for example, to model the
change in a reaction rate given the concentration of a catalyst or a change in temperature.

Model Hierarchy
Note the following conditions imposed on quantities in the model hierarchy:

• Models must contain at least one compartment.
• A compartment can contain one or more compartments.
• Species are always contained within a compartment.

Representing a Model
In SimBiology, models and their components are implemented as objects. These objects have
properties and methods that you can use to access and configure them. Use the get method to list
the property values of an object. Use the dot notation to change the property values of an object.

SimBiology objects are handle objects, which has implications for how they behave during copy
operations. Handle objects are referenced by their handle variable, and copies of the handle variable
refer to the same object. To learn how handle objects affect copy operations, see Copying Objects.

See Also
Model

2 Modeling

2-4

Species Object
A species object represents a species, which is the amount of a chemical or entity that
participates in reactions. A species is always scoped to a compartment.

When adding species to a model with multiple compartments, you must specify qualified names, using
compartmentName.speciesName. For example, nucleus.DNA denotes the species DNA in the
compartment nucleus.

For information about... See...
Creating and adding a species to a model addspecies
Methods and properties of a species species object

How Species Amounts Change During Simulations
The amount of a species can remain constant or vary during the simulation of a model. Use the
following properties of a species object to specify how the amount of a species changes during a
simulation:

• Constant property — When set to true, the species amount does not change during a simulation.
The species can be part of a reaction or rule, but the reaction or rule cannot change its amount.
When set to false, the species amount is determined by a reaction or a rule, but not both.

• BoundaryCondition property — When set to true, the species amount is either constant or
determined by a rule, but not determined by a chemical reaction. In other words, the simulation
does not create a differential rate term from the reactions for this species, even if it is in a
reaction, but it can have a differential rate term created from a rule.

Keeping a Species Amount Unchanged
Set ConstantAmount to true and BoundaryCondition to false for a constant species, whose
amount is not changed by a reaction or rule. In this case, the species acts like a parameter. It cannot
be in a reaction, and it cannot be varied by a rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By
True False No No Never

Example — Species E is not part of the reaction, but it is part of the reaction rate equation. E is
constant and could be replaced with the constant Vm = k2*E.

 reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Changing a Species Amount with a Reaction or Rule
Set ConstantAmount to false and BoundaryCondition to false for a species whose amount is
changed by a reaction or rule, but not both.

ConstantAmount BoundaryCondition Reaction Rule Changed By
False False Yes No Reaction

 Species Object

2-5

ConstantAmount BoundaryCondition Reaction Rule Changed By
False False No Yes Rule

Example 1 — Species A is part of a reaction, and it is in the reaction rate equation. The species
amount or concentration is determined by the reaction. This is the most common category of a
species. A differential rate equation for the species is created from the reactions.

 reaction: A -> B
reaction rate: k*A

Example 2 — Species E is not part of the reaction, but it is in the reaction rate equation. E varies
with another reaction or rule.

 reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Example 3 — Species G is not part of a reaction, and it is not in a rate equation. G varies with an
algebraic rule or rate rule.

 rate rule: dG/dt = k

Changing a Species Amount with a Rule When Species is Part of a
Reaction
Set ConstantAmount to false and BoundaryCondition to true for a species whose amount is
changed by a rule, but the species is also part of a reaction, and a differential rate term from the
reaction is not created. The amount of the species changes with the rule, and a differential rate term
is created from the rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By
False True Yes Yes Rule

Example 1 — Species A is not changed by the rate equation, but changes according to a rate rule.
However, A could be in the rate equation that changes other species in the reaction.

 reaction: A -> B
reaction rate: k1 or k1*A
 rate rule: dA/dt = k2*A (solution is A = k2*t)
 (enter in SimBiology as A = k2*A)

Example 2 — Species A is not in the rate equation, but changes according to an algebraic rule.

 reaction: A -> B + C
 reaction rate: k or k*A
algebraic rule: A = 2*C
 (enter in SimBiology as 2*C - A)

Keeping a Species Amount Unchanged When Species is Part of a
Reaction that Adds or Removes Mass
Set ConstantAmount to true and BoundaryCondition to true for a constant species that is part
of a reaction, but a differential rate term is not created from the reaction. The differential rate term is
created from a rule.

2 Modeling

2-6

ConstantAmount BoundaryCondition Reaction Rule Changed By
True True Yes No Never

During simulation, a differential rate equation is not created for the species. dSpecies/dt does not
exist.

Example 1 — A is a infinite source and its amount does not change. B increases with a zero
order rate (k and k*A are both constants). A source refers to a species where mass is added to the
system.

 reaction: A -> B
reaction rate: k or k*A

Example 2 — B decreases with a first-order rate, but A is an infinite sink and its amount does
not change. A sink refers to a species where mass is subtracted from the system.

 reaction: B -> A
reaction rate: k*B

Example 3 — The null species is a reserved species name that can act as a source or a sink.

 reaction: null -> B
reaction rate: k

 reaction: B -> null
reaction rate: k*B

Example 4 — ATP and ADP are in the reaction and have constant values, but they are not in the
reaction rate equation.

 reaction: S + ATP -> P + ADP
reaction rate: Vm*S/(Km + S)

See Also
BoundaryCondition | Constant

 Species Object

2-7

Definitions and Evaluations of Reactions in SimBiology Models
A reaction is a mathematical expression that describe a transformation, transport, or binding process
that changes one or more species. Typically, an amount of a species is changed through a reaction.

In SimBiology, a reaction is represented by a reaction object, which has the following properties.

• Reaction property — Mathematical expression that describes the reaction
• ReactionRate property — Mathematical expression that defines the rate at which the reactants

combine to form products. You can provide this information explicitly or use the KineticLaw
property to populate this information.

• KineticLaw property — Object that specifies a rate law that defines the type of reaction rate.
Examples include Henri-Michaelis-Menten and Mass Action. The object also specifies species
objects, or parameter objects. This property is optional. It serves as a template for a
reaction rate and provides a convenient way of applying a specific rate law to multiple reactions. If
you use this property, it automatically populates the ReactionRate property.

A reaction is scoped to a model.

For information about... See...
Creating and adding a reaction to a model addreaction
Methods and properties of a reaction reaction object
Creating and adding a kinetic law to a reaction addkineticlaw
Methods and properties of a kinetic law KineticLaw object

Writing Reaction Expressions
Use standard chemistry reaction notation to create the mathematical expression for a reaction
(Reaction property of a reaction object).

Following are rules for writing reaction expressions:

• Use spaces before and after species names and stoichiometric values.
• Stoichiometry values must be positive.
• If a stoichiometry value is not specified, it is assumed to be 1.
• In a model with a single compartment, specify species using speciesName. In a model with

multiple compartments, specify species using qualified names: compartmentName.speciesName.
For example, nucleus.DNA denotes the species DNA in the compartment nucleus.

• Enclose names with non-alphanumeric characters (including spaces) in brackets.
• Reactions can be reversible (<->) or irreversible (->).

Examples of reaction expressions include:

Creatine + ATP <-> ADP + phosphocreatine
glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H2O
cytoplasm.A -> nucleus.A
[compartment 1].[species A] -> [compartment 2].[species A]

2 Modeling

2-8

Note Same species can be used multiple times in the list of reactions or products. The expression '2
A' is equivalent to 'A + A'.

Writing Reaction Rate Expressions Explicitly
Use any valid MATLAB code to create the mathematical expression for a reaction rate
(ReactionRate property of a reaction object). The reaction rate can specify compartments,
species, or parameters.

Following are rules for writing reaction rate expressions:

• The expression must be a single MATLAB statement that returns a scalar.
• In a model with a single compartment, specify species using speciesName. In a model with

multiple compartments, specify species using qualified names: compartmentName.speciesName.
For example, nucleus.DNA denotes the species DNA in the compartment nucleus.

• Enclose names with non-alphanumeric characters (including spaces) in brackets.
• Do not end the reaction rate expression with any of the following:

• Semicolon
• Comma
• Comment text preceded by %
• Line continuations indicated by ...

For example, if you have the following reaction expression:

Creatine + ATP <-> ADP + phosphocreatine

and the reaction follows Mass Action kinetics, then the reaction rate expression would be:

K*Creatine*ATP - Krev*ADP*phosphocreatine

Tip If your reaction rate expression is not continuous and differentiable, see “Using Events to
Address Discontinuities in Rule and Reaction Rate Expressions” on page 2-28 before simulating your
model.

Creating Reaction Rate Expressions Using Kinetic Law Objects
A KineticLaw object is scoped to a reaction and specifies:

• A rate law that defines the type of reaction rate. Examples include Henri-Michaelis-Menten and
Mass Action.

• species and parameters

A KineticLaw object serves as a template for a reaction rate and provides a convenient way of
applying a specific rate law to multiple reactions. You can use this object to create a reaction rate,
which populates the ReactionRate property of the reaction object.

For example, if you create a KineticLaw object that specifies Henri-Michaelis-Menten for the
KineticLawName, species S, and parameters Vm and Km, the reaction rate law is:

 Definitions and Evaluations of Reactions in SimBiology Models

2-9

Vm × S Km + S

Then if you create a reaction object that specifies the previous KineticLaw object and
species the following reaction expression:

A -> B

with Vm = Va and Km = Ka and S = A, then the reaction rate equation is:

Va × A Ka + A

Examples of Creating Reaction Rates
Example of Creating a Zero-Order Reaction

With a zero-order reaction, the reaction rate does not depend on the concentration of reactants.
Examples of zero-order reactions are synthesis from a null species, and modeling a source species
that is added to the system at a specified rate.

 reaction: null -> P
reaction rate: k mole/second
 species: P = 0 mole
 parameters: k = 1 mole/second

Note When specifying a null species, the reaction rate must be defined in units of amount per unit
time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following result:

Zero-Order Mass Action Kinetics

2 Modeling

2-10

Note If the amount of a reactant with zero-order kinetics reaches zero before the end of a
simulation, then the amount of reactant can go below zero regardless of the solver or tolerances you
set.

Examples of Creating Other Reactions

For examples of creating other reaction rates, see “Define Reaction Rates with Mass Action Kinetics”
on page A-2 and “Define Reaction Rates with Enzyme Kinetics” on page A-6.

How Reaction Rates Are Evaluated
Reaction Rate Dimensions

When calculating species fluxes, SimBiology must determine whether you specified reaction rates in
dimensions of amount/time or concentration/time. When all compartments in a model have a capacity
of one unit, amount and concentration are numerically equivalent.

For all other models, the numerical results of the simulation depend on which interpretation
SimBiology selects. SimBiology determines whether a reaction rate is in dimensions of amount/time
or concentration/time via dimensional analysis of ReactionRate expressions. This minimum level of
dimensional analysis always occurs, even when DimensionalAnalysis and UnitConversion are
off.

The DefaultSpeciesDimension property defines the dimensions of species appearing in a reaction
rate. SimBiology infers the dimensions of parameters appearing in a reaction rate from their
ValueUnits property. If any parameters appearing in a reaction rate expression do not have units,
SimBiology interprets the reaction rate in dimensions of amount/time. Therefore, the only way to
specify that a reaction rate has dimensions of concentration/time is to assign appropriate units to all
parameters.

Reactions Spanning Multiple Compartments

Specify reactions that span compartments using the syntax compartment1Name.species1Name –>
compartment2Name.species2Name. The reaction rate dimensions must resolve to amount/time if
either of the following conditions are true:

• Reactant species are in different compartments.
• The reaction is reversible mass action and the products are in multiple compartments.

Note The MassAction and Unknown kinetic laws can have different simulation results even when
the reaction rate is the same. This can happen when you have a reversible reaction with species in
different compartments. The difference in simulation results is because of the volume-scaling
performed by SimBiology during the dimensional analysis. For details, see “Derive ODEs from
SimBiology Reactions” on page 4-5. Specifically, for MassAction, SimBiology uses corresponding
compartment volumes to multiply the forward and reverse rates. However, for Unknown and other
built-in kinetic laws, SimBiology multiplies the entire rate by only one compartment which contains
the reactants. To see exactly what compartment volumes are used for scaling, use getequations or
open the Equations view from the SimBiology app and check the ODEs section.

 Definitions and Evaluations of Reactions in SimBiology Models

2-11

Examples

Consider a reaction a + b —> c. Using mass action kinetics, the reaction rate is k*a*b, where k is
the rate constant of the reaction. If you specify that initial amounts of a and b are 0.01 molarity
and 0.005 molarity respectively, then the reaction rate is in concentration/time (and units of
molarity/second) if the units of k are 1/(molarity*second). If you specify k with another
equivalent unit definition, for example, 1/((moles/liter)*second), SimBiology checks whether
the physical quantities match. If the physical quantities do not match, you see an error and the model
is not simulated.

If, in the previous example, you specify that initial amounts of a and b are 0.01 and 0.005
respectively, without specifying units, SimBiology checks whether DefaultSpeciesDimension is
substance or concentration. If DefaultSpeciesDimension is concentration, and you set
units on the rate constant such that the reaction rate dimensions resolve to concentration/time,
SimBiology scales the species amounts for compartment capacity, and returns the species values in
concentration.

If you specify initial amounts of a and b as 0.01 molarity and 0.005 mole respectively, include
the volume scaling for b in the reaction rate expression. Include volume scaling in the rate constant,
and set the units of the rate constant accordingly (1/(mole*second) for concentration/time, or 1/
(molarity*second) for amount/time).

Viewing Equations for Reactions
You can view the system of equations that SimBiology creates when you build a model using reaction
expressions. For details, see “View Model Equations” on page 3-3.

See Also

More About
• “Create and Simulate a Model with a Custom Function” on page 2-35
• “Model Simulation” on page 4-3
• “Derive ODEs from SimBiology Reactions” on page 4-5
• “What is a SimBiology Model?” on page 2-2
• “Definitions and Evaluations of Rules in SimBiology Models” on page 2-13
• “Events in SimBiology Models” on page 2-22
• “Component Usage” on page 2-41
• “Evaluation of Model Component Names in Expressions” on page 2-44

2 Modeling

2-12

Definitions and Evaluations of Rules in SimBiology Models

In this section...
“Overview” on page 2-13
“Initial Assignment” on page 2-13
“Repeated Assignment” on page 2-13
“Algebraic Rules” on page 2-14
“Repeated Assignment vs. Algebraic Rules” on page 2-14
“Rate Rules” on page 2-14
“Evaluation Order of Rules” on page 2-15
“Conservation of Amounts During Simulation” on page 2-15
“Writing Rule Expressions” on page 2-16
“Considerations When Imposing Constraints” on page 2-16
“Rate Rule Examples” on page 2-16

Overview
Rules are mathematical expressions that allow you to define or modify model quantities, namely
compartment capacity, species amount, or parameter value.

Rules can take the form of initial assignments, assignments during the course of a simulation
(repeated assignments), algebraic relationships, or differential equations (rate rules). Details of each
type of rule are described next.

Initial Assignment
An initial assignment rule lets you specify the initial value of a model quantity as a numeric value or
as a function of other model quantities. It is evaluated once at the beginning of a simulation.

An initial assignment rule is expressed as Variable = Expression, and the rule is specified as the
Expression. For example, you could write an initial assignment rule to set the initial amount of
species2 to be proportional to species1 as species2 = k * species1 where k is a constant
parameter.

Repeated Assignment
A repeated assignment rule lets you specify the value of a quantity as a numeric value or as a
function of other quantities repeatedly during the simulation. It is evaluated at every time step, which
is determined by the solver during the simulation process.

A repeated assignment rule is expressed as Variable = Expression, and the rule is specified as
the Expression. For example, to repeatedly evaluate the total species amount by summing up the
species in different compartments, you could enter: xTotal = c1.X + c2.X, where xTotal is a
nonconstant parameter, c1 and c2 are the name of compartments where species x resides.

 Definitions and Evaluations of Rules in SimBiology Models

2-13

Algebraic Rules
An algebraic rule lets you specify mathematical constraints on one or more model quantities that
must hold during a simulation. It is evaluated continuously during a simulation.

An algebraic rule takes the form 0 = Expression, and the rule is specified as the Expression. For
example, if you have a mass conservation equation such as species_total = species1 +
species2, write the corresponding algebraic rule as species1 + species2 - species_total.

However, repeated assignment rules are mathematically equivalent to algebraic rules, but result in
exact solutions instead of approximated solutions. Therefore, it is recommended that you use
repeated assignment rules instead of algebraic rules whenever possible. Use algebraic rules only
when:

• You cannot analytically solve the equations to get a closed-form solution. For example, there is no
closed-form solution for x^4 + ax^3 + bx^2 + cx + k = 0 whereas the closed-form solution
for kx – c = 0 is x = c/k.

• You have multiple equations with multiple unknowns, and they could be inconvenient to solve.

If you use an algebraic rule, rate rule, or repeated assignment to vary the value of a parameter or
compartment during the simulation, make sure the ConstantValue property of the parameter or
ConstantCapacity of the compartment is set to false.

Repeated Assignment vs. Algebraic Rules
Repeated assignment rules are mathematically equivalent to algebraic rules, but result in exact
solutions. However, algebraic rules are solved numerically, and the accuracy depends on the error
tolerances specified in the simulation settings. In addition, there are several advantages to repeated
assignment rules such as better computational performance, more accurate results since no rules
have to be solved numerically (hence no approximations), and sensitivity analysis support.

Tip

• If you can analytically solve for a variable, use a repeated assignment rule instead of an algebraic
rule.

• In repeated assignment rules, the constrained variable is explicitly defined as the left-hand side,
whereas in algebraic rules it is inferred from the degrees of freedom in the system of equations.
See also “Considerations When Imposing Constraints” on page 2-16.

Rate Rules
A rate rule represents a differential equation and lets you specify the time derivative of a model
quantity. It is evaluated continuously during a simulation.

A rate rule is represented as dVariable
dt = Expression, which is expressed in SimBiology as Variable

= Expression. For example, if you have a differential equation for species x, dx
dt = k(y + z), write

the rate rule as: x = k * (y + z).

For more examples, see “Rate Rule Examples” on page 2-16.

2 Modeling

2-14

Evaluation Order of Rules

At the start of the simulation (that is, at simulation time = 0), SimBiology evaluates the initial
assignment and repeated assignment rules as a set of simultaneous constraints. SimBiology treats the
rules as a unified system of constraints and automatically reorders and evaluates them. The order in
which the rules appear in the model has no effect on the simulation results.

If a quantity is being modified by an assignment rule, the rule replaces initial value properties, such
as InitialAmount, Capacity, or Value. Similarly, a variant altering such quantities has no effect
because the value is superseded by the assignment rules.

SimBiology throws an error if the model has circular dependencies in the initial assignment and
repeated assignment rules. In other words, initial assignments and repeated assignments cannot have
a variable that is explicitly or implicitly referenced on both the left- and right-hand sides of the
equation.

For instance, you cannot create circular sets of assignments such as a = b + 1 and b = a + 1,
where a and b are explicitly referenced on both sides of the equation. An example of an implicit
reference is when an assignment rule references a species in concentration. In this case, the
compartment that contains the species is implicitly referenced.

Warning You might observe different simulation results with respect to initial assignments for
previous releases of SimBiology (R2017a or earlier). To recover the same simulation results at time =
0, as in R2017a or earlier, use the updateInitialAssignments function in the command line. If
you are using the SimBiology app, right-click the model from the Project Workspace and select
Remove Order Dependencies.

Conservation of Amounts During Simulation
During a simulation (that is, at simulation time > 0), SimBiology conserves species amounts rather
than concentrations if there are any changes to the volume of a compartment where the species
reside. In other words, if you have a repeated assignment rule or an event that changes the volume,
then you see the effect of conservation of species amounts at time > 0.

However, at the beginning of a simulation (that is, at simulation time = 0), the concept of amount
conservation does not apply because there are no changes before time = 0. Only one set of initial
conditions exists and SimBiology uses the conditions at the start of the simulation. Specifically, at
time = 0, SimBiology:

1 Initializes variables for species, compartments, and parameters using the corresponding
InitialAmount, Capacity, and Value properties.

2 Updates the values by replacing them with the corresponding alternate values from variants, if
any.

3 Updates the values by evaluating initial assignment and repeated assignment rules as a set of
simultaneous constraints. Therefore, the assignment rules replace initial values if model
quantities are being modified by such rules or variants.

Warning In previous releases (R2017a or earlier), if a repeated assignment changed a compartment
volume, SimBiology used the compartment capacity to determine the initial amount and conserved it

 Definitions and Evaluations of Rules in SimBiology Models

2-15

when the compartment volume changed at time = 0. In R2017b or later, SimBiology uses the
InitialAmount property of the species as the initial condition at time = 0. Consider the following
model.

m = sbiomodel('m1')
v = addcompartment(m,'v',10,'ConstantCapacity',0,'CapacityUnit','liter')
p = addparameter(m,'p','ValueUnit','liter')
r = addrule(m,'v = 100 * p','repeatedAssignment')
s = addspecies(v,'s',50,'InitialAmountUnit','milligram/liter')

In R2017a or earlier, SimBiology first calculated the initial amount of s as 50 milligram/liter *
10 liter = 500 milligram, and then applied the repeated assignment rule v = 100 liter. So,
the concentration of s was then calculated and reported as 500 milligram/100 liter = 5
milligram/liter at time = 0.

In R2017b or later, SimBiology uses the InitialAmount property of species s, and reports the initial
amount of s as 50 milligram/liter instead.

Writing Rule Expressions
Use MATLAB syntax to write a mathematical expression for a rule. Note that no semicolon or comma
is needed at the end of a rule expression. If your algebraic, repeated assignment, or rate rule
expression is not continuous or differentiable, see “Using Events to Address Discontinuities in Rule
and Reaction Rate Expressions” on page 2-28 before simulating your model.

Considerations When Imposing Constraints
Suppose that you have a species y whose amount is determined by the equation y = m * x - c. In
SimBiology, the algebraic rule to describe this constraint is written as m * x - c - y. If you want
to use this rule to determine the value of y, then m, x, and c must be variables or constants whose
values are known or determined by other equations. Therefore, you must ensure that the system of
equations is not overconstrained or underconstrained. For instance, if you have more equations than
unknowns, then the system is overconstrained. Conversely, if you have more unknowns than the
equations, then the system is underconstrained.

Tip The behavior of an underconstrained system could be fixed by adding additional rules or by
setting the ConstantValue or ConstantCapacity or ConstantAmount property of some of the
components in the model.

Rate Rule Examples
The following examples show how to create rate rules for different applications.

Create a Rate Rule for a Constant Rate of Change

This example shows how to increase the amount or concentration of a species by a constant value
using the zero-order rate rule. For example, suppose species x increases by a constant rate k. The
rate of change is:

dx/dt = k

2 Modeling

2-16

Set the initial amount of species x to 2, and the value of parameter k to 1. Use the following
commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');
c = addcompartment(m,'comp');
s = addspecies(m,'x','InitialAmount',2);
p = addparameter(m,'k','Value',1);
r = addrule(m,'x = k','RuleType','rate');
[t,sd,species] = sbiosimulate(m);
plot(t,sd);
legend(species)
xlabel('Time');
ylabel('Species Amount');

Alternatively, you could model a constant increase in a species using the Mass Action reaction null -
> x with the forward rate constant k.

clear
m = sbiomodel('m');
c = addcompartment(m,'comp');
s = addspecies(m,'x','InitialAmount',2);
r = addreaction(m,'null -> x');
kl = addkineticlaw(r,'MassAction');
p = addparameter(kl,'k','Value',1);
kl.ParameterVariableNames = 'k';
[t,sd,species] = sbiosimulate(m);
plot(t,sd);
legend(species)

 Definitions and Evaluations of Rules in SimBiology Models

2-17

xlabel('Time');
ylabel('Species Amount');

Create a Rate Rule for an Exponential Rate of Change

This example shows how to change the amount of a species similar to a first-order reaction using the
first-order rate rule. For example, suppose the species x decays exponentially. The rate of change of
species x is:

dx/dt = − k * x

The analytical solution is:

Ct = C0 * e−kt

where Ct is the amount of species at time t, and C0 is the initial amount. Use the following commands
to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');
c = addcompartment(m,'comp');
s = addspecies(m,'x','InitialAmount',2);
p = addparameter(m,'k','Value',1);
r = addrule(m,'x = -k * x','RuleType','rate');
[t,sd,species] = sbiosimulate(m);
plot(t,sd);

2 Modeling

2-18

legend(species);
xlabel('Time');
ylabel('Species Amount');

If the amount of a species x is determined by a rate rule and x is also in a reaction, x must have its
BoundaryCondition property set to true. For example, with a reaction a -> x and a rate rule
dx
dt = k * x, set the BoundaryCondition property of species x to true so that a differential rate term
is not created from the reaction. The amount of x is determined solely by a differential rate term from
the rate rule. If the BoundaryCondition property is set to false, you will get the following error
message such as Invalid rule variable 'x' in rate rule or reaction.

Create a Rate Rule to Define a Differential Rate Equation

Many mathematical models in the literature are described with differential rate equations for the
species. You could manually convert the equations to reactions, or you could enter the equations as
rate rules. For example, you could enter the following differential rate equation for a species C:

dC
dt = vi ‐ vdX C

Kc + C ‐ kdC

as a rate rule in SimBiology: C = vi - (vd*X*C)/(Kc + C) - kd*C

Create a Rate Rule for the Rate of Change That Is Determined by Another Species

 Definitions and Evaluations of Rules in SimBiology Models

2-19

This example shows how to create a rate rule where a species from one reaction can determine the
rate of another reaction if it is in the second reaction rate equation. Similarly, a species from a
reaction can determine the rate of another species if it is in the rate rule that defines that other
species. Suppose you have a SimBiology model with three species (a, b, and c), one reaction (a ->
b), and two parameters (k1 and k2). The rate equation is defined as b = − k1 * a, and rate rule is
dc/dt = k2 * a. The solution for the species in the reaction are:

a = aoe−k1t, b = ao(1− e−k1t).

Since the rate rule dc/dt = k2 * a is dependent on the reaction, dc/dt = k2(aoe−k1t). The solution is:

c = co + k2ao/k1(1− e−k1t)

Enter the following commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');
c = addcompartment(m,'comp');
s1 = addspecies(m,'a','InitialAmount',10,'InitialAmountUnits','mole');
s2 = addspecies(m,'b','InitialAmount',0,'InitialAmountUnits','mole');
s3 = addspecies(m,'c','InitialAmount',5,'InitialAmountUnits','mole');
rxn = addreaction(m,'a -> b');
kl = addkineticlaw(rxn,'MassAction');
p1 = addparameter(kl,'k1','Value',1,'ValueUnits','1/second');
rule = addrule(m,'c = k2 * a','RuleType','rate');
kl.ParameterVariableNames = 'k1';
p2 = addparameter(m,'k2','Value',1,'ValueUnits','1/second');
[t,sd,species] = sbiosimulate(m);
plot(t,sd);
legend(species);
xlabel('Time');
ylabel('Species Amount');

2 Modeling

2-20

See Also

More About
• “What is a SimBiology Model?” on page 2-2
• “Definitions and Evaluations of Reactions in SimBiology Models” on page 2-8
• “Events in SimBiology Models” on page 2-22
• “Component Usage” on page 2-41
• “Evaluation of Model Component Names in Expressions” on page 2-44

 Definitions and Evaluations of Rules in SimBiology Models

2-21

Events in SimBiology Models
In this section...
“Overview” on page 2-22
“Event Triggers” on page 2-22
“Event Functions” on page 2-22
“Specifying Event Triggers” on page 2-23
“Specifying Event Functions” on page 2-24
“Simulation Solvers for Models Containing Events” on page 2-25
“How Events Are Evaluated” on page 2-25
“Evaluation of Simultaneous Events” on page 2-26
“Evaluation of Multiple Event Functions” on page 2-27
“When One Event Triggers Another Event” on page 2-27
“Cyclical Events” on page 2-27
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” on page 2-28

Overview
In SimBiology, an event is a discrete transition in value of a quantity or expression in a model. This
discrete transition occurs when a customized condition becomes true. The condition can be a specific
time and/or a time-independent condition. Such conditions are defined in an Event object.

Event Triggers
An event object has a Trigger property that specifies a condition that must be true to trigger the
event to execute.

Typical event triggers are:

• A specific simulation time — Specify that the event must change the amounts or values of species
or parameters. For example, at time = 5 s, increase the amount of an inhibitor species above the
threshold to inhibit a given reaction.

• In response to state or changes in the system — Change amounts/values of certain species/
parameters in response to events that are not tied to any specific time. For example, when species
A reaches an amount of 30 molecules, double the value of reaction rate constant k. Or when
temperature reaches 42 °C, inhibit a particular reaction by setting its reaction rate to zero.

Note Currently, events cannot be triggered at time = 0. However, you can get the event to happen
just after time = 0 by using time > timeSmall as the event trigger where timeSmall can be a tiny
fraction of a second such as 1.0 picosecond.

Event Functions
An event has an EventFcns property that specifies what occurs when the event is triggered. Event
functions can range from simple to complex. For example, an event function might:

2 Modeling

2-22

• Change the values of compartments, species, or parameters.
• Double the value of a reaction rate constant.

Specifying Event Triggers
The Trigger property of an event specifies a condition that must become true for an event to execute.
Typically, the condition uses a combination of relational and logical operators to build a trigger
expression.

A trigger can contain the keyword time and relational operators to trigger an event that occurs at a
specific time during the simulation. For example, time >= x. For more information see the Trigger
property.

Use MATLAB syntax to write expressions for event triggers. Note that the expression must be a single
MATLAB statement that returns a logical. No semicolon or comma is needed at the end of an
expression. MATLAB uses specific operator precedence to evaluate trigger expressions. Precedence
levels determine the order in which MATLAB evaluates an expression. Within each precedence level,
operators have equal precedence and are evaluated from left to right. To find more information on
how relational and logical operators are evaluated see “Relational Operations” and “Logical (Boolean)
Operations”.

Some examples of triggers are:

Trigger Explanation
(time >= 5) && (speciesA < 1000) Execute the event when the following condition

becomes true:

Time is greater than or equal to 5, and speciesA is
less than 1000.

Tip Using a && (instead of &) evaluates the first part
of the expression for whether the statement is true or
false, and skips evaluating the second statement if
this statement is false.

(time >= 5) || (speciesA < 1000) Execute the event when the following condition
becomes true:

Time is greater than or equal to 5, or if speciesA is
less than 1000.

 Events in SimBiology Models

2-23

Trigger Explanation
(s1 >= 10.0) || (time >= 250) &&
(s2 < 5.0E17)

Execute the event when the following condition
becomes true:

Species, s1 is greater than or equal to 10.0 or, time
is greater than or equal to 250 and species s2 is less
than 5.0E17.

Because of operator precedence, the expression is
treated as if it were (s1 >=10.0) || ((time>=
250) && (s2<5.0E17)).

Thus, it is always a good idea to use parenthesis to
explicitly specify the intended precedence of the
statements.

((s1 >= 10.0) || (time >= 250)) &&
(s2 < 5.0E17)

Execute the event when the following condition
becomes true:

Species s1 is greater than or equal to 10 or time is
greater than or equal to 250, and species s2 is less
than 5.0E17.

((s1 >= 5000.0) && (time >= 250))
|| (s2 < 5.0E17)

Execute the event when the following condition
becomes true:

Species s1 is greater than or equal to 5000 and time
is greater than or equal to 250, or species s2 is less
than 5.0E17.

Tip If UnitConversion is on and your model has any event, non-dimensionalize any parameters used
in the event Trigger if they are not already dimensionless. For example, suppose you have a trigger
x > 1, where x is the species concentration in mole/liter. Non-dimensionalize x by scaling (dividing)
it with a constant such as x/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x
does not have to have the same unit as the constant x0, but must be dimensionally consistent with it.
For example, the unit of x can be picomole/liter instead of mole/liter.

Specifying Event Functions
The EventFcns property of an event specifies what occurs when the event is triggered. You can use
an event function to change the value of a compartment, species, or parameter, or you can specify
complex tasks by calling a custom function or script.

Use MATLAB syntax to define expressions for event functions. The expression must be a single
MATLAB assignment statement that includes =, or a cell array of such statements. No semicolon or
comma is needed at the end of the expression.

Following are rules for writing expressions for event functions:

2 Modeling

2-24

EventFcn Explanation
speciesA = speciesB When the event is executed, set the amount of speciesA

equal to that of speciesB.
k = k/2 When the event is executed, halve the value of the rate

constant k.
{'speciesA = speciesB','k =
k/2'}

When the event is executed, set the amount of speciesA
equal to that of speciesB, and halve the value of the rate
constant k.

kC = my_func(A,B,kC) When the event is executed, call the custom function
my_func(). This function takes three arguments: The first
two arguments are the current amounts of two species (A
and B) during simulation and the third argument is the
current value of a parameter, kC. The function returns the
modified value of kC as its output.

Simulation Solvers for Models Containing Events
To simulate models containing events, use a deterministic (ODE or SUNDIALS) solver or the
stochastic ssa solver. Other stochastic solvers do not support events. For more information, see
“Choosing a Simulation Solver” on page 4-7.

How Events Are Evaluated
Consider the example of a simple event where you specify that at 4s, you want to assign a value of 10
to species A.

 Events in SimBiology Models

2-25

At time = 4 s the trigger becomes true and the event executes. In the previous figure assuming
that 0 is false and 1 is true, when the trigger becomes true, the amount of species A is set to 10. In
theory, with a perfect solver, the event would be executed exactly at time = 4.00 s. In practice
there is a very minute delay (for example you might notice that the event is executed at time =
4.00001 s). Thus, you must specify that the trigger can become true at or after 4s, which is time
>= 4 s.

Trigger EventFcn
time >= 4 A = 10

The point at which the trigger becomes true is called a rising edge. SimBiology events execute the
EventFcn only at rising edges.

The trigger is evaluated at every time step to check whether the condition specified in the trigger
transitions from false to true. The solver detects and tracks falling edges, which is when the trigger
becomes false, so if another rising edge is encountered, the event is reexecuted. If a trigger is already
true before a simulation starts, then the event does not execute at the start of the simulation. The
event is not executed until the solver encounters a rising edge. Very rarely, the solver might miss a
rising edge. An example of this is when a rising edge follows very quickly after a falling edge, and the
step size results in the solver skipping the transition point.

If the trigger becomes true exactly at the stop time of the simulation, the event might or might not
execute. If you want the event to execute, increase the stop time.

Note Since the rising edge is instantaneous and changes the system state, there are two values for
the state at the same time. The simulation data thus contains the state before and after the event, but
both points are at the same time value. This leads to multiple values of the system state at a single
instant in time.

Evaluation of Simultaneous Events
When two or more trigger conditions simultaneously become true, the solver executes the events
sequentially in the order in which they are listed in the model. You can reorder events using the
reorder method. For example, consider this case.

Event Number Trigger EventFcn
1 SpeciesA >= 4 SpeciesB = 10
2 SpeciesC >= 15 SpeciesB = 25

The solver tries to find the rising edge for these events within a certain level of tolerance. If this
results in both events occurring simultaneously, then the value of SpeciesB after the time step in
which these two events occur, will be 25. If you reorder the events to reverse the event order, then
the value of SpeciesB after the time step in which these two events occur, will be 10.

Consider an example in which you include event functions that change model components in a
dependent fashion. For example, the event function in Event 2, stipulates that SpeciesB takes the
value of SpeciesC.

2 Modeling

2-26

Event Number Trigger EventFcn
1 SpeciesA >= 4 SpeciesC = 10
2 time >= 15 SpeciesB = SpeciesC

Event 1 and Event 2 might or might not occur simultaneously.

• If Event 1 and Event 2 do not occur simultaneously, when Event 2 is triggered, SpeciesB is
assigned the value that SpeciesC has at the time of the event trigger.

• If Event 1 and Event 2 occur simultaneously, the solver executes Event 1 first, then executes Event
2. In this example, if SpeciesC = 15 when the events are triggered, after the events are
executed, SpeciesC = 10 and SpeciesB = 10.

Evaluation of Multiple Event Functions
Consider an event function in which you specify that the value of a model component (SpeciesB)
depends on the value of model component (SpeciesA), but SpeciesA also is changed by the event
function.

Trigger EventFcn
time >= 4 {'SpeciesA = 10, SpeciesB = SpeciesA'}

The solver stores the value of SpeciesA at the rising edge and before any event functions are
executed and uses this stored value to assign SpeciesB its value. So in this example if SpeciesA =
15 at the time the event is triggered, after the event is executed, SpeciesA = 10 and SpeciesB =
15.

When One Event Triggers Another Event
In the next example, Event 1 includes an expression in the event function that causes Event 2 to be
triggered (assuming that SpeciesA has amount less than 5 when Event 1 is executed).

Event Number Trigger EventFcn
1 time >= 5 {'SpeciesA = 10, SpeciesB = 5'}
2 SpeciesA >= 5 SpeciesC = SpeciesB

When Event 1 is triggered, the solver evaluates and executes Event 1 with the result that SpeciesA
= 10 and SpeciesB = 5. Now, the trigger for Event 2 becomes true and the solver executes the
event function for Event 2. Thus, SpeciesC = 5 at the end of this event execution.

You can thus have event cascades of arbitrary length, for example, Event 1 triggers Event 2, which in
turn triggers Event 3, and so on.

Cyclical Events
In some situations, a series of events can trigger a cascade that becomes cyclical. Once you trigger a
cyclical set of events, the only way to stop the simulation is by pressing Ctrl+C. You lose any data
acquired in the current simulation. Here is an example of cyclical events. This example assumes that
Species B <= 4 at the start of the cycle.

 Events in SimBiology Models

2-27

Event Number Trigger EventFcn
1 SpeciesA > 10 {'SpeciesB = 5', 'SpeciesC = 1'}
2 SpeciesB > 4 {'SpeciesC = 10', 'SpeciesA = 1'}
3 SpeciesC > 9 {'SpeciesA = 15', 'SpeciesB = 1'}

Using Events to Address Discontinuities in Rule and Reaction Rate
Expressions
The solvers provided with SimBiology gives inaccurate results when the following expressions are not
continuous and differentiable:

• Repeated assignment rule
• Algebraic rule
• Rate rule
• Reaction rate

Either ensure that the previous expressions are continuous and differentiable or use events to reset
the solver at the discontinuity, as described in “Deterministic Simulation of a Model Containing a
Discontinuity” on page 4-110.

See Also

More About
• “What is a SimBiology Model?” on page 2-2
• “Model Simulation” on page 4-3
• “Conservation of Amounts During Simulation” on page 2-15
• “Definitions and Evaluations of Reactions in SimBiology Models” on page 2-8
• “Definitions and Evaluations of Rules in SimBiology Models” on page 2-13
• “Component Usage” on page 2-41
• “Evaluation of Model Component Names in Expressions” on page 2-44

2 Modeling

2-28

Variants in SimBiology Models
A variant stores alternate values of model parameters and initial conditions. You can use variants to
evaluate model behavior under different experimental or initial conditions, without having to change
the existing values or create additional models with the new values.

A variant lets you store an alternate value for any of the following model elements:

• Compartment Capacity property
• Species InitialAmount property
• Parameter Value property

Simulating using a variant does not alter the model original values. The values specified in the variant
are temporarily applied to the model during simulation. You can permanently replace the values in
your model with the values stored in the variant object by committing it to the model. When you use
multiple variants during a simulation, and there are duplicate specifications for a property value, the
last occurrence for the property value in the array of variants is used during simulation.

Creating Variants Programmatically
There are two ways to create variants or add variants to a model. To create a standalone variant that
is not attached to any model, use sbiovariant. To add a variant to an existing model, use
addvariant. Use the commit function to replace the values in your model with the variant values
permanently.

For illustrated examples of using variants, see the following.

• “Simulate Biological Variability of the Yeast G Protein Cycle Using Wild-Type and Mutant Strains”
on page 2-33

• “Simulate Model of Glucose-Insulin Response with Different Initial Conditions” on page 3-18

Creating Variants Graphically
You can interactively create and add variants using the SimBiology Model Builder app. For details,
see “Represent Biological Variability Using Variants” on page 1-28.

See Also
Variant object | sbiovariant | addvariant | commit | addcontent

More About
• “SimBiology Apps”
• “Represent Biological Variability Using Variants” on page 1-28

 Variants in SimBiology Models

2-29

Doses in SimBiology Models
Doses let you increase the amount of a species in a SimBiology model during simulation, either at
specific time points or regular intervals. For example, you can use a dose object to model an
instantaneous supply of a drug regimen during the simulation of a model. The increase in the amount
of a species occurs only during simulation and does not alter the species value permanently (that is,
the value in the model is not changed).

Representing Doses
There are two types of dose objects.

• ScheduleDose object — Applies a dose to a single species at a predefined list of time points
• RepeatDose object — Applies a dose to a single species at regular intervals

SimBiology dose objects support the following dosing types.

Dosing
Strateg
y

Description Dose Object Properties
Configuration

Bolus Instantaneous increase in the amount of drug in
the compartment

To create a bolus dose, set the Amount
and TargetName properties of a dose
object. You might also need to configure
other properties such as RepeatCount,
Interval, or scheduled dose times (Time)
if you are applying a series of doses. For
details on these properties, see
ScheduleDose object and
RepeatDose object.

Infusion Increase of the drug at a fixed rate over a period
of time, which is calculated from the dose
amount

Unlike a bolus dose, you also need to
specify the infusion rate (Rate property)
of the dose object.

Zero-
order

Increase of the drug at a fixed rate calculated
from the dose amount and dose duration

Unlike a bolus dose, you also need to
create a zero-order duration parameter
and specify the duration parameter
name
(DurationParameterNameproperty) of
the dose object.

First-
order

Increase of the drug via first-order absorption
kinetics

Unlike bolus, infusion, or zero-order, you
need to create an additional reaction for
the drug absorption.

Creating Doses Programmatically
There are two common ways to create dose objects using the command-line interface. One way is to
create a dose object using the sbiodose or adddose function. Another is to create dose objects
automatically from data containing dosing information. This first approach is useful when you want to
explore different dosing strategies through simulation. The second approach is useful if you already
have a data set with dosing information and plan to use this dosing information in your simulation or
parameter estimation.

2 Modeling

2-30

Create a Dose Object Using sbiodose or adddose

sbiodose creates a standalone dose object that is not attached to any model. You can apply a
standalone dose to different models during simulation by specifying it as a dosing argument for
sbiosimulate, or attach it to any model using adddose. You can also use it during parameter
estimation using sbiofit or sbiofitmixed.

adddose creates a dose object and adds it to a model. You must set its Active property to true to
apply the dose to the model during simulation.

The following examples show how to add a dose object to a one-compartment PK model using
sbiodose and set up the dose properties manually. Alternatively, you can use the built-in PK models
with different dosing types. For details, see “Create Pharmacokinetic Models” on page 5-14.

Dosing Strategy Example
Bolus “Add a Series of Bolus Doses to a One-Compartment Model”
Infusion “Add an Infusion Dose to a One-Compartment Model”
Zero-order “Increase Drug Concentration in a One-Compartment Model via

Zero-Order Dosing”
First-order “Increase Drug Concentration in a One-Compartment Model via

First-Order Dosing”

Create Dose Objects from Dosing Data

If you already have dosing data for one or more subjects or patients that you would like to use in your
parameter estimation, first create a groupedData object from your data set. Use createDoses
function to automatically generate an array of dose objects. You can then use the dose array during
parameter estimation using sbiofit or sbiofitmixed. For a complete workflow, see “Model the
Population Pharmacokinetics of Phenobarbital in Neonates” on page 4-154.

Creating Doses Graphically
You can interactively create and add doses using the SimBiology Model Builder app. For details, see
“Add Doses” on page 1-26.

Parameterized and Adaptive Doses
You can specify some of the properties of RepeatDose and ScheduleDose objects by using model
parameters. This parameterization of dose properties gives you more flexibility in modeling different
dosing applications, such as scaling the dose amount by body weight.

RepeatDose properties that you can parameterize are: Amount, Rate, Interval, StartTime,
RepeatCount, LagParameterName, and DurationParameterName. ScheduleDose properties that can
be parameterized are LagParameterName and DurationParameterName. You can set these
RepeatDose properties, except LagParameterName and DurationParameterName, to either a
numeric value or the name of a model-scoped parameter (as a character vector or string).

You can make doses adaptive to events, such as increasing the dose amount when the drug
concentration drops below some threshold. This adaptive feature of doses is useful for doses that are
not instantaneous. Consider an IV infusion for a drug being added at a fixed rate over a fixed
duration. If an event modifies a dose parameter while this dose is in progress, you have two options:

 Doses in SimBiology Models

2-31

• Stop the ongoing dose if any relevant parameter values change by setting the EventMode
property of the dose object to 'stop'.

• Continue the ongoing dose to completion, and updated parameter values affect only subsequent
doses by setting EventMode to 'continue'.

For details, see the EventMode property. For illustrated examples, see “Scale Dose Amount by Body
Weight” and “Change Dose Behavior In Response to Changes in Model Parameters”.

Units Validation on Parameterized Dose Properties

If you parameterize a dose property and enable dimensional analysis, the unit of the dose property
(dose unit) is validated. The dose unit is valid either if it is empty or if it exactly matches the unit of
the parameter. If the dose unit is invalid, SimBiology issues a warning and uses the unit of the
parameter instead. To remove the warning, set the dose unit to empty ('') or to the same unit as the
parameter unit.

Simulation Solvers for Models Containing Doses
To simulate models containing doses, use a deterministic (ODE or SUNDIALS) solver. Stochastic
solvers do not support doses. For details, see “Choosing a Simulation Solver” on page 4-7.

See Also
sbiodose | adddose | ScheduleDose object | RepeatDose object

More About
• “SimBiology Apps”

2 Modeling

2-32

Simulate Biological Variability of the Yeast G Protein Cycle
Using Wild-Type and Mutant Strains

This example shows how to create and apply a variant to the G protein model of a wild-type strain.
The variant represents a parameter value for the G protein model of a mutant strain. Thus, when you
simulate the model without applying the variant, you see results for the wild type strain, and when
you simulate the model with the variant, you see results for the mutant strain. This example uses the
model described in Model of the Yeast Heterotrimeric G Protein Cycle on page B-14.

The value of the parameter kGd is 0.11 for the wild-type strain and 0.004 for the mutant strain. To
represent the mutant strain, you will store an alternate value of 0.004 for the kGd parameter in a
variant object, and apply this variant when simulating the model.

For information on variants, see “Variants in SimBiology Models” on page 2-29.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model object.

sbioloadproject gprotein

You can create a variant of the original model by specifying a different parameter value for the kGd
parameter of the model. First, add a variant to the m1 model object.

v1 = addvariant(m1,'mutant_strain');

Next, add a parameter kGd with a value of 0.004 to the variant object v1.

addcontent(v1,{'parameter','kGd','Value',0.004});

Simulate the wild type model.

[t,x,names] = sbiosimulate(m1);

Simulate the mutant strain model by applying the variant.

[tV,xV,names] = sbiosimulate(m1,v1);

Plot and compare the simulated results.

subplot(1,2,1)
plot(t,x);
legend(names);
xlabel('Time');
ylabel('Amount');
title('Wild Type');

subplot(1,2,2)
plot(tV,xV);
legend(names);
xlabel('Time');
ylabel('Amount');
title('Mutant Strain');

 Simulate Biological Variability of the Yeast G Protein Cycle Using Wild-Type and Mutant Strains

2-33

2 Modeling

2-34

Create and Simulate a Model with a Custom Function
This example shows how to create a custom function and incorporate it in model simulation.

Overview
Prerequisites for the Example

This example assumes that you have a working knowledge of:

• MATLAB app
• Creating and saving MATLAB programs

About the Example Model

This example uses the model described in Model of the Yeast Heterotrimeric G Protein Cycle on page
B-14.

This table shows the reactions used to model the G protein cycle and the corresponding rate
parameters (rate constants) for each reaction. For reversible reactions, the forward rate parameter is
listed first.

No. Name Reaction1 Rate
Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa
4 Receptor synthesis and

degradation
R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1
6 G protein inactivation Ga -> Gd kGd
1 Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive G-alpha-
GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd complex, Ga = active G-
alpha-GTP

Assumptions of the Example

This example assumes that:

• An inhibitor (Inhib species) slows the inactivation of the active G protein (reaction 6 above, Ga –
> Gd).

• The variation in the amount of inhibitor (Inhib species) is defined in a custom function,
inhibvalex.

• The inhibitor (Inhib species) affects the reaction by changing the amount of rate parameter kGd.

About the Example

This example shows how to create and call a custom function in a SimBiology expression. Specifically,
it shows how to use a custom function in a rule expression.

 Create and Simulate a Model with a Custom Function

2-35

About Using Custom Functions in SimBiology Expressions

You can use custom functions in:

• Reaction rate expressions (ReactionRate property)
• Rule expressions (Rule property)
• Event expressions (EventFcns property or Trigger property)

The requirements for using custom functions in SimBiology expressions are:

• Create a custom function. For more information, see function.
• Change the current folder to the folder containing your custom MATLAB file. Do this by using the

cd command or by using the Current Folder field in the MATLAB desktop toolbar. Alternatively,
add the folder containing your file to the search path. Do this by using the addpath command or
see “Change Folders on Search Path”.

• Call the custom function in a SimBiology reaction, rule, or event expression.

Tip If your rule or reaction rate expression is not continuous and differentiable, see “Using Events to
Address Discontinuities in Rule and Reaction Rate Expressions” on page 2-28 before simulating your
model.

Create a Custom Function
The following procedure creates a custom function, inhibvalex, which lets you specify how the
inhibitor amount changes over time. The inputs are time, the initial amount of inhibitor, and a
parameter that governs the amount of inhibitor. The output of the function is the amount of inhibitor.

In the MATLAB desktop, select File > New > Script, to open the MATLAB Editor.

Copy and paste the following function declaration:

% inhibvalex.m
function Cp = inhibvalex(t, Cpo, kel)

% This function takes the input arguments t, Cpo, and kel
% and returns the value of the inhibitor Cp.
% You can later specify the input arguments in a
% SimBiology rule expression.
% For example in the rule expression, specify:
% t as time (a keyword recognized as simulation time),
% Cpo as a parameter that represents the initial amount of inhibitor,
% and kel as a parameter that governs the amount of inhibitor.

if t < 400
 Cp = Cpo*exp(-kel*(t));
else
 Cp = Cpo*exp(-kel*(t-400));
end

Save the file (name the file inhibvalex.m) in a directory that is on the MATLAB search path, or to a
directory that you can access.

2 Modeling

2-36

If the location of the file is not on the MATLAB search path, change the working directory to the file
location.

Load the Example Model
Load the gprotein example project, which includes the variable m1, a model object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Add the Custom Function to the Example Model
The following procedure creates a rule expression that calls the custom function, inhibvalex, and
specifies the three input values to this function.

Add a repeated assignment rule to the model that specifies the three input values to the custom
function, inhibvalex:

rule1 = addrule(m1, 'Inhib = inhibvalex(time, Cpo, Kel)',...
 'repeatedAssignment');

The time input is a SimBiology keyword recognized as simulation time

Create the two parameters used by the rule1 rule and assign values to them:

p1 = addparameter(m1, 'Cpo', 250);
p2 = addparameter(m1, 'Kel', 0.01);

Create the species used by the rule1 rule:

s1 = addspecies(m1.Compartments, 'Inhib');

Define a Rule to Change Parameter Value
The value of rate parameter kGd is affected by the amount of inhibitor present in the system. Add a
rule to the model to describe this action, but first change the ConstantValue property of the
parameter kGd so that it can be varied by a rule.

Change the ConstantValue property of the kGd parameter to false.

p3 = sbioselect(m1, 'Type', 'parameter', 'Name', 'kGd');
p3.ConstantValue = false;

Add a repeated assignment rule to the model to define how the kGd parameter is affected by the
Inhib species.

rule2 = addrule(m1, 'kGd = 1/Inhib', 'repeatedAssignment');

Add an Event to Reset the Solver at a Discontinuity and Simulate the
Model
The custom function, inhibvalex, introduces a discontinuity in the model when time = 400. To
ensure accurate simulation results, add an event to the model to reset the solver at the time of the

 Create and Simulate a Model with a Custom Function

2-37

discontinuity. Set the event to trigger at the time of the discontinuity (time = 400). The event does not
need to modify the model, so create an event function that multiplies a species value by 1.

addevent(m1, 'time>=400', 'G=1*G');

Configure the simulation settings (configset object) for the m1 model object to log all states
during the simulation.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'all';

Simulate the model.

simDataObj = sbiosimulate(m1);

Plot the results.

sbioplot(simDataObj);

The plot does not show the species of interest due to the wide range in species amounts/
concentrations.

Plot only the species of interest. Ga.

GaSimDataObj = selectbyname(simDataObj,'Ga');
sbioplot(GaSimDataObj);

2 Modeling

2-38

Notice the change in the profile of species Ga at time = 400 seconds (simulation time). This is the
time when the inhibitor amount is changed to reflect the re-addition of inhibitor to the model.

Plot only the inhibitor (Inhib species).

InhibSimDataObj = selectbyname(simDataObj,'Inhib');
sbioplot(InhibSimDataObj)

 Create and Simulate a Model with a Custom Function

2-39

See Also
function | cd | addpath

More About
• “Construct a Simple Model”
• “Change Folders on Search Path”

2 Modeling

2-40

Component Usage
SimBiology lets you find species, parameters, and compartments that are not used in a model. You
can also query how a particular quantity is used by other expressions such as a parameter being used
as a reaction rate constant or species being used in an event.

From the command line, use the findUnusedComponents function to look for unused model
components and the findUsages function to see how a component is used in expressions. If you are
using the SimBiology Model Builder app, in the Browser pane, expand Model Assessment Tools.
Then click Unused to see a list of unused quantities. To look for usages of a quantity, click the
quantity block in the diagram or in the browser table. Then in the Property Editor pane, look at the
Usages section.

Species Usage
A species is used when it is referenced in any of the following properties of other components:

• The Reaction or ReactionRate property of a Reaction object,
• The ParameterVariableNames or SpeciesVariableNames property of a KineticLaw object,
• The Rule property of a Rule object,
• The Trigger or EventFcns property of an Event object,
• The Expression property of an observable object, and
• The TargetName property of a ScheduleDose object or RepeatDose object.

Use the object method findUsages to find out how a species is used.

Parameter Usage
A parameter is used when it is referenced in any of the following properties of other components:

• The ReactionRate property of a Reaction object,
• The ParameterVariableNames property of a KineticLaw object,
• The Rule property of a Rule object,
• The Trigger or EventFcns property of an Event object,
• The Expression property of an observable object,
• The Content property of a Variant object, and
• The DurationParameterName or LagParameterName property of a ScheduleDose object or

RepeatDose object.
• The Amount, Rate, Interval, StartTime, or RepeatCount property of a RepeatDose object.

Use the object method findUsages to find out how a parameter is used.

Compartment Usage
A compartment is used when it is referenced in any of the following properties of other components:

• The Parent property of a Species object,

 Component Usage

2-41

• The Owner property of a Compartment object,
• The ReactionRate property of a Reaction object,
• The ParameterVariableNames property of a KineticLaw object,
• The Rule property of a Rule object,
• The Trigger or EventFcns property of an Event object,
• The Expression property of an observable object, and
• The Content property of a Variant object.

Use the object method findUsages to find out how a compartment is used.

Observable Usage
An observable object is used when it is referenced in the Expression property of another
observable.

Use the object method findUsages to find out how an observable object is used.

Unit and UnitPrefix Usage
A unit or unit prefix is used when it is referenced in any of the following properties of other
components:

• The Composition property of all units in the BuiltInLibrary and UserDefinedLibrary,
• The Units property of a species, compartment, parameter, or observable object in the specified

models,
• The TimeUnits property of all specified doses,
• The AmountUnits property of all specified doses, and
• The RateUnits property of all specified doses.

Use the object method findUsages to find out how a Unit or UnitPrefix object is used.

Abstract Kinetic Law Usage
An abstract kinetic law object aklObj can only be used by a Reaction object robj. It is used when:

• The KineticLaw property of the reaction object is not empty, and
• robj.KineticLaw.KineticLawName matches the name of the abstract kinetic law

aklObj.Name.

Use the object method findUsages to find out how an AbstractKineticLaw object is used.

See Also
findUnusedComponents

More About
• “What is a SimBiology Model?” on page 2-2

2 Modeling

2-42

• “SimBiology Apps”
• “Evaluation of Model Component Names in Expressions” on page 2-44

 Component Usage

2-43

Evaluation of Model Component Names in Expressions
SimBiology model components on page 2-2 include quantities and expressions. You can refer to model
quantities (compartments, species, and parameters) and observables by their names in an expression,
such as a reaction or an assignment equation. Follow these guidelines when you name model
components or referencing their names in expressions. When evaluating a name that matches
different quantities, SimBiology resolves it by following precedence rules.

Guidelines for Naming Model Components
• Model, parameter, and observable names cannot contain brackets [] and cannot be empty, the

word time, or all whitespace.
• Compartment, species, and observable names cannot contain the characters ->, <->, [or] and

cannot be empty, the word null, or the word time. However, a name can contain the words null
and time within the name, such as nullDrug.

• Reaction, event, and rule names cannot contain brackets [] and cannot be the word time.
• You cannot set a reaction name to an empty character vector ('') or empty string ("").

Note SimBiology removes any leading or trailing white spaces from model component names.

Warning Starting in R2022b:

• SimBiology issues a warning if multiple model components (model, compartment, species,
parameter, reaction, rule, event, observable, dose, and variant) have the same name. In a future
release, within a single model, these components will be required to have unique names even
when they are of different types with the following two exceptions:

• Species in different compartments can have the same name.
• Parameters can have the same name if they are scoped to different parents. Specifically, you

can use the same name for a model-scoped parameter and reaction-scoped parameters, where
each reaction-scoped parameter belongs to a different reaction.

The purpose of this naming restriction is to ensure that every model component can be
unambiguously referenced by its unique name within a model. For details on how to reference
model component names in expressions, see “Guidelines for Referencing Names in Expressions”
on page 2-45.

• To disambiguate duplicate names from your model, use the updateDuplicateNames function at
the command line. The function takes in a SimBiology model as an input and updates the
component names as necessary. You can also specify optional outputs, such as a logical flag to
check whether any update occurred, a list of model changes, and a copy of the original model
before any updates were made.

• The updateDuplicateNames function disambiguates the duplicate names by adding a suffix
"_N", where N is the first positive integer that results in a unique name. If there is an existing
suffix, N will be incremented from that suffix. For example, if there are two model components
named x_3, the function updates one of the names to x_4. If the existing suffix has leading zeros,
the function omits the zeros in the new name. For instance, if x_003 is a duplicate name, it gets
renamed to x_4. However, the function assumes that names with leading zeros and without
leading zeros are different. For instance, x_005 and x_5 are considered to be different names.

2 Modeling

2-44

Tip To get a list of model components with the same name, do one of the following:

• At the command line, enter sbioselect(model,Name="dupName"), where model is a
SimBiology model and dupName is the duplicate name.

• In SimBiology Model Builder, you can filter the components by entering the duplicate name in the
Browser pane.

Guidelines for Referencing Names in Expressions
• If the quantity name is not a valid MATLAB variable name, you must enclose the name in brackets

when referring to it in an expression. For example, if the name of a species is DNA polymerase+,
write [DNA polymerase+].

• If you have multiple species with the same name in different compartments, you must qualify the
name by referring to the name of the compartment that contains the species. For example, the
qualified name nucleus.[DNA polymerase+] refers to the DNA polymerase+ species that
resides in the nucleus compartment.

Precedence Rules for Evaluating Quantity Names

If a name referenced in an expression matches multiple quantities or observable objects,
SimBiology evaluates the expression using precedence rules. The rules depend on whether the name
is referenced in a reaction or other expressions that are not reactions.

For Reactions

When a reaction refers to a name that matches different quantities, SimBiology evaluates the name as
the first quantity with a matching name in this order: species, parameter scoped to the reaction,
compartment, or parameter scoped to the model.

For Other Expressions

There are different types of expressions that are not reactions, namely rules, events, and observables.
Rules include initial and repeated assignment equations, algebraic equations, and differential rate
equations. An event contains expressions that represent an event trigger and one or more event
functions to model discrete transitions in the values of quantities or expressions in the model. An
observable object is a mathematical expression that lets you perform post-simulation calculations.

When a nonreaction expression refers to a name that matches different quantities, SimBiology
evaluates the name as the first quantity with a matching name in this order: species, compartment, or
parameter scoped to the model. An active observable expression can reference another active
observable object by its name as long as there are no circular dependencies (or algebraic loops).

 Evaluation of Model Component Names in Expressions

2-45

See Also
Name

More About
• “What is a SimBiology Model?” on page 2-2
• “Definitions and Evaluations of Reactions in SimBiology Models” on page 2-8
• “Definitions and Evaluations of Rules in SimBiology Models” on page 2-13
• “Events in SimBiology Models” on page 2-22
• “Component Usage” on page 2-41

2 Modeling

2-46

SimBiology Model Matching Policy
To report the differences on page 2-49 between the source and target models, SimBiology first
decides which components of the models match one another. The matching process includes the
following criteria:

• Criterion 1 – Two components are considered the same if both are derived from one single model.
For instance, duplicated models in the app, or the same models saved to and loaded from different
versions of SBPROJ files, are derived from one single model.

• Criterion 2 – Two components are considered equivalent if criterion 1 is not applicable to these
components but they can be uniquely matched by one of the corresponding properties, such as
Name, Reaction, Rule, and so on.

The following sections describe how SimBiology matches different types of model components.

Model Quantities
Model quantities include species, compartments, and parameters. SimBiology first matches them
using criterion 1. Then, it matches all the remaining quantities using criterion 2. That is, components
of the same type that have not yet been matched are compared by the Name property. However,
parameters are matched only if they are scoped to matching reactions or if one of the parameters is
model-scoped.

Model Expressions
Expression-based components are reactions, rules, events, and observables.

SimBiology matches these components using criterion 1 first. Then it matches all the remaining
expression-based components using criterion 2. That is, components of the same type that have not
yet been matched are compared by the Name property and one of the following properties for
reactions, rules, and events:

• Reaction property for reactions
• Rule property for rules
• Trigger property for events

SimBiology accounts for the changes in these properties (the expression strings) that are caused by
the dependent changes. The dependent changes are the side effects of changing the Name, Parent,
or Owner properties of a quantity component. When these properties change, they trigger changes in
other components referencing the quantity. For instance, the Reaction property of a reaction C1.S1
-> C1.S2 changes to C1.S3 -> C1.S2 when you rename the species S1 residing in a compartment
C1 to S3. Such changes are not included in the comparison results of sbiodiff. If you are using the
Comparison tool on page 2-49, such changes are automatically hidden.

For kinetic law objects, they match if their parent reactions match.

Doses and Variants
Variants and doses are matched using criterion 1 first. Then the remaining doses and variants are
matched using criterion 2. That is, components of the same type that have not yet been matched are
compared by the Name property.

 SimBiology Model Matching Policy

2-47

Note that for doses, the subtype (RepeatDose or ScheduleDose) must match also.

Variants can contain multiple rows in their corresponding Content property. Each row of the Content
cell array includes values for the component type, component name, property name, and property
value. When comparing variants with such content, SimBiology matches the property names of the
rows and reports the last occurrence if there are duplicate rows with the same component type and
component name.

Determine Differences in Component Properties
After model components are matched, SimBiology next determines if the property values of matching
components are different. All properties (except the UserData property) of each model component
are included in the comparison results.

If either model has a diagram, SimBiology also reports any graphical differences between the
diagrams. Specifically, it includes the following properties of graphical blocks of the corresponding
model components and graphical lines.

• Graphical block properties: Position, Visible, Pin, Shape, Rotate, FontName, FontSize,
FontWeight, TextLocation, FaceColor, EdgeColor, and TextColor.

• Graphical line properties: Color and Width.

Each of these graphical block properties is reported as a property of the corresponding model
component in the comparison results. Similarly, if species blocks have any clones, the clones are also
matched and reported as properties of the parent block.

See Also
sbiodiff | SimBiology.DiffResults | getComponents | visdiff

Related Examples
• “Compare SimBiology Models” on page 2-49
• “What is a SimBiology Model?” on page 2-2

2 Modeling

2-48

Compare SimBiology Models
You can compare two SimBiology models and generate a list of differences between them. If the
models contain diagram (graphical) information, the comparison results also include differences for
the model diagrams. For details on how SimBiology compares and matches model components, see
“SimBiology Model Matching Policy” on page 2-47.

Compare Models Programmatically
Use sbiodiff at the command line. It returns a SimBiology.DiffResults object that contains
the comparison results.

Compare Models in Comparison Tool
To view the comparison results in the Comparison tool, do one of the following:

• At the command line, call visdiff(diffResults), where diffResults is the
SimBiology.DiffResults object returned by sbiodiff.

• At the command line, call visdiff with two SBPROJ files as inputs.
• On the Home tab of the MATLAB desktop, click Compare and select two SBPROJ files.
• Select two SBPROJ files in the Current Folder panel of the MATLAB desktop. Right-click and

select Compare Selected Files/Folders.

The next figure shows an example of the Comparison tool comparing two models side by side. It uses
different colors to indicate the insertion, deletion, and modification of model components. The tool
lists the components in the order that they appear in the corresponding model.

 Compare SimBiology Models

2-49

The Previous and Next buttons in the toolstrip let you step through each difference. Use the Models
button to switch to different models if the input SBPROJ files contain multiple models. The Refresh
button lets you refresh the comparison results for two models that are currently shown in the
comparison tool. Use the Filter menu to customize the comparison results. The middle section of the
app contains the tree of the matched model components. The bottom section shows the property
values of the model components selected in the middle section.

2 Modeling

2-50

By default, the tool hides the unchanged properties, dependent changes, and unchanged components.
The Filter menu gives additional criteria to fine-tune the results. For example, you can hide the
quantity-based components (compartment, species, and parameters), the expression-based
components (reactions, rules, events, and observables), and graphical changes.

Note The dependent changes are the side effects of changing the Name, Parent, or Owner
properties of a quantity component. When these properties change, they trigger changes in other
components referencing the quantity component. For instance, the Reaction property of a reaction
C1.S1 -> C1.S2 changes to C1.S3 -> C1.S2 when you rename the species S1 residing in a
compartment C1 to S3. The app hides such dependent changes by default.

Git Integration
You can compare different versions of SBPROJ files that you have in a Git repository from within
MATLAB as shown next. For details on setting up a Git repository, see “Use Git in MATLAB”.

 Compare SimBiology Models

2-51

2 Modeling

2-52

See Also
sbiodiff | SimBiology.DiffResults | getComponents | visdiff

Related Examples
• “SimBiology Model Matching Policy” on page 2-47

 Compare SimBiology Models

2-53

Structural Analysis

• “Model Verification” on page 3-2
• “Conserved Moiety Determination” on page 3-4
• “Determine Conserved Moieties in SimBiology” on page 3-6
• “Determining the Adjacency Matrix for a Model” on page 3-9
• “Determining the Stoichiometry Matrix for a Model” on page 3-11
• “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on page 3-13
• “Troubleshooting Simulation Problems” on page 3-15
• “Simulate Model of Glucose-Insulin Response with Different Initial Conditions” on page 3-18
• “Combine Simulation Scenarios in SimBiology” on page 3-24

3

Model Verification

In this section...
“What is Model Verification?” on page 3-2
“When to Verify a Model” on page 3-2
“Verifying That a Model Has No Warnings or Errors” on page 3-2
“Model Verification Example” on page 3-3
“View Model Equations” on page 3-3

What is Model Verification?
SimBiology has functionality that helps you find and fix warnings that you might need to be aware of,
and errors that would prevent you from simulating and analyzing your model.

Model verification checks many aspects of the model including:

• Model structure
• Validity of mathematical expressions
• Dimensional analysis
• Unit conversion issues

When to Verify a Model
You can check your model for warnings and errors at any time when constructing or working with
your model. For example:

• Verify your model during construction to ensure that the model is complete.
• Verify the model after changing simulation settings, dimensional analysis settings, or unit

conversion settings.

Analyses such as simulation, scanning, and parameter fitting automatically verify a model.

Tip Repeatedly running a task using a different variant or setting a different value for the
InitialAmount property of a species, the Capacity property of a compartment, or the Value
property of a parameter, generates warnings only the first time you simulate a model. Use the
verification functionality described in this section to display warnings again.

Verifying That a Model Has No Warnings or Errors
Use the verify method to see a list of warnings and errors in your model.

Use the sbiolastwarning and sbiolasterror functions to return the last warning and last error
encountered during verification.

3 Structural Analysis

3-2

Model Verification Example
1 Create a model with a reaction that references K1, an undefined parameter:

% Create a model named example
model = sbiomodel('example');
% Add a compartment named cell to model
compartment = addcompartment(model, 'cell');
% Add two species, A and B, to the cell compartment
species_1 = addspecies(compartment, 'A');
species_2 = addspecies(compartment, 'B');
% Add the reaction A -> B to the model
reaction = addreaction(model, 'A -> B', 'ReactionRate', 'K1');

2 Verify the model to check for warnings and errors:

verify(model)

??? --> Error reported from Expression Validation:
The name 'K1' in reaction 'A -> B' does not refer to any in-scope species,
parameters, or compartments.

3 Address the error by defining the parameter K1:

% Add a parameter, K1, to the model with a value of 3
parameter = addparameter(model, 'K1', 3);

4 Verify the model again:

verify(model)

View Model Equations
As you verify the model, you can view the underlying system of equations of the model. Viewing
model equations is useful for:

• Publishing purposes
• Model debugging

For details, see getequations or “Show Model Equations and Initial Conditions” on page 1-31.

 Model Verification

3-3

Conserved Moiety Determination
In this section...
“Introduction to Moiety Conservation” on page 3-4
“Algorithms for Conserved Cycle Calculations” on page 3-4
“More About” on page 3-5

Introduction to Moiety Conservation
Conserved moieties represent quantities that are conserved in a system, regardless of the individual
reaction rates.

Consider this simple network:

reaction 1: A -> B
reaction 2: B -> C
reaction 3: C -> A

Regardless of the rates of reactions 1, 2, and 3, the quantity A + B + C is conserved throughout the
dynamic evolution of the system. This conservation is termed structural because it depends only on
the structure of the network, rather than on details such as the kinetics of the reactions involved. In
the context of systems biology, such a conserved quantity is sometimes referred to as a conserved
moiety. A typical, real-world example of a conserved moiety is adenine in its various forms ATP, ADP,
AMP, etc. Finding and analyzing conserved moieties can yield insights into the structure and function
of a biological network. In addition, for the quantitative modeler, conserved moieties represent
dependencies that can be removed to reduce a system’s dimensionality, or number of dynamic
variables. In the previous simple network, in principle, it is only necessary to calculate the time
courses for A and B. After this is done, C is fixed by the conservation relation.

Algorithms for Conserved Cycle Calculations
The sbioconsmoiety function analyzes conservation relationships in a model by calculating a
complete set of linear conservation relations for the species in the model object.

sbioconsmoiety lets you specify one of three algorithms based on the nature of the model and the
required results:

• 'qr' — sbioconsmoiety uses an algorithm based on QR factorization. From a numerical
standpoint, this is the most efficient and reliable approach.

• 'rreduce' — sbioconsmoiety uses an algorithm based on row reduction, which yields better
numbers for smaller models. This is the default.

• 'semipos' — sbioconsmoiety returns conservation relations in which all the coefficients are
greater than or equal to zero, permitting a more transparent interpretation in terms of physical
quantities.

For larger models, the QR-based method is recommended. For smaller models, row reduction or the
semipositive algorithm may be preferable. For row reduction and QR factorization, the number of
conservation relations returned equals the row rank degeneracy of the model object's stoichiometry
matrix. The semipositive algorithm can return a different number of relations. Mathematically
speaking, this algorithm returns a generating set of vectors for the space of semipositive
conservation relations.

3 Structural Analysis

3-4

In some situations, you may be interested in the dimensional reduction of your model via
conservation relations. Recall the simple model, presented in “Introduction to Moiety Conservation”
on page 3-4, that contained the conserved cycle A + B + C. Given A and B, C is determined by the
conservation relation; the system can be thought of as having only two dynamic variables rather than
three. The 'link' algorithm specification caters to this situation. In this case, sbioconsmoiety
partitions the species in the model into independent and dependent sets and calculates the
dependence of the dependent species on the independent species.

Consider a general system with an n-by-m stoichiometry matrix N of rank k, and suppose that the rows
of N are permuted (which is equivalent to permuting the species ordering) so that the first k rows are
linearly independent. The last n – k rows are then necessarily dependent on the first k rows.

The matrix N can be split into the following independent and dependent parts,

N =
NR
ND

where R in the independent submatrix NR denotes 'reduced'; the (n – k)-by-k link matrix L0 is defined
so that ND = L0*NR. In other words, the link matrix gives the dependent rows ND of the stoichiometry
matrix, in terms of the independent rows NR. Because each row in the stoichiometry matrix
corresponds to a species in the model, each row of the link matrix encodes how one dependent
species is determined by the k independent species.

More About
For examples of determining conserved moieties, see:

• “Determine Conserved Moieties in SimBiology” on page 3-6
• “Finding Conserved Quantities in a Pathway Model” on page 4-146

 Conserved Moiety Determination

3-5

Determine Conserved Moieties in SimBiology

Load the Goldbeter Mitotic Oscillator project, which includes the variable m1, a model object:

sbioloadproject Goldbeter_Mitotic_Oscillator_with_reactions.sbproj

Display the species information.

m1.Compartments.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed C 0.01
 2 unnamed M 0.01
 3 unnamed Mplus 0.99
 4 unnamed X 0.01
 5 unnamed Xplus 0.99
 6 unnamed V1 0
 7 unnamed V3 0
 8 unnamed AA 0

Display the reaction information.

m1.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 AA -> C
 2 C -> AA
 3 C + X -> AA + X
 4 Mplus + C -> M + C
 5 M -> Mplus
 6 Xplus + M -> X + M
 7 X -> Xplus

Use the simplest form of the sbioconsmoiety function and display the results. The default call to
sbioconsmoiety, in which no algorithm is specified, uses an algorithm based on row reduction.

[g sp] = sbioconsmoiety(m1)

g = 3×6

 0 1 1 0 0 0
 0 0 0 1 1 0
 0 0 0 0 0 1

sp = 6x1 cell
 {'C' }
 {'M' }
 {'Mplus'}

3 Structural Analysis

3-6

 {'X' }
 {'Xplus'}
 {'AA' }

The columns in g are labeled by the species sp. Thus the first row describes the conserved
relationship, M + Mplus. Notice that the third row indicates that the species AA is conserved, which
is because AA is constant (ConstantAmount = 1).

Call sbioconsmoiety again, this time specifying the semipositive algorithm to explore conservation
relations in the model. Also specify to return the conserved moieties in a cell array of character
vectors, instead of a matrix.

cons_rel = sbioconsmoiety(m1,'semipos','p')

cons_rel = 3x1 cell
 {'AA' }
 {'X + Xplus'}
 {'M + Mplus'}

Use the 'link' option to study the dependent and independent species.

[SI,SD,L0,NR,ND] = sbioconsmoiety(m1, 'link');

Show the list of independent species.

SI

SI = 3x1 cell
 {'C'}
 {'M'}
 {'X'}

Show the list of dependent species.

SD

SD = 3x1 cell
 {'Mplus'}
 {'Xplus'}
 {'AA' }

Show the link matrix relating SD and SI by converting the L0 output from a sparse matrix to a full
matrix.

L0_full = full(L0)

L0_full = 3×3

 0 -1.0000 0
 0 0 -1.0000
 0 0 0

Show the independent stoichiometry matrix, NR by converting the NR output from a sparse matrix to
a full matrix.

 Determine Conserved Moieties in SimBiology

3-7

NR_full = full(NR)

NR_full = 3×7

 1 -1 -1 0 0 0 0
 0 0 0 1 -1 0 0
 0 0 0 0 0 1 -1

Show the dependent stoichiometry matrix, ND by converting the ND output from a sparse matrix to a
full matrix.

ND_full = full(ND)

ND_full = 3×7

 0 0 0 -1 1 0 0
 0 0 0 0 0 -1 1
 0 0 0 0 0 0 0

See Also
sbioconsmoiety

3 Structural Analysis

3-8

Determining the Adjacency Matrix for a Model
In this section...
“What Is an Adjacency Matrix?” on page 3-9
“Get Adjacency Matrix of SimBiology Model” on page 3-9

What Is an Adjacency Matrix?
An adjacency matrix is a square matrix that provides information on reactants and products of
reactions in a model. It lets you easily determine:

• The reactants and products in a specific reaction in a model
• The reactions that a specific species is part of, and whether the species is a reactant or product in

that reaction

An adjacency matrix is an N-by-N matrix, where N equals the total number of species and reactions in
a model. Each row corresponds to a species or reaction, and each column corresponds to a species or
reaction.

The matrix indicates which species and reactions are involved as reactants and products:

• Reactants are represented in the matrix with a 1 at the appropriate location (row of species,
column of reaction). Reactants appear above the diagonal.

• Products are represented in the matrix with a 1 at the appropriate location (row of reaction,
column of species). Products appear below the diagonal.

• All other locations in the matrix contain a 0.

For example, if a model object contains one reaction equal to A + B -> C and the Name property
of the reaction is R1, the adjacency matrix is:

 A B C R1
 A 0 0 0 1
 B 0 0 0 1
 C 0 0 0 0
 R1 0 0 1 0

Get Adjacency Matrix of SimBiology Model

Load the lotka model.

m1 = sbmlimport("lotka.xml");

Get the adjacency matrix of the model.

[M,Headings] = getadjacencymatrix(m1)

M =
 (5,1) 1
 (5,2) 1
 (6,3) 1
 (7,4) 1

 Determining the Adjacency Matrix for a Model

3-9

 (1,5) 1
 (2,5) 1
 (2,6) 1
 (3,6) 1
 (3,7) 1

Headings = 7x1 cell
 {'x' }
 {'y1' }
 {'y2' }
 {'z' }
 {'Reaction1'}
 {'Reaction2'}
 {'Reaction3'}

See Also
getadjacencymatrix

More About
• “Determining the Stoichiometry Matrix for a Model” on page 3-11

3 Structural Analysis

3-10

Determining the Stoichiometry Matrix for a Model
In this section...
“What Is a Stoichiometry Matrix?” on page 3-11
“Get Stoichiometry Matrix of SimBiology Model” on page 3-11

What Is a Stoichiometry Matrix?
A stoichiometry matrix provides stoichiometric information about reactants and products in model
reactions. It lets you easily determine:

• The reactants and products in a specific reaction in a model, including the stoichiometric value of
the reactants and products

• The reactions that a specific species is part of, and whether the species is a reactant or product in
that reaction

A stoichiometry matrix is an M-by-R matrix, where M equals the total number of species in a model,
and R equals the total number of reactions in a model. Each row corresponds to a species, and each
column corresponds to a reaction.

The matrix indicates which species and reactions are involved as reactants and products:

• Reactants are represented in the matrix with their stoichiometric value at the appropriate location
(row of species, column of reaction). Reactants appear as negative values.

• Products are represented in the matrix with their stoichiometric value at the appropriate location
(row of species, column of reaction). Products appear as positive values.

• All other locations in the matrix contain a 0.

For example, consider a model object containing two reactions. One reaction (named R1) is equal
to 2 A + B -> 3 C, and the other reaction (named R2) is equal to B + 3 D -> 4 A. The
stoichiometry matrix is:

 R1 R2
A -2 4
B -1 -1
C 3 0
D 0 -3

Get Stoichiometry Matrix of SimBiology Model

Load the lotka model.

m1 = sbmlimport('lotka.xml');

Get the stoichiometry matrix of the model.

[M,objSpecies,objReactions] = getstoichmatrix(m1)

M =
 (2,1) 1
 (2,2) -1

 Determining the Stoichiometry Matrix for a Model

3-11

 (3,2) 1
 (3,3) -1
 (4,3) 1

objSpecies = 4x1 cell
 {'x' }
 {'y1'}
 {'y2'}
 {'z' }

objReactions = 3x1 cell
 {'Reaction1'}
 {'Reaction2'}
 {'Reaction3'}

See Also
getstoichmatrix

More About
• “Determining the Adjacency Matrix for a Model” on page 3-9

3 Structural Analysis

3-12

Selecting Absolute Tolerance and Relative Tolerance for
Simulation

In this section...
“Algorithm” on page 3-13
“Absolute Tolerance Scaling” on page 3-13

SimBiology uses AbsoluteTolerance and RelativeTolerance to control the accuracy of
integration during simulation. Specifically, AbsoluteTolerance is used to control the largest allowable
absolute error at any step during simulation. It controls the error when a solution is small. Intuitively,
when the solution approaches 0, AbsoluteTolerance is the threshold below which you do not
worry about the accuracy of the solution since it is effectively 0. RelativeTolerance controls the
relative error of a single step of the integrator. Intuitively, it controls the number of significant digits
in a solution, except when it is smaller than the absolute tolerance, and −log10 RelativeTolerance is
the number of correct digits. For more tips on tolerances, see “Troubleshooting Simulation Problems”
on page 3-15.

Algorithm
At each simulation step i, the solver estimates the local error e in the state j of the simulation. The
solver reduces the size of time step i until the error of the state satisfies:

e i, j ≤ max RelativeTolerance ∗ y i, j , AbsoluteTolerance i, j

Thus at state values of larger magnitude, the accuracy is determined by RelativeTolerance. As
the state values approach zero, the accuracy is controlled by AbsoluteTolerance.

The correct choice of values for RelativeTolerance and AbsoluteTolerance varies depending
on the problem. The default values may work for first trials of the simulation. As you adjust the
tolerances, consider that there are trade-offs between speed and accuracy:

• If the simulation takes too long, you can increase (or loosen) the values of RelativeTolerance
and AbsoluteTolerance at the cost of some accuracy.

• If the results seem inaccurate, you can decrease (or tighten) the relative tolerance values by
dividing with 10N, where N is a real positive number. But this tends to slow down the solver.

• If the magnitude of the state values is high, you can decrease the relative tolerance to get more
accurate results.

Absolute Tolerance Scaling
How SimBiology uses AbsoluteTolerance to determine the error depends on whether the
AbsoluteToleranceScaling property is enabled. By default, AbsoluteToleranceScaling is enabled
which means each state has its own absolute tolerance that may increase over the course of
simulation:

AbsoluteTolerance i, j = CSAbsTol * Scale i, j

CSAbsTol is the AbsoluteTolerance property defined in SolverOptions of the active
configuration set object.

 Selecting Absolute Tolerance and Relative Tolerance for Simulation

3-13

For a state that has a nonzero initial value, the scale is the maximum magnitude over the state, as
seen over the simulation thus far:

Scale i, j = max y(1: i, j)

For a state that has an initial value of zero, the scale is estimated as the state value after taking a trial
step of size AbsoluteToleranceStepSize using the Euler method. Let us call this value ye(j). Then:

Scale i, j = max ye(j); y(2: i, j)

If an initial state is zero and has no dynamic at time = 0, then:

AbsoluteTolerance i, j = CSAbsTol

Doses, events, and initial assignment rules at simulation time = 0 are not considered when
calculating absolute tolerance scaling.

See Also

More About
• “Model Simulation” on page 4-3
• “Choosing a Simulation Solver” on page 4-7
• “Ordinary Differential Equations”
• “Troubleshooting Simulation Problems” on page 3-15

3 Structural Analysis

3-14

Troubleshooting Simulation Problems
SimBiology uses ODE solvers for model simulation on page 4-3. Solver errors can cause simulation
problems. Many solver errors relate to the stiffness of the model and the relative and absolute
tolerances. As a result, the simulation can take long. You might also see one of the following error
messages, indicating that the solver is not able to solve the problem within the tolerances.

• Integration tolerance not met
• CVODES returned -4 from module CVODES function CVode: At t = ... and h = ... the corrector

convergence test failed repeatedly or with |h| = hmin.

You might also see one or more of the following warning messages, which are precursors to potential
solver tolerance issues.

• The right-hand side of the system of SimBiology ODEs results in complex numbers. The imaginary
part of the result will be ignored.

• The right-hand side of the system of SimBiology ODEs results in infinite or NaN values. This
usually indicates a modeling error and can lead to solver integration errors.

• The repeated assignment rules of the SimBiology model result in complex numbers. The imaginary
part of the result will be ignored.

Tips for Solving Simulation Problems
To fix the simulation problems that solver errors can cause, try the following troubleshooting tips.

Improve Performance by Acceleration

You can accelerate the simulation by converting the model to compiled C code, which executes faster.
For details, see “Accelerating Model Simulations and Analyses” on page 4-86. If the simulation is still
slow after acceleration, there might be solver tolerance issues. Try the remaining tips without
accelerating the model.

Debug the Model Using MaximumNumberOfLogs and MaximumWallClock

MaximumNumberOfLogs and MaximumWallClock are some of the configuration options you can use
to stop the simulation just before the error happens. Then you can check for unusual simulated
values, such as negative species amounts.

For instance, set MaximumNumberOfLogs to 1 to get the values of the model immediately after
applying initial and repeated assignment rules. If you set the value to 2, and the simulation fails with
the integration error, then it probably indicates an error with the assignment rules.

While varying MaximumNumberOfLogs, simulate the model repeatedly using the same conditions
that produce the error. The model might simulate without error until you reach a certain value of
MaximumNumberOfLogs. Then check the simulated values at the final simulation time. If you see
negative values for certain states, such as negative species amounts, examine the expressions in your
model that can affect those states. Update the expressions to account for possible issues, such as
negative values or division-by-0, by either rearranging the equations and/or inserting some
protections, such as max(0,x) or max(eps,x), where x is the variable that is responsible for the
error.

 Troubleshooting Simulation Problems

3-15

Alternatively, you can look at the model equations to check the initial conditions, such as species
amounts and parameter values at simulation time = 0 to see if the values are as expected. For details,
see getequations or “Show Model Equations and Initial Conditions” on page 1-31.

Check the ODE Solver

If your model is stiff, and you have selected an inappropriate solver, the step size taken by the solver
might be forced down to an unreasonably small level compared to the interval of integration. Make
sure that you have selected either ode15s or sundials as your solver for stiff ODEs.

Disable AbsoluteToleranceScaling

Turn off AbsoluteToleranceScaling.

SimBiology uses AbsoluteTolerance and RelativeTolerance to control the accuracy of integration
during simulation. Specifically, AbsoluteTolerance controls the largest allowable absolute error at
any step during simulation.

When AbsoluteToleranceScaling is enabled (by default), each state has its own absolute
tolerance that can increase over the course of simulation. Sometimes the automatic scaling is
inadequate for models that have kinetics at largely different scales. For example, the reaction rate of
a reaction can be in the order of 1022, while another is 0.1. By turning off
AbsoluteToleranceScaling, you might be able to simulate the model.

Loosen Tolerances

If the simulation tolerance error still exists after disabling AbsoluteToleranceScaling, try loosening
the relative and absolute tolerances.

Set RelativeTolerance to 10−m + 1, where m is the number of significant digits desired in the
solution X. If X has multiple scales, start with using the smaller X and increase from there if the
tolerance is not met.

Set AbsoluteTolerance to a value of X that is negligibly small for your problem. Similarly, start
from the smaller X and increase from there.

For details, see “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on page 3-13.

Set MassUnits and AmountUnits

The MassUnits and AmountUnits properties define the appropriate mass or amount unit that
SimBiology uses internally during model simulation when UnitConversion is on. It is recommended
that you use the default unit (<automatic>) but in some edge cases, you may need to change it.

Change MassUnits or AmountUnits to a unit so that the simulated values are not too large (that is,
greater than 106) or too small (that is, smaller than 10-6).

Suppose that you have a model with a state that takes on values around 10-12 moles for the entire
simulation. It might be appropriate to set AmountUnits to picomole. In this case, the internal
simulation values would be around 1, instead of around 10-12 as in the default case.

How to Change Solver Options and Simulation Options
Solver and simulation options are stored in the configuration set object (configset object) of the
model. Solver options contain settings such as relative and absolute tolerances. Simulation options

3 Structural Analysis

3-16

are settings such as MaximumNumberOfLogs and MaximumWallClock. Depending on whether you
are using the command line or graphical interface, the way to access and change the options differs.

Using the Command line

To access and change the SolverOptions, use the following commands, where m1 is a SimBiology
model.

configset = getconfigset(m1);
configset.SolverOptions.AbsoluteTolerance = 1e-5;
configset.SolverOptions.RelativeTolerance = 1e-5;
configset.SolverOptions.AbsoluteToleranceScaling = false;

Access simulation options directly from the configset object.

configset = getconfigset(m1);
configset.MaximumNumberOfLogs = 1;
configset.MaximumWallClock = 10;

Using the Graphical Interface

If you are using the SimBiology Model Analyzer app, you can access the options by clicking
Simulation Settings from the Home tab.

See Also
Configset object | SolverOptions | AbsoluteTolerance | RelativeTolerance |
MaximumNumberOfLogs | MaximumWallClock | getequations

More About
• “Model Simulation” on page 4-3
• “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on page 3-13
• “Show Model Equations and Initial Conditions” on page 1-31

 Troubleshooting Simulation Problems

3-17

Simulate Model of Glucose-Insulin Response with Different
Initial Conditions

This example shows how to simulate the glucose-insulin responses for the normal and diabetic
subjects.

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulate the Glucose-Insulin Response” on page 4-167.

sbioloadproject('insulindemo', 'm1')

The model contains different initial conditions stored in various variants.

variants = getvariant(m1);

Get the initial conditions for the type 2 diabetic patient.

type2 = variants(1)

type2 =
 SimBiology Variant - Type 2 diabetic (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Plasma Volume ... Value 1.49
 2 parameter k1 Value .042
 3 parameter k2 Value .071
 4 parameter Plasma Volume ... Value .04
 5 parameter m1 Value .379
 6 parameter m2 Value .673
 7 parameter m4 Value .269
 8 parameter m5 Value .0526
 9 parameter m6 Value .8118
 10 parameter Hepatic Extrac... Value .6
 11 parameter kmax Value .0465
 12 parameter kmin Value .0076
 13 parameter kabs Value .023
 14 parameter kgri Value .0465
 15 parameter f Value .9
 16 parameter a Value 6e-05
 17 parameter b Value .68
 18 parameter c Value .00023
 19 parameter d Value .09
 20 parameter kp1 Value 3.09
 21 parameter kp2 Value .0007
 22 parameter kp3 Value .005
 23 parameter kp4 Value .0786
 24 parameter ki Value .0066
 25 parameter [Ins Ind Glu U... Value 1.0
 26 parameter Vm0 Value 4.65
 27 parameter Vmx Value .034
 28 parameter Km Value 466.21
 29 parameter p2U Value .084
 30 parameter K Value .99
 31 parameter alpha Value .013
 32 parameter beta Value .05
 33 parameter gamma Value .5

3 Structural Analysis

3-18

 34 parameter ke1 Value .0007
 35 parameter ke2 Value 269.0
 36 parameter Basal Plasma G... Value 164.18
 37 parameter Basal Plasma I... Value 54.81

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Create SimFunction objects to simulate the glucose-insulin response for the normal and diabetic
subjects.

• Specify an empty array {} for the second input argument to denote that the model will be
simulated using the base parameter values (that is, no parameter scanning will be performed).

• Specify the plasma glucose and insulin concentrations as responses (outputs of the function to be
plotted).

• Specify the species Dose as the dosed species. This species represents the initial concentration of
glucose at the start of the simulation.

normSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose')

normSim =
SimFunction

Parameters:

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

For the diabetic patient, specify the initial conditions using the variant type2.

diabSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose',type2)

diabSim =
SimFunction

Parameters:

Observables:

 Simulate Model of Glucose-Insulin Response with Different Initial Conditions

3-19

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Select a dose that represents a single meal of 78 grams of glucose at the start of the simulation.

singleMeal = sbioselect(m1,'Name','Single Meal');

Convert the dosing information to the table format.

mealTable = getTable(singleMeal);

Simulate the glucose-insulin response for a normal subject for 24 hours.

sbioplot(normSim([],24,mealTable));

3 Structural Analysis

3-20

Simulate the glucose-insulin response for a diabetic subject for 24 hours.

sbioplot(diabSim([],24,mealTable));

Perform a Scan Using Variants

Suppose you want to perform a parameter scan using an array of variants that contain different initial
conditions for different insulin impairments. For example, the model m1 has variants that correspond
to the low insulin sensitivity and high insulin sensitivity. You can simulate the model for both
conditions via a single call to the SimFunction object.

Select the variants to scan.

varToScan = sbioselect(m1,'Name',...
 {'Low insulin sensitivity','High insulin sensitivity'});

Check which model parameters are being stored in each variant.

varToScan(1)

ans =
 SimBiology Variant - Low insulin sensitivity (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value .0235
 2 parameter kp3 Value .0045

 Simulate Model of Glucose-Insulin Response with Different Initial Conditions

3-21

varToScan(2)

ans =
 SimBiology Variant - High insulin sensitivity (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value .094
 2 parameter kp3 Value .018

Both variants store alternate values for Vmx and kp3 parameters. You need to specify them as input
parameters when you create a SimFunction object.

Create a SimFunction object to scan the variants.

variantScan = createSimFunction(m1,{'Vmx','kp3'},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose');

Simulate the model and plot the results. Run 1 include simulation results for the low insulin
sensitivity and Run 2 for the high insulin sensitivity.

sbioplot(variantScan(varToScan,24,mealTable));

Low insulin sensitivity lead to increased and prolonged plasma glucose concentration.

Restore warning settings.

3 Structural Analysis

3-22

warning(warnSettings);

 Simulate Model of Glucose-Insulin Response with Different Initial Conditions

3-23

Combine Simulation Scenarios in SimBiology
There are two different methods to combine SimBiology simulation scenarios that have different
doses, different variants, or different sample values for model quantities. After the combination, you
get a final set of values (parameter set) that you can use to simulate and explore the model behavior.
For instance, you can combine different dosing regimens with different categories of patients
(variants) and simulate to explore the efficacy of the drug.

Cartesian Combination
This method is the Cartesian product of two sets. Suppose doses is a set of different RepeaDose
objects [d1,d2,d3], and variants is a set of variant objects: [v1,v2,v3]. The Cartesian
combination of doses and variants is: doses x variants = (d1,v1),(d2,v1),(d3,v1),(d1,v2),
(d2,v2),(d3,v2),(d1,v3),(d2,v3),(d3,v3).

Elementwise Combination
This combination method combines the entries one to one, that is, elementwise. In other words, the
first element of the first set (entry) is combined with the first element of the second set (entry) and so
on. Using the same variables above, the elementwise combination of doses and variants is: doses +
variants = (d1,v1),(d2,v2),(d3,v3). Both sets must have the same number of elements
(samples) for this combination method.

See Also
SimBiology.Scenarios

More About
• “SimBiology.Scenarios Terminology”

3 Structural Analysis

3-24

https://en.wikipedia.org/wiki/Cartesian_product

Simulation and Analysis

• “Model Simulation” on page 4-3
• “Derive ODEs from SimBiology Reactions” on page 4-5
• “Choosing a Simulation Solver” on page 4-7
• “SUNDIALS Solvers” on page 4-8
• “Stochastic Solvers” on page 4-9
• “Ensemble Runs of Stochastic Simulations” on page 4-12
• “Configuring Simulation Settings” on page 4-13
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-14
• “Sensitivity Analysis in SimBiology” on page 4-19
• “Calculate Sensitivities Using sbiosimulate” on page 4-25
• “Perform a Parameter Scan” on page 4-28
• “Nonlinear Mixed-Effects Modeling” on page 4-30
• “Nonlinear Regression” on page 4-36
• “Supported Methods for Parameter Estimation in SimBiology” on page 4-43
• “Error Models” on page 4-45
• “Progress Plot” on page 4-46
• “Fit One-Compartment Model to Individual PK Profile” on page 4-53
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-59
• “Perform Hybrid Optimization Using sbiofit” on page 4-68
• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-72
• “Estimate the Bioavailability of a Drug” on page 4-79
• “Accelerating Model Simulations and Analyses” on page 4-86
• “Noncompartmental Analysis” on page 4-89
• “Stochastic Simulation of Radioactive Decay” on page 4-96
• “Stochastic Simulation of the Lotka-Volterra Reactions” on page 4-101
• “Comparing SSA and Explicit Tau-Leaping Stochastic Solvers” on page 4-106
• “Deterministic Simulation of a Model Containing a Discontinuity” on page 4-110
• “Analysis of Stochastic Ensemble Data in SimBiology” on page 4-114
• “Deploy a SimBiology Model Using SimFunction” on page 4-123
• “Deploy a SimBiology Exported Model” on page 4-126
• “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric

G Protein Cycle” on page 4-128
• “Finding Conserved Quantities in a Pathway Model” on page 4-146
• “Model the Population Pharmacokinetics of Phenobarbital in Neonates” on page 4-154
• “Simulate the Glucose-Insulin Response” on page 4-167

4

• “Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics” on page 4-184
• “Fit PK Parameters Using SimBiology Problem-Based Workflow” on page 4-194
• “Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices”

on page 4-204
• “Perform GSA by Computing Elementary Effects” on page 4-212
• “Perform Multiparametric Global Sensitivity Analysis (MPGSA)” on page 4-220

4 Simulation and Analysis

4-2

Model Simulation
SimBiology lets you simulate the dynamic behavior of a model. Before and during simulation,
SimBiology performs a series of steps including converting the model reactions and rate rules into a
set of ordinary differential equations (ODEs) that mathematically describe the model dynamics.

Specifically, before simulation begins, SimBiology:

1 Verifies the model. For details, see “Model Verification” on page 3-2.
2 Determines the initial conditions, that is, the quantity values at the beginning of simulation. In

particular, SimBiology first initializes the quantity values based on the values specified in the
model. Second, it updates the values by replacing them with the corresponding alternate values
from variants if any. Then it updates the values based on the initial assignments and repeated
assignments. SimBiology evaluates initial assignments and repeated assignments as a set of
simultaneous constraints, and their order do not affect the final quantity values. For details, see
“Evaluation Order of Rules” on page 2-15.

3 Constructs the ODEs based on model reactions and rate rules. Specifically, the left-hand-side
(LHS) of each ODE represents the time-derivative of a model quantity. The right-hand-side (RHS)
is defined using reaction fluxes that are derived from reaction rates. For details, see “Derive
ODEs from SimBiology Reactions” on page 4-5.

4 Converts doses to state transitions that occur at specific simulation times.
5 Converts event functions to state transitions that depend on the conditions specified in the event

triggers.

When the simulation begins, that is, at simulation time = 0, SimBiology:

1 Updates values based on initial assignments and repeated assignments.
2 Applies any state transitions due to dosing specified at simulation time = 0.
3 Logs the updated quantity values.

Note Events cannot cause transitions at time = 0 since events only apply when a trigger changes
from false to true. If a trigger is true at simulation time = 0, then no transition has occurred and the
event is not triggered.

During the simulation, SimBiology uses a solver to compute solutions for ODEs at different times.
Specifically, the solver determines appropriate time steps and performs the following at each step.

1 Updates values for any repeated assignments.
2 Checks each event’s trigger condition. If it switches from false to true at this time step, then it

applies the state transitions according to the event functions, and updates values for any
repeated assignments.

3 Logs the updated quantity values.

To see the system of ODEs of a model, use getequations at the command line or follow instructions
in “Show Model Equations and Initial Conditions” on page 1-31 for the SimBiology Model Builder app.

Note If a model has algebraic equations, you must specify one of the following differential-algebraic-
equation (DAE) solvers: sundials, ode15s, ode23t. SimBiology converts the algebraic equations to

 Model Simulation

4-3

algebraic constraints and solves them along with the rest of ODEs. For details about available solvers,
see “Choosing a Simulation Solver” on page 4-7.

See Also
getequations

Related Examples
• “Show Model Equations and Initial Conditions” on page 1-31
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-14

More About
• “Simulation”
• “Choosing a Simulation Solver” on page 4-7
• “Configuring Simulation Settings” on page 4-13
• “Conservation of Amounts During Simulation” on page 2-15

4 Simulation and Analysis

4-4

Derive ODEs from SimBiology Reactions
For model simulation, SimBiology derives ordinary differential equations (ODEs) from model
reactions using mass-balance principles. The left-hand-side (LHS) of each ODE is the time-derivative
of a model quantity and the right-hand-side (RHS) is defined using reaction fluxes that are derived
from reaction rates and rate rules. In other words, SimBiology represents a system of ODEs as
follows.

ẋ = S ⋅ v

ẋ is an M-by-1 vector containing the rates of change for model quantities, S is an M-by-R
stoichiometry matrix on page 3-11, v is an R-by-1 flux vector. M equals the total number of species,
and R equals the total number of reactions in the model

During the conversion of model reactions into ODEs, SimBiology performs a dimensional analysis to
ensure each reaction flux has the dimension of substance/time such as amount/time or mass/
time. If the reaction rate has the dimension of concentration/time, then SimBiology multiplies it
by the compartment volume to get the reaction flux. If the reaction rate has the dimension of
substance/time, then the flux is identical to the rate, and no volume-correction is performed. If
there are no units specified with the model, the default dimension for a species
(“DefaultSpeciesDimension”) is concentration, and that for a flux is substance/time. For such
cases, the ODE is the flux divided by a compartment volume to make the dimension of LHS and RHS
consistent. See the following figure for an illustration.

Suppose there is a reaction x —> y, with the reaction rate R1. The following figure explains the
dimensional analysis performed by SimBiology to make the dimensions of LHS and RHS of an ODE
consistent.

 Derive ODEs from SimBiology Reactions

4-5

See Also
getstoichmatrix (model)

More About
• “Model Simulation” on page 4-3
• “Conservation of Amounts During Simulation” on page 2-15
• “Determining the Stoichiometry Matrix for a Model” on page 3-11

4 Simulation and Analysis

4-6

Choosing a Simulation Solver
To simulate a model, the SimBiology software converts a model to a system of differential equations.
It then uses a solver function to compute solutions for these equations at different time intervals,
giving the model's states and outputs over a span of time.

Available solvers are:

• ODE Solvers — These include Nonstiff Deterministic Solvers and Stiff Deterministic Solvers. The
solver functions implement numerical integration methods for solving initial value problems for
ordinary differential equations (ODEs). Beginning at the initial time with initial conditions, they
step through the time interval, computing a solution at each time step. If the solution for a time
step satisfies the solver's error tolerance criteria, it is a successful step. Otherwise, it is a failed
attempt; the solver shrinks the step size and tries again. For more information, see ODE Solvers.

• SUNDIALS Solvers — At a fundamental level the core algorithms for the SUNDIALS solvers are
similar to those for some of the solvers in the MATLAB ODE suite and work as described above in
ODE Solvers. SimBiology always uses the SUNDIALS solver to perform sensitivity analysis on a
model, regardless of what you have selected as the SolverType. For more information, see
“SUNDIALS Solvers” on page 4-8.

• Stochastic Solvers — Use with models containing a small number of molecules. Stochastic
solvers include stochastic simulation algorithm, explicit tau-leaping algorithm, and implicit tau-
leaping algorithm. For more information, see “Stochastic Solvers” on page 4-9.

See Also

Related Examples
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-14

More About
• “Model Simulation” on page 4-3
• ODE Solvers
• “SUNDIALS Solvers” on page 4-8
• “Stochastic Solvers” on page 4-9

 Choosing a Simulation Solver

4-7

SUNDIALS Solvers
SUNDIALS (Suite of Nonlinear and Differential/Algebraic Equation Solvers) are part of a freely
available third-party package developed at Lawrence Livermore National Laboratory. All other ODE
solvers used for simulation of SimBiology models, such as ode45 and ode15s, are part of the
MATLAB ODE suite. SimBiology currently (R2022a or later) uses SUNDIALS 5.7.0.

SimBiology always uses the SUNDIALS solver to perform sensitivity analysis on a model, regardless
of what you have selected as the SolverType in the configuration set.

In addition, if you are estimating model parameters using sbiofit or the Fit Data program with one
of these gradient-based estimation functions: fmincon, fminunc, lsqnonlin, or lsqcurvefit,
SimBiology uses the SUNDIALS solver by default to calculate sensitivities and use them to improve
fitting. If you are using sbiofit, you can turn off this sensitivity calculation feature by setting the
“SensitivityAnalysis” name-value pair argument to false. However, if you are using the Fit Data
program, you cannot turn off this feature. It is recommended that you keep the sensitivity analysis
feature on whenever possible for more accurate gradient approximations and better parameter fits.

When you specify sundials for the solver, the software chooses one of two SUNDIALS solvers,
CVODE or IDA, as appropriate for your model:

• CVODE is a solver for systems of ODEs, both nonstiff and stiff. This is used when a model has no
algebraic rules.

• IDA is a differential-algebraic equation (DAE) solver, used when one or more algebraic rules are
present.

For more information on the SUNDIALS solvers, see https://www.llnl.gov/casc/sundials/
description/description.html.

See Also

More About
• “Model Simulation” on page 4-3
• ODE Solvers
• “Stochastic Solvers” on page 4-9

4 Simulation and Analysis

4-8

https://www.llnl.gov/
https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials

Stochastic Solvers
In this section...
“When to Use Stochastic Solvers” on page 4-9
“Model Prerequisites for Simulating with a Stochastic Solver” on page 4-9
“What Happens During a Stochastic Simulation?” on page 4-9
“Stochastic Simulation Algorithm (SSA)” on page 4-9
“Explicit Tau-Leaping Algorithm” on page 4-10
“Implicit Tau-Leaping Algorithm” on page 4-10
“References” on page 4-11

When to Use Stochastic Solvers
The stochastic simulation algorithms provide a practical method for simulating reactions that are
stochastic in nature. Models with a small number of molecules can realistically be simulated
stochastically, that is, allowing the results to contain an element of probability, unlike a deterministic
solution.

Model Prerequisites for Simulating with a Stochastic Solver
Model prerequisites include:

• All reactions in the model must have their KineticLaw property set to MassAction.
• If your model contains events, you can simulate using the stochastic ssa solver. Other stochastic

solvers do not support events.
• Your model must not contain doses. No stochastic solvers support doses.

Additionally, if you perform an individual or population fitting on a model whose Configset object
specifies a stochastic solver and options, be aware that during the fitting SimBiology temporarily
changes:

• SolverType property to the default solver of ode15s
• SolverOptions property to the options last configured for a deterministic solver

What Happens During a Stochastic Simulation?
During a stochastic simulation of a model, the software ignores any rate, assignment, or algebraic
rules if present in the model. Depending on the model, stochastic simulations can require more
computation time than deterministic simulations.

Tip When simulating a model using a stochastic solver, you can increase the LogDecimation property
of the configset object to record fewer data points and decrease run time.

Stochastic Simulation Algorithm (SSA)
The Chemical Master Equation (CME) describes the dynamics of a chemical system in terms of the
time evolution of probability distributions. Directly solving for this distribution is impractical for most

 Stochastic Solvers

4-9

realistic problems. The stochastic simulation algorithm (SSA) instead efficiently generates individual
simulations that are consistent with the CME, by simulating each reaction using its propensity
function. Thus, analyzing multiple stochastic simulations to determine the probability distribution is
more efficient than directly solving the CME.

Advantage

• This algorithm is exact.

Disadvantages

• Because this algorithm evaluates one reaction at a time, it might be too slow for models with a
large number of reactions.

• If the number of molecules of any reactants is huge, it might take a long time to complete the
simulation.

Explicit Tau-Leaping Algorithm
Because the stochastic simulation algorithm might be too slow for many practical problems, this
algorithm was designed to speed up the simulation at the cost of some accuracy. The algorithm treats
each reaction as being independent of the others. It automatically chooses a time interval such that
the relative change in the propensity function for each reaction is less than your error tolerance.
After selecting the time interval, the algorithm computes the number of times each reaction occurs
during the time interval and makes the appropriate changes to the concentration of various chemical
species involved.

Advantages

• This algorithm can be orders of magnitude faster than the SSA.
• You can use this algorithm for large problems (if the problem is not numerically stiff).

Disadvantages

• This algorithm sacrifices some accuracy for speed.
• This algorithm is not good for stiff models.
• You need to specify the error tolerance so that the resulting time steps are of the order of the

fastest time scale.

Implicit Tau-Leaping Algorithm
Like the explicit tau-leaping algorithm, the implicit tau-leaping algorithm is also an approximate
method of simulation designed to speed up the simulation at the cost of some accuracy. It can handle
numerically stiff problems better than the explicit tau-leaping algorithm. For deterministic systems, a
problem is said to be numerically stiff if there are “fast” and “slow” time scales present in the system.
For such problems, the explicit tau-leaping method performs well only if it continues to take small
time steps that are of the order of the fastest time scale. The implicit tau-leaping method can
potentially take much larger steps and still be stable. The algorithm treats each reaction as being
independent of others. It automatically selects a time interval such that the relative change in the
propensity function for each reaction is less than the user-specified error tolerance. After selecting a
time interval, the algorithm computes the number of times each reaction occurs during the time
interval and makes the appropriate changes to the concentration of various chemical species
involved.

4 Simulation and Analysis

4-10

Advantages

• This algorithm can be much faster than the SSA. It is also usually faster than the explicit tau-
leaping algorithm.

• You can use this algorithm for large problems and also for numerically stiff problems.
• The total number of steps taken is usually less than the explicit-tau-leaping algorithm.

Disadvantages

• This algorithm sacrifices some accuracy for speed.
• There is a higher computational burden for each step as compared to the explicit tau-leaping

algorithm. This leads to a larger CPU time per step.
• This method often dampens perturbations of the slow manifold leading to a reduced state variance

about the mean.

References

[1] Gibson M.A., Bruck J. (2000), “Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels,” Journal of Physical Chemistry, 105:1876–1899.

[2] Gillespie D. (1977), “Exact Stochastic Simulation of Coupled Chemical Reactions,” The Journal of
Physical Chemistry, 81(25): 2340–2361.

[3] Gillespie D. (2000), “The Chemical Langevin Equation,” Journal of Chemical Physics, 113(1): 297–
306.

[4] Gillespie D. (2001), “Approximate Accelerated Stochastic Simulation of Chemically Reacting
Systems,” Journal of Chemical Physics,115(4):1716–1733.

[5] Gillespie D., Petzold L. (2004), “Improved Leap-Size Selection for Accelerated Stochastic
Simulation,” Journal of Chemical Physics, 119:8229–8234

[6] Rathinam M., Petzold L., Cao Y., Gillespie D. (2003), “Stiffness in Stochastic Chemically Reacting
Systems: The Implicit Tau-Leaping Method,” Journal of Chemical Physics, 119(24):12784–
12794.

[7] Moler, C. (2003), “Stiff Differential Equations Stiffness is a subtle, difficult, and important concept
in the numerical solution of ordinary differential equations,” MATLAB News & Notes.

See Also

Related Examples
• “Analysis of Stochastic Ensemble Data in SimBiology” on page 4-114

More About
• “Ensemble Runs of Stochastic Simulations” on page 4-12
• “Model Simulation” on page 4-3
• “Choosing a Simulation Solver” on page 4-7

 Stochastic Solvers

4-11

Ensemble Runs of Stochastic Simulations
Because stochastic simulations rely on an element of probability, sequential runs produce different
results. Therefore, multiple stochastic runs are needed to determine the probability distribution of
the simulation results.

Ensemble runs perform multiple simulations of a model using a stochastic solver. They let you gather
data from multiple stochastic runs of the model so you can compare and analyze fluctuations in the
behavior of a model over repeated stochastic simulations.

Running Ensemble Simulations
The following functions let you perform and analyze ensemble runs at the command line:

• sbioensemblerun — Perform a stochastic ensemble run of the MATLAB model object.
• sbioensembleplot — Show a 2-D distribution plot or a 3-D shaded plot of the time varying

distribution of one or more specified species.
• sbioensemblestats — Get mean and variance as a function of time for all the species in the

model used to generate ensemble data by running sbioensemblerun.

See Also

More About
• “Stochastic Solvers” on page 4-9
• “Model Simulation” on page 4-3
• “Choosing a Simulation Solver” on page 4-7

4 Simulation and Analysis

4-12

Configuring Simulation Settings
A model has a configuration set (Configset object) associated with it to control the simulation.
You can edit the properties of a Configset object to control all aspects of the simulation,
including:

• Stop time (StopTime, MaximumNumberOfLogs, and MaximumWallClock properties)
• Time units (TimeUnits property)
• Solver and error tolerances (SolverType and SolverOptions properties)
• Maximum time step size (MaxStep property)
• Data to record (RuntimeOptions property)
• Frequency of data recording (OutputTimes and LogDecimation properties)
• Sensitivity analysis (SensitivityAnalysisOptions and SolverOptions properties)
• Dimensional analysis and unit conversion (CompileOptions property)

To view the Configset object, provide the model object as an input argument to the
getconfigset method.

To edit the properties of a Configset object, use the set method.

For more information on viewing and editing the stop time and other simulation settings, see
“Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-14.

See Also

More About
• “Model Simulation” on page 4-3

 Configuring Simulation Settings

4-13

Simulate the Yeast Heterotrimeric G Protein Cycle
This example shows how to configure simulation settings, add an event to the model to trigger a time-
based change, save, and plot the simulation results. This example uses the model described in “Model
of the Yeast Heterotrimeric G Protein Cycle” on page B-14 to illustrate model simulation.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model object.

sbioloadproject gprotein

Set the simulation solver to ode15s and set a stop time of 500 by editing the SolverType and
StopTime properties of the configset object associated with the m1 model.

csObj = getconfigset(m1);
csObj.SolverType = 'ode15s';
csObj.StopTime = 500;

Specify to log simulation results of all species.

csObj.RuntimeOptions.StatesToLog = 'all';

Suppose the amount of the ligand species L is 0 at the start of the simulation, but it increases to a
particular amount at time = 100. Use sbioselect to select the species named L and set its initial
amount to 0. Use addevent to set up the desired event.

speciesObj = sbioselect(m1,'Type','species','Name','L');
speciesObj.InitialAmount = 0;
evt = addevent(m1,'time >= 100','L = 6.022E17');

Simulate the model.

[t,x,names] = sbiosimulate(m1);

Simulate the simulation results. Notice that the species L amount increases when the event is
triggered at simulation time 100. Changes in other species do not show up in the plot due to the wide
range in species amounts.

plot(t,x);
legend(names)
xlabel('Time');
ylabel('Amount');

4 Simulation and Analysis

4-14

To see the changes of other species, plot without the species L (the 5th species) data.

figure
plot(t,x(:,[1:4 6:8]));
legend(names{[1:4 6:8]});
xlabel('Time');
ylabel('Amount');

 Simulate the Yeast Heterotrimeric G Protein Cycle

4-15

Alternative to storing simulation data in separate outputs, such as t, x, and names as above, you can
store them all in a single SimData object. You can then use selectbyname to extract arrays
containing the simulation data of your interest.

simdata = sbiosimulate(m1);
sbioplot(simdata);

4 Simulation and Analysis

4-16

Expand Run 1 to see the names of species and parameter that are plotted.

simdata_noL = selectbyname(simdata, {'Ga','G','Gd','GaFrac','RL','R'});
sbioplot(simdata_noL);

 Simulate the Yeast Heterotrimeric G Protein Cycle

4-17

4 Simulation and Analysis

4-18

Sensitivity Analysis in SimBiology
In this section...
“Sensitivity Analysis” on page 4-19
“Global Sensitivity Analysis (GSA)” on page 4-19
“Comparison of GSA Functions” on page 4-20
“Local Sensitivity Analysis (LSA)” on page 4-21

Sensitivity Analysis
Sensitivity analysis lets you explore the effects of variations in model quantities (species,
compartments, and parameters) on a model response. You can use the analysis to validate preexisting
knowledge or assumption about influential model quantities on a model response or to find such
quantities. You can use the information from sensitivity analysis for decision making, designing
experiments, and parameter estimation. SimBiology supports two types of sensitivity analyses: local
sensitivity analysis and global sensitivity analysis.

Global sensitivity analysis uses Monte Carlo simulations, where a representative (global) set of
parameter sample values are used to explore the effects of variations in model parameters of interest
on the model response. GSA provides insights into relative contributions of individual parameters that
contribute most to the overall model behavior.

On the other hand, local sensitivity analysis is derivative based. This technique analyzes the effect of
one model parameter at a time, keeping the other parameters fixed. Local sensitivities are dependent
on a specific choice of parameter values at a time point where the analysis is performed and do not
capture how parameters interact with each other during simulation when they are varied jointly.

Global Sensitivity Analysis (GSA)
In GSA, model quantities are varied together to simultaneously evaluate the relative contributions of
each quantity with respect to a model response. SimBiology provides the following features to
perform GSA.

Sobol Indices

In this approach, SimBiology performs a decomposition of the model output (response) variance by
calculating the first- and total-order Sobol indices [1]. The first-order Sobol indices give the fractions
of the overall response variance that can be attributed to variations in an input parameter alone. The
total-order Sobol index gives the fraction of the overall response variance that can be attributed to
joint parameter variations. For details, see “Saltelli Method to Compute Sobol Indices”.

Use sbiosobol to compute the Sobol indices. The function requires Statistics and Machine Learning
Toolbox™.

Multiparametric GSA (MPGSA)

MPGSA lets you study the relative importance of parameters with respect to a classifier defined by
model responses. SimBiology implements the MPSA method proposed by Tiemann et al. [2]. For
details, see “Multiparametric Global Sensitivity Analysis (MPGSA)”.

Use sbiompgsa to perform MPGSA. The function requires Statistics and Machine Learning Toolbox.

 Sensitivity Analysis in SimBiology

4-19

Elementary Effects

sbioelementaryeffects lets you assess the global sensitivity of a model response with respect to
variations in model parameters by computing the means and standard deviations of the elementary
effects of input parameters. An elementary effect (EE) of an input parameter P with respect to a
model response R is defined as: EEP x = R x − R x + delta

delta .

Here, EEP(x) is the elementary effect of P. R(x) and R(x+delta) are model responses at specific time or
the value of an observable, evaluated for parameter values x and x+delta. For details, see
“Elementary Effects for Global Sensitivity Analysis”.

Comparison of GSA Functions
GS
A
Fun
cti
on

Sensitivity Measure Considerations

sbi
oso
bol

It computes the fractions of total variance of a
model response (sensitivity output) that can be
attributed to individual model parameters
(sensitivity inputs).

• Variance-based method
• Supports different distributions for

sensitivity inputs
• Computationally expensive because a large

number of samples may be required to
achieve convergence

sbi
omp
gsa

It answers the question of whether variations in
a model parameter (sensitivity input) have an
influence on answering a modeling question.
For example, the question might be: does a
model parameter have an effect on the model
response exceeding or falling below a target
threshold?

You can define such a question using a
mathematical expression (classifier). For
example, the following classifier defines an
exposure (area under the curve) threshold for
the target occupancy TO: trapz(time,TO) <=
0.1. sbiompgsa reports the difference
between the distributions of samples that are
accepted or rejected by the classifier.

• Distribution-based method
• Requires a classifier that collapses time

courses into a scalar value, such as max,
min, mean, or AUC

• Less computationally expensive than
sbiosobol

4 Simulation and Analysis

4-20

GS
A
Fun
cti
on

Sensitivity Measure Considerations

sbi
oel
eme
nta
rye
ffe
cts

It computes the means and standard deviations
of elementary effects of sensitivity inputs with
respect to a model response.

It assesses the average sensitivity by linear
approximations of model responses, similar to
averaged local sensitivities. It also assesses if
the sensitivity of a model response is the same
across the input parameter domain or if there is
a spread of sensitivity values across the
parameter domain.

• Screens sensitivities based on linear
approximations

• Computes the sensitivity measures over a
specified parameter domain

• More computationally expensive than
sbiompgsa and slightly less expensive than
sbiosobol, assuming the same number of
samples is used

Local Sensitivity Analysis (LSA)
In this analysis, SimBiology calculates the time-dependent sensitivities of all the species states with
respect to species initial conditions and parameter values in the model.

Thus, if a model has a species x, and two parameters y and z, the time-dependent sensitivities of x
with respect to each parameter value are the time-dependent derivatives

∂x
∂y0

, ∂x∂z0

where, the numerator is the sensitivity output and the denominators are the sensitivity inputs to
sensitivity analysis. y0 and z0 represent the initial conditions of y and z, respectively. For more
information on the calculations performed, see [3][4][5].

Model Requirements for LSA

LSA is supported only by the ordinary differential equation (ODE) solvers. SimBiology calculates local
sensitivities by combining the original ODE system for a model with the auxiliary differential
equations for the sensitivities. The additional equations are derivatives of the original equations with
respect to parameters. This method is sometimes called forward sensitivity analysis or direct
sensitivity analysis. This larger system of ODEs is solved simultaneously by the solver.

LSA calculates derivatives by using a technique called complex-step approximation. This technique
yields accurate results for the vast majority of typical reaction kinetics, which involve only simple
mathematical operations and functions. However, the complex-step approximation requires the
functions to be complex analytic, that is, to be infinitely differentiable in the complex plane. This
technique can produce inaccurate results when analyzing models that contain mathematical
expressions that involve nonanalytic functions, except min, max, and abs. If the model contains
nonanalytic functions, SimBiology either disables the sensitivity analysis or warns you that the
computed sensitivities may be inaccurate. If sensitivity analysis gives questionable results for a model
with reaction rates that contain unusual functions, you may be running into limitations of the
complex-step technique. Contact MathWorks Technical Support for additional information.

 Sensitivity Analysis in SimBiology

4-21

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

Although the min, max, and abs are nonanalytic functions and are not compatible with the complex-
step approximation, SimBiology provides replacements of these functions so that they become
compatible and can be used for LSA. Note that:

• The replacement function simbio.complexstep.abs(x) is not differentiable when the real part
of x is 0.

• The replacement functions simbio.complexstep.min(x,y) and
simbio.complexstep.max(x,y) are not differentiable when x is equal to y.

For details, see [3].

If your model uses the abs, min, and max functions, SimBiology automatically replaces them when:

• You calculate local sensitivities using sbiosimulate on page 4-25, a
SimFunctionSensitivity object, or the Calculate Sensitivities on page 1-135 program.

• sbiofit or fitproblem uses local sensitivity analysis to determine the gradients of the objective
function during parameter estimation.

Note Models containing the following active components do not support local sensitivity analysis:

• Nonconstant compartments
• Algebraic rules
• Events

Note You can perform sensitivity analysis on a model containing repeated assignment rules, but only
if the repeated assignment rules do not determine species or parameters used as inputs or outputs in
sensitivity analysis.

SUNDIALS as Default Solver

SimBiology always uses the SUNDIALS solver to perform sensitivity analysis on a model, regardless
of what you have selected as the SolverType in the configuration set.

In addition, if you are estimating model parameters using sbiofit or the Fit Data program with one
of these gradient-based estimation functions: fmincon, fminunc, lsqnonlin, or lsqcurvefit,
SimBiology uses the SUNDIALS solver by default to calculate sensitivities and use them to improve
fitting. If you are using sbiofit, you can turn off this sensitivity calculation feature by setting the
“SensitivityAnalysis” name-value pair argument to false. However, if you are using the Fit Data
program, you cannot turn off this feature. It is recommended that you keep the sensitivity analysis
feature on whenever possible for more accurate gradient approximations and better parameter fits.

Calculate Local Sensitivities with sbiosimulate

For illustrated examples, see:

• “Calculate Sensitivities Using sbiosimulate” on page 4-25
• “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric

G Protein Cycle” on page 4-128

More information on sensitivity analysis options and sensitivity outputs are described next.

4 Simulation and Analysis

4-22

The following properties of the SolverOptions property of your configset object define the
sensitivity analysis options. You need to set these options before you run sbiosimulate.

• SensitivityAnalysis — Set to true to calculate the time-dependent sensitivities of all the species
states defined by the Outputs property with respect to the initial conditions of the species and
the values of the parameters specified in Inputs.

• SensitivityAnalysisOptions — An object that holds the sensitivity analysis options in the
configuration set object. Properties of SensitivityAnalysisOptions are:

• Outputs — Specify the species and parameters for which you want to compute the sensitivities.
This is the numerator as described in “Local Sensitivity Analysis (LSA)” on page 4-21.

• Inputs — Specify the species and parameters with respect to which you want to compute the
sensitivities. Sensitivities are calculated with respect to the InitialAmount property of the
specified species. This is the denominator, described in “Local Sensitivity Analysis (LSA)” on
page 4-21.

• Normalization — Specify the normalization for the calculated sensitivities:

• 'None' — No normalization
• 'Half' — Normalization relative to the numerator (species output) only
• 'Full' — Full dedimensionalization

For more information about normalization, see Normalization.

After setting SolverOptions properties, calculate the sensitivities of a model using sbiosimulate.

You can use one of the following syntaxes to get the sensitivity results. Refer to sbiosimulate for a
complete input argument list.

• simData = sbiosimulate(_)
• [time,x,names] = sbiosimulate(_)

.

The first syntax returns a scalar SimData object containing the following simulation data:

• Time points, state data, state names, and sensitivity data
• Metadata such as the types and names for the logged states, the configuration set used during

simulation, and the date of the simulation

A SimData object is a convenient way of keeping time data, state data, sensitivity data, and
associated metadata together. A SimData object has properties and methods associated with it,
which you can use to access and manipulate the data.

The second syntax returns three output arguments as follows:

• time is an n-by-1 vector, where n is the number of steps taken by the ode solver and t defines
the time steps of the solver.

• x is an n-by-m matrix, where n is the number of steps taken by the ode solver and m is computed
as: number of species and parameters specified in StatesToLog + number of sensitivity outputs
* number of sensitivity inputs. A SimBiology state includes species and nonconstant parameters.

• names is the list of states logged and the list of sensitivities of the species specified in
StatesToLog with respect to the input factors.

 Sensitivity Analysis in SimBiology

4-23

Calculate Local Sensitivities Using SimFunctionSensitivity object

Create a SimFunctionSensitivity object using the createSimFunction specifying the
'SensitivityOutputs' and 'SensitivityInputs' name-value pair arguments. Then execute
the object. For an illustrated example, see “Calculate Local Sensitivities Using SimFunctionSensitivity
Object”.

Calculate Local Sensitivities Using SimBiology Model Analyzer App

For a workflow example using the app, see “Find Important Tumor Growth Parameters with Local
Sensitivity Analysis Using SimBiology Model Analyzer” on page 1-135.

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

[2] Tiemann, Christian A., Joep Vanlier, Maaike H. Oosterveer, Albert K. Groen, Peter A. J. Hilbers, and
Natal A. W. van Riel. “Parameter Trajectory Analysis to Identify Treatment Effects of
Pharmacological Interventions.” Edited by Scott Markel. PLoS Computational Biology 9, no. 8
(August 1, 2013): e1003166. https://doi.org/10.1371/journal.pcbi.1003166.

[3] Martins, Joaquim, Ilan Kroo, and Juan Alonso. “An Automated Method for Sensitivity Analysis
Using Complex Variables.” In 38th Aerospace Sciences Meeting and Exhibit. Reno,NV,U.S.A.:
American Institute of Aeronautics and Astronautics, 2000. https://doi.org/10.2514/6.2000-689.

[4] Martins, J., Peter Sturdza, and Juan Alonso. “The Connection between the Complex-Step
Derivative Approximation and Algorithmic Differentiation.” In 39th Aerospace Sciences
Meeting and Exhibit. Reno,NV,U.S.A.: American Institute of Aeronautics and Astronautics,
2001. https://doi.org/10.2514/6.2001-921.

[5] Ingalls, Brian P., and Herbert M. Sauro. “Sensitivity Analysis of Stoichiometric Networks: An
Extension of Metabolic Control Analysis to Non-Steady State Trajectories.” Journal of
Theoretical Biology 222, no. 1 (May 2003): 23–36. https://doi.org/10.1016/
S0022-5193(03)00011-0.

4 Simulation and Analysis

4-24

Calculate Sensitivities Using sbiosimulate

This example performs local sensitivity analysis on a “Model of the Yeast Heterotrimeric G Protein
Cycle” on page B-14 to find parameters that influence the amount of active G protein. Assume that
you are calculating the sensitivity of species Ga with respect to every parameter in the model. Thus,
you want to calculate the time-dependent derivatives:

∂(Ga)
∂ kRLm , ∂ Ga

∂ kRL , ∂ Ga
∂ kG1 , ∂ Ga

∂ kGa . . .

Load G-protein Model

The provided SimBiology project gprotein_norules.sbproj contains a model that represents the
wild-type strain (stored in variable m1).

sbioloadproject gprotein_norules.sbproj m1

Set up Sensitivity Analysis Options

The options for sensitivity analysis are in the configset object of the model.

csObj = getconfigset(m1);

Use the sbioselect function, which lets you query by type, to retrieve the Ga species from the
model.

Ga = sbioselect(m1,'Name','Ga');

Set the Outputs property of the SensitivityAnalysisOptions object to the Ga species.

csObj.SensitivityAnalysisOptions.Outputs = Ga;

Retrieve all the parameters from the model and store the vector in a variable, pif.

pif = sbioselect(m1,'Type','parameter');

Set the Inputs property of the SensitivityAnalysisOptions object to the pif variable
containing the parameters.

csObj.SensitivityAnalysisOptions.Inputs = pif;

Enable sensitivity analysis in the configset object by setting the SensitivityAnalysis option to
true.

csObj.SolverOptions.SensitivityAnalysis = true;

Set the Normalization property of the SensitivityAnalysisOptions object to perform 'Full'
normalization.

csObj.SensitivityAnalysisOptions.Normalization = 'Full';

Calculate Sensitivities

Simulate the model and return the data to a SimData object:

simDataObj = sbiosimulate(m1);

 Calculate Sensitivities Using sbiosimulate

4-25

Extract and Plot Sensitivity Data

You can extract sensitivity results using the getsensmatrix method of a SimData object. In this
example, R is the sensitivity of the species Ga with respect to eight parameters. This example shows
how to compare the variation of sensitivity of Ga with respect to various parameters, and find the
parameters that affect Ga the most.

[T, R, snames, ifacs] = getsensmatrix(simDataObj);

Because R is a 3-D array with dimensions corresponding to times, output factors, and input factors,
reshape R into columns of input factors to facilitate visualization and plotting:

R2 = squeeze(R);

After extracting the data and reshaping the matrix, plot the data:

figure;
plot(T,R2);
title('Normalized Sensitivity of Ga With Respect To Various Parameters');
xlabel('Time (seconds)');
ylabel('Normalized Sensitivity of Ga');
leg = legend(ifacs, 'Location', 'NorthEastOutside');
set(leg, 'Interpreter', 'none');

From the plot you can see that Ga is most sensitive to parameters kGd, kRs, kRD1, and kGa. This
suggests that the amounts of active G protein in the cell depends on the rate of:

4 Simulation and Analysis

4-26

• Receptor synthesis
• Degradation of the receptor-ligand complex
• G protein activation
• G protein inactivation

See Also
SimFunctionSensitivity | sbiosimulate | createSimFunction

Related Examples
• “Calculate Local Sensitivities Using SimFunctionSensitivity Object”

 Calculate Sensitivities Using sbiosimulate

4-27

Perform a Parameter Scan

This example shows how to perform a parameter scan by simulating a model multiple times, each
time varying the value of a parameter.

In the model described in Model of the Yeast Heterotrimeric G Protein Cycle, the rate of G protein
inactivation (kGd) is much lower in the mutant strain versus the wild-type strain (kGd = 0.004
versus kGd = 0.11), which explains higher levels of activated G protein (Ga) in the mutant strain.
For a detailed look at how varying the level of kGd affects the level of Ga, perform a parameter scan
over different values of kGd.

Load the gprotein.sbproj project, which includes the variable m1, a model object.

sbioloadproject gprotein

Create a vector of five evenly spaced values for kGd ranging from 0.001 to 0.15.

kGdValues = linspace(1e-3,0.15,5)';

Create a SimFunction object, where kGd is the input parameter to scan, and Ga is the observed
species. Pass in an empty array [] as the last input argument to denote there are no dosed species.

simfunc = createSimFunction(m1,{'kGd'},{'Ga'},[]);

Simulate the model multiple times with different kGd values. Set the stop time to 1000.

sd = simfunc(kGdValues,1000);

Plot the simulation results to see how varying the level of kGd affects the level of Ga.

sbioplot(sd);

4 Simulation and Analysis

4-28

See Also
createSimFunction | SimFunction object

More About
• “Model of the Yeast Heterotrimeric G Protein Cycle” on page B-14

 Perform a Parameter Scan

4-29

Nonlinear Mixed-Effects Modeling
In this section...
“What Is a Nonlinear Mixed-Effects Model?” on page 4-30
“Nonlinear Mixed-Effects Modeling Workflow” on page 4-31
“Specify a Covariate Model” on page 4-32
“Specify an Error Model” on page 4-34
“Maximum Likelihood Estimation” on page 4-34
“Obtain the Fitting Status” on page 4-34

What Is a Nonlinear Mixed-Effects Model?
A mixed-effects model is a statistical model that incorporates both fixed effects and random effects.
Fixed effects are population parameters assumed to be the same each time data is collected, and
random effects are random variables associated with each sample (individual) from a population.
Mixed-effects models work with small sample sizes and sparse data sets, and are often used to make
inferences on features underlying profiles of repeated measurements from a group of individuals from
a population of interest.

As with all regression models, their purpose is to describe a response variable as a function of the
predictor (independent) variables. Mixed-effects models, however, recognize correlations within
sample subgroups, providing a reasonable compromise between ignoring data groups entirely,
thereby losing valuable information, and fitting each group separately, which requires significantly
more data points.

For instance, consider population pharmacokinetic data that involve the administration of a drug to
several individuals and the subsequent observation of drug concentration for each individual, and the
objective is to make a broader inference on population-wide parameters while considering individual
variations. The nonlinear function often used for such data is an exponential function since many
drugs once distributed in a patient are eliminated in an exponential fashion. Thus the measured drug
concentration of an individual can be described as:

yi j =
Di
V e−kiti j + aεi j,

where yij is the jth response of the ith individual, Di is the dose administered to the ith individual, V is
the population mean volume of distribution, a is an error parameter, and εi j ∼ N(0, 1), representing
some measurement error. The elimination rate parameter (ki) depends on the clearance and volume

of the central compartment ki =
Cli
V . Both ki and Cli are for the ith patient, meaning they are patient-

specific parameters.

To account for variations between individuals, assume that the clearance is a random variable
depending on individuals, varying around the population mean. For the ith individual, Cli = θ1 + ηi,
where θ1 is the fixed effect (population parameter for the clearance) and ηi is the random effect, that
is, the deviation of the ith individual from the mean clearance of the population ηi ∼ Ν(0, ση

2).

If you have any individual-specific covariates such as weight w that linearly relate to the clearance,
you can try explaining some of the between-individual differences. For example, if wi is the weight of

4 Simulation and Analysis

4-30

the ith individual, then the model becomes Cli = θ1 + θ2 * wi + ηi, where θ2 is the fixed effect of weight
on clearance.

A general nonlinear mixed-effects (NLME) model with constant variance is as follows:

yi j = f (xi j, pi) + εi j

pi = Aiθ + Biηi

εi j ∼ N(0, σ2)
ηi ∼ N(0, Ψ)

yij Data vector of individual-specific response values
f General, real-valued function of pi and xij

xij Data matrix of individual-specific predictor values
pi Vector of individual-specific model parameters
θ Vector of fixed effects, modeling population parameters
ηi Vector of multivariate normally distributed individual-specific random effects
Ai Individual-specific design matrix for combining fixed effects
Bi Individual-specific design matrix for combining random effects
εij Vector of group-specific errors, assumed to be independent, identically, normally

distributed, and independent of ηi

Ψ Covariance matrix for the random effects
σ2 Error variance, assumed to be constant across observations

In addition to the constant error model, there are other error models such as proportional,
exponential, and combined error models. For details, see “Error Models” on page 4-45.

Nonlinear Mixed-Effects Modeling Workflow
SimBiology lets you estimate fixed effects θs and random effects ηs as well as the covariance matrix
of random effects Ψ. However, you cannot alter A and B design matrices since they are automatically
determined from the covariate model you specify. Use the sbiofitmixed function to estimate
nonlinear mixed-effects parameters. These steps show one of the workflows you can use at the
command line.

1 Import data.
2 Convert the data to the groupedData format.
3 Define dosing data. For details, see “Doses in SimBiology Models” on page 2-30.
4 Create a structural model (one-, two-, or multicompartment model). For details, see “Create

Pharmacokinetic Models” on page 5-14.
5 Create a covariate model to define parameter-covariate relationships if any. For details, see

“Specify a Covariate Model” on page 4-32.
6 Map the response variable from data to the model component. For example, if you have the

measured drug concentration data for the central compartment, then map it to the drug species
in the central compartment (typically the Drug_Central species).

 Nonlinear Mixed-Effects Modeling

4-31

7 Specify parameters to estimate using the EstimatedInfo object. It lets you optionally specify
parameter transformations, initial values, and parameter bounds. Supported transforms are log,
probit, logit, and none (no transform).

8 (Optional) You can also specify an error model. The default model is the constant error model.
For instance, you can change it to the proportional error model if you assume the measurement
error is proportional to the response data. See “Specify an Error Model” on page 4-34.

9 Estimate parameters using fitproblem or sbiofitmixed, which performs “Maximum
Likelihood Estimation” on page 4-34.

10 (Optional) If you have a large, complex model, the estimation might take longer. SimBiology lets
you check the status of fitting as it progresses. See “Obtain the Fitting Status” on page 4-34.

For workflow examples, see:

• “Model the Population Pharmacokinetics of Phenobarbital in Neonates” on page 4-154
• “Fit PK Parameters Using SimBiology Problem-Based Workflow” on page 4-194

.

Specify a Covariate Model
When specifying a nonlinear mixed-effects model, you define parameter-covariate relationship using a
covariate model (CovariateModel). For example, suppose you have PK profile data for multiple
individuals and are estimating three parameters (clearance Cl, compartment volume V, and
elimination rate k) that have both fixed and random effects. Assume the clearance Cl has a
correlation with a covariate variable weight (w) of each individual. Each parameter can be described
as a linear combination of fixed and random effects.

Cli = θ1 + θ2 * wi + η1i,

Vi = θ3 + η2i,

ki = θ4 + η3i,

where θs represent fixed effects and ηs represent random effects, which are normally distributed
η1i
η2i
η3i

∼ MVN(0, Ψ). By default, the random effects are uncorrelated. So Ψ =

σ1
2 0 0

0 σ2
2 0

0 0 σ3
2

.

1 Construct an empty CovariateModel object.

covModel = CovariateModel;
2 Set the Expression property to define the relationships between parameters (Cl, V, and k) and

covariate (w). You must use theta as a prefix for all fixed effects and eta for random effects.

covModel.Expression = {'Cl = theta1 + theta2*w + eta1','V = theta3 + eta2','k = theta4 + eta3'};

The FixedEffectNames property displays the fixed effects defined in the model.

covModel.FixedEffectNames

ans =

4 Simulation and Analysis

4-32

 'theta1'
 'theta3'
 'theta4'
 'theta2'

The FixedEffectDescription property displays which fixed effects correspond to which
parameter. For instance, theta1 is the fixed effect for the Cl parameter, and theta2 is the fixed
effect for the weight covariate that has a correlation with Cl parameter, denoted as Cl/w.

covModel.FixedEffectDescription

ans =

 'Cl'
 'V'
 'k'
 'Cl/w'

3 Specify initial estimates for the fixed effects. Create a structure containing initial estimates using
the constructDefaultFixedEffectValues function.

initialEstimates = constructDefaultFixedEffectValues(covModel)

initialEstimates =

 theta1: 0
 theta2: 0
 theta3: 0
 theta4: 0

initialEstimates.theta1 = 1.20;
initialEstimates.theta2 = 0.30;
initialEstimates.theta3 = 0.90;
initialEstimates.theta4 = 0.10;

4 Set the initial estimates to the FixedEffectValues property.

covModel.FixedEffectValues = initialEstimates;

Specify a Covariance Pattern Among Random Effects

By default, sbiofitmixed assumes no covariance among random effects, that is, a diagonal
covariance matrix is used. Suppose you have η1, η2, and η3, and there is a covariance σ12 between η1
and η2. You can indicate this using a pattern matrix where 1 indicates a variance or covariance

parameter which is estimated by sbiofitmixed. For instance, a pattern matrix
1 1 0
1 1 0
0 0 1

 represents

σ1
2 σ12 0

σ21 σ2
2 0

0 0 σ3
2

.

Define such a pattern using an options struct.

options.CovPattern = [1 1 0;1 1 0;0 0 1];

Then you can use options as an input argument for sbiofitmixed. For a complete workflow, see
“Nonlinear Mixed-Effects Modeling Workflow” on page 4-31.

 Nonlinear Mixed-Effects Modeling

4-33

Specify an Error Model
During the “Nonlinear Mixed-Effects Modeling Workflow” on page 4-31, you can optionally specify an
error model using a structure.

options.ErrorModel = 'proportional';

Then you can use options as one of the input arguments when you run sbiofitmixed.

Supported error models are constant (default), proportional, combined, and exponential models. For
details, see “Error Models” on page 4-45.

Maximum Likelihood Estimation
SimBiology estimates the parameters of a nonlinear mixed-effects model by maximizing a likelihood
function. The function can be described as:

p(y θ, σ2, Ψ) =∫p(y θ, η, σ2)p(η Ψ) dη,

where y is the response data, θ is the vector of fixed effects, σ2 is the error variance, Ψ is the
covariance matrix for random effects, and η is the vector of unobserved random effects. p(y θ, σ2, Ψ)
is the marginal density of y, p(y θ, η, σ2) is the conditional density of y given the random effects η,
and the prior distribution of η is p(η Ψ).

This integral contains a nonlinear function of the fixed effects and variance parameters that you want
to maximize. Typically for nonlinear models, the integral does not have a closed form, and needs to be
solved numerically, which involves simulating the function at each time step of an optimization
algorithm. Therefore, the estimation can take a long time for complex models, and initial values of
parameters might play an important role for successful convergence. SimBiology provides these
iterative algorithms to solve the integral and maximize the likelihood if you have Statistics and
Machine Learning Toolbox.

• LME — Use the likelihood for the linear mixed-effects model at the current conditional estimates of
θ and η. This is the default.

• RELME — Use the restricted likelihood for the linear mixed-effects model at the current conditional
estimates of θ and η.

• FO — First-order (Laplacian) approximation without random effects.
• FOCE — First-order (Laplacian) approximation at the conditional estimates of θ.
• stochastic EM — Use the Expectation-Maximization (EM) algorithm in which the E step is

replaced by a stochastic procedure.

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 4-31.

Obtain the Fitting Status
During the estimation of mixed-effects parameters of a large and complex model that may take a
longer time, you may want to obtain the status of fitting as it progresses. Set 'ProgressPlot' to
true when you run sbiofitmixed to display the progress of the fitting. For details, see “Progress
Plot” on page 4-46.

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 4-31.

4 Simulation and Analysis

4-34

See Also
sbiofitmixed | sbiofit

More About
• “Progress Plot” on page 4-46
• “Nonlinear Regression” on page 4-36
• “Supported Methods for Parameter Estimation in SimBiology” on page 4-43

 Nonlinear Mixed-Effects Modeling

4-35

Nonlinear Regression
In this section...
“What is Nonlinear Regression?” on page 4-36
“Fitting Options in SimBiology” on page 4-36
“Parameter Transformations” on page 4-38
“Maximum Likelihood Estimation” on page 4-39
“Fitting Workflow” on page 4-41

What is Nonlinear Regression?
The purpose of regression models is to describe a response variable as a function of independent
variables. Multiple linear regression models describe the response as a linear combination of
coefficients and functions of independent variables. Nonlinearities can be modeled using nonlinear
functions of independent variables. However, the coefficients always enter the model in a linear
fashion.

Nonlinear regression models are more mechanistic models of nonlinear relationships between the
response and independent variables. The parameters can enter the model as exponential,
trigonometric, power, or any other nonlinear function. The unknown parameters in the model are
estimated by minimizing a statistical criterion such as the negative log likelihood or the sum of
squared deviations between observed and predicted values.

In the case of pharmacokinetic (PK) studies, the response data usually represent some measured
drug concentrations, and independent variables are often dose and time. The nonlinear function often
used for such data is an exponential function since many drugs once distributed in a patient are
eliminated in an exponential fashion. One PK parameter to estimate in this case is the rate at which
the drug is eliminated from the body given the concentration-time data.

For instance, consider drug plasma concentration data from a single individual after an intravenous
bolus dose measured at different time points with some errors. Assume the measured drug
concentration follows a monoexponential decline: Ct = C0e−ket + aε.

This model describes the time course of drug concentration in the body (Ct), as a function of the drug
concentration after an intravenous bolus dose at t = 0 (C0), time (t), and elimination rate parameter
(ke). ε is the mean-zero and unit-variance variable, that is, ε ∼ N(0, 1) representing the measurement
error and a is the error model parameter (here, standard deviation).

More generically, you can write the model as

yi = f (t; p) + g(εi)

where yi is the ith response (such as drug concentration), f is a function of time t and model
parameters p (such as ke), and an error model g(εi).

Fitting Options in SimBiology
This table summarizes nonlinear regression options available in SimBiology.

4 Simulation and Analysis

4-36

Fitting Option Example
Individual-specific parameter
estimation (Unpooled fitting)

Fit each individual separately,
resulting in one set of
parameter estimates for each
individual.

Category- or group-specific
parameter estimation

Fit each category or group
separately, resulting in one set
of parameter estimates for each
category.

Population-wide parameter
estimation (Pooled fitting)

Fit all of the data pooled
together, resulting in just one
set of parameter estimates.

 Nonlinear Regression

4-37

In addition, SimBiology supports four kinds of error models for measured or observed responses,
namely, constant (default), proportional, combined, and exponential. For details, see “Error Models”
on page 4-45. Depending on the optimization method, you can specify an error model for each
response or all responses. For details, see “Supported Methods for Parameter Estimation in
SimBiology” on page 4-43.

Parameter Transformations
SimBiology supports three parameter transformations. These parameter transformations can be
useful to improve fitting convergence or to enforce parameter bounds.

The general model explained previously on page 4-36 is yi = f (t; p) + g(εi) , where p is model
parameters that you can transform. Consider the following two equations.

β = T p

p = T−1 β

Here, β represents transformed model parameters, p represents untransformed model parameters, T
is the transformation, and T-1 is the inverse transformation.

SimBiology performs parameter estimation using the transformed parameters β, which means that
the transformed model F t; β = f t; T−1 β is used, where F is the model function using the
transformed parameters. Equivalently, the model function can be rewritten as f t; p = F t; T p .

In other words, the SimBiology optimizer uses the transformed values during maximum likelihood
estimation but the reported fit result is reverted back to the model space (untransformed values). For
example, if you are estimating a clearance parameter Cl that is log-transformed, you have Clβ =
log(Cl), where Clβ is what the optimizer uses and Cl is what the model sees.

Specifying parameter transformations imposes implicit bounds on the untransformed parameter
values. The log transformation keeps the parameter value to be always positive, and the logit and
probit transformations keep the parameter value to between 0 and 1. Alternatively, you can specify
further constraints on the parameter values by providing explicit bounds for untransformed
parameters p or for the transformed parameters β.

Tra
nsf
or
ma
tio
n

Transform
ed
Paramete
r and
Range†

Untransfo
rmed
Paramete
r and
Range‡

Description

log β = log p
∈ [− Inf ,
Inf]

p = exp β
∈ [0, Inf]

In many cases, the log transformation is useful for parameters, such as
rate constants, whose values might span several orders of magnitude
and exploring the parameter space for such parameters. The log
transformation can be also useful for positive physical quantities, such
as clearance or compartment volume.

Applying the log transformation imposes an implicit bound on the
untransformed parameter so that its value is always positive.

4 Simulation and Analysis

4-38

Tra
nsf
or
ma
tio
n

Transform
ed
Paramete
r and
Range†

Untransfo
rmed
Paramete
r and
Range‡

Description

log
it β

= logit(p) = log
p

1− p ∈ [

− Inf , Inf

]

p = 1/
1 + exp
−β ∈ [0,

1]

The logit transformation imposes an implicit bound (between 0 and 1)
on the untransformed parameter value. It can be useful for parameters
that have values only between 0 and 1, such as bioavailability.
Alternatively, you can specify the parameter bounds (using an
EstimatedInfo object) instead of specifying the logit
transformation.

pro
bit

β
= norminv
p ∈ [
− Inf , Inf]

p
= normcdf
β ∈ [0, 1]

Similar to logit, the probit transformation imposes an implicit bound
(between 0 and 1) on the untransformed parameter value. SimBiology
uses the normal inverse cumulative distribution function norminv.

The probit transformation requires Statistics and Machine Learning
Toolbox.

† Use the InitialTransformedValue and TransformedBounds properties of an EstimatedInfo
object to set the initial transformed value and transformed bounds to the desired subset of the
range.

‡ Use the InitialValue and Bounds properties of an EstimatedInfo object to set the initial
untransformed value and untransformed bounds to the desired subset of the range.

Maximum Likelihood Estimation
SimBiology estimates parameters by the method of maximum likelihood. Rather than directly
maximizing the likelihood function, SimBiology constructs an equivalent minimization problem.
Whenever possible, the estimation is formulated as a weighted least squares (WLS) optimization that
minimizes the sum of the squares of weighted residuals. Otherwise, the estimation is formulated as
the minimization of the negative of the logarithm of the likelihood (NLL). The WLS formulation often
converges better than the NLL formulation, and SimBiology can take advantage of specialized WLS
algorithms, such as the Levenberg-Marquardt algorithm implemented in lsqnonlin and
lsqcurvefit. SimBiology uses WLS when there is a single error model that is constant,
proportional, or exponential. SimBiology uses NLL if you have a combined error model or a multiple-
error model, that is, a model having an error model for each response.

sbiofit supports different optimization methods, and passes in the formulated WLS or NLL
expression to the optimization method that minimizes it. For simplicity, each expression shown below
assumes only one error model and one response. If there are multiple responses, SimBiology takes
the sum of the expressions that correspond to error models of given responses.

 Nonlinear Regression

4-39

 Expression that is being minimized
Weighted
Least
Squares
(WLS)

For the constant error model, ∑
i

N
yi− f i

2

For the proportional error model, ∑
i

N yi− f i
2

f i
2/ fgm

2

For the exponential error model, ∑
i

N
lnyi− lnf i

2

For numeric weights, ∑
i

N yi− f i
2

wgm/wi

Negative
Log-
likelihood
(NLL)

For the combined error model and multiple-error model, ∑
i

N
yi− f i

2

2σi
2 +∑

i

N

ln 2πσi
2

The variables are defined as follows.

N Number of experimental observations
yi The ith experimental observation
f i Predicted value of the ith observation
σi Standard deviation of the ith observation.

• For the constant error model, σi = a
• For the proportional error model, σi = b f i

• For the combined error model, σi = a + b f i

fgm
fgm = ∏

i

N
f i

1 N

wi The weight of the ith predicted value
wgm

wgm = ∏
i

N
wi

1 N

When you use numeric weights or the weight function, the weights are assumed to be inversely

proportional to the variance of the error, that is, σi
2 = a2

wi
 where a is the constant error parameter. If

you use weights, you cannot specify an error model except the constant error model.

Various optimization methods have different requirements on the function that is being minimized.
For some methods, the estimation of model parameters is performed independently of the estimation
of the error model parameters. The following table summarizes the error models and any separate
formulas used for the estimation of error model parameters, where a and b are error model
parameters and e is the standard mean-zero and unit-variance (Gaussian) variable.

4 Simulation and Analysis

4-40

Error
Model

Error Parameter Estimation Function

'constant
':
yi = f i + ae

a2 = 1
N∑i

N
yi− f i

2

'exponent
ial':
yi = f iexp
(ae)

a2 = 1
N∑i

N
lnyi− lnf i

2

'proporti
onal':
yi = f i
+ b f i e

b2 = 1
N∑i

N yi− f i
f i

2

'combined
':
yi = f i
+ a + b f i
e

Error parameters are included in the minimization.

Weights
a2 = 1

N∑i
N

yi− f i
2wi

Note nlinfit only support single error models, not multiple-error models, that is, response-specific
error models. For a combined error model, it uses an iterative WLS algorithm. For other error
models, it uses the WLS algorithm as described previously. For details, see nlinfit.

Fitting Workflow
The following steps show one of the workflows you can use at the command line to fit a PK model.

1 Import data.
2 Convert the data to the groupedData format.
3 Define dosing data. For details, see “Doses in SimBiology Models” on page 2-30.
4 Create a structural model (one-, two-, or a multicompartment model). For details, see “Create

Pharmacokinetic Models” on page 5-14.
5 Map the response variable from data to the model component. For example, if you have the

measured drug concentration data for the central compartment, then map it to the drug species
in the central compartment (typically the Drug_Central species).

6 Specify parameters to estimate using an EstimatedInfo object. Optionally, you can specify
parameter transformations, initial values, and parameter bounds.

7 Perform parameter estimation using sbiofit or fitproblem.

For illustrated examples, see the following.

• “Fit PK Parameters Using SimBiology Problem-Based Workflow” on page 4-194
• “Fit One-Compartment Model to Individual PK Profile”

 Nonlinear Regression

4-41

• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals”
• “Estimate Category-Specific PK Parameters for Multiple Individuals”

See Also
sbiofit | groupedData | estimatedInfo | sbiofitmixed

More About
• “Multiple Parameter Estimations in Parallel”
• “Parameter Estimation with Hybrid Solvers”
• “Progress Plot” on page 4-46
• “Supported Methods for Parameter Estimation in SimBiology” on page 4-43

4 Simulation and Analysis

4-42

Supported Methods for Parameter Estimation in SimBiology
SimBiology supports a variety of optimization methods for least-squares and mixed-effects estimation
problems. Depending on the optimization method, you can specify parameter bounds for estimated
parameters as well as response-specific error models, that is, an error model for each response
variable. The following table summarizes the supported optimization methods in SimBiology, fitting
options, and the corresponding toolboxes that are required in addition to MATLAB and SimBiology.

Method Additiona
l Toolbox
Required

Supports
Paramete
r Bounds

Uses
Paramete
r
Sensitiviti
es†

Response
-specific
Error
Models

Fixed or
Mixed
Effects

Supports
Stochasti
c EM
Algorithm

SimBiolog
y
Function
to Use

fminsearch — Yes* No Yes Fixed No sbiofit
or
fitprobl
em

scattersearch — Yes Depends
on the
selected
local
solver.

Depends
on the
selected
local
solver.

Fixed No

nlinfit Statistics
and
Machine
Learning
Toolbox

Yes* No No Fixed No

fminunc Optimizati
on
Toolbox™

Yes* Yes Yes Fixed No

fmincon Optimizati
on Toolbox

Yes Yes Yes Fixed No

lsqcurvefit Optimizati
on Toolbox

Yes Yes Yes Fixed No

lsqnonlin Optimizati
on Toolbox

Yes Yes Yes Fixed No

patternsearc
h

Global
Optimizati
on Toolbox

Yes No Yes Fixed No

ga Global
Optimizati
on Toolbox

Yes No Yes Fixed No

particleswar
m

Global
Optimizati
on Toolbox

Yes No Yes Fixed No

nlmefit Statistics
and
Machine
Learning
Toolbox

No No No Mixed No sbiofitm
ixed or
fitprobl
em

 Supported Methods for Parameter Estimation in SimBiology

4-43

Method Additiona
l Toolbox
Required

Supports
Paramete
r Bounds

Uses
Paramete
r
Sensitiviti
es†

Response
-specific
Error
Models

Fixed or
Mixed
Effects

Supports
Stochasti
c EM
Algorithm

SimBiolog
y
Function
to Use

nlmefitsa Statistics
and
Machine
Learning
Toolbox

No No No Mixed Yes

† This column indicates whether the algorithm allows using parameter sensitivities to determine
gradients of the objective function.

* When using fminsearch, nlinfit, or fminunc with bounds, the objective function returns Inf if
bounds are exceeded. When you turn on options such as FunValCheck, the optimization may error if
bounds are exceeded during estimation. If using nlinfit, it may report warnings about the Jacobian
being ill-conditioned or not being able to estimate if the final result is too close to the bounds.

See Also
sbiofit | sbiofitmixed

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

4 Simulation and Analysis

4-44

Error Models
SimBiology supports the error models described in the following table. For instance, if you assume
every observation has a constant amount of noise, use the constant error model, which is the default.
Instead, if you assume the error is proportional to the response data, then the proportional error
model might be more appropriate.

Error
Model

Mathematical Representation Standard Deviation of Error Model

constan
t
(default
)

y = f + aε a

proporti
onal

y = f + b f ε b|f|

combin
ed

y = f + (a + b f)ε a+b|f|

expone
ntial

y = f ∗ exp(aε) or equivalently, ea2− 1 * ea

log(y) = log(f) + aε a
Here, y is the response, f is the function value, ɛ is a standard mean-zero and unit-variance
(Gaussian) variable, and a and b are error parameters. For instance, if you assume the error is
approximately 5% of each observation, use the proportional error model with b = 0.05. In
SimBiology, f typically represents the simulation result.

See Also

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

 Error Models

4-45

Progress Plot
The progress plot provides the live feedback on the status of parameter estimation while using
sbiofit, sbiofitmixed, or the Fit Data program in the SimBiology Model Analyzer app. When you
enable this feature, a new figure opens and shows the fitting quality measures such as log-likelihood
and estimated parameter values for each function iteration. The plot monitors the progress whether
you are running the fit on a local machine or in parallel using remote clusters.

When you estimate parameters, you can specify which estimation method on page 4-43 to use during
the fitting. The progress plot is shown for all the estimation methods except for nlinfit. However,
the progress plot differs depending on whether you are using a nonlinear mixed-effects method
(nlmefit or nlmefitsa) or a nonlinear regression method, such as lsqnonlin.

Progress Plot for Nonlinear Mixed-Effects Methods
The progress plot figure contains a series of subplots. Specifically, the subplots show the values of
fixed-effect parameters (theta), the estimates of the variance parameters, that is, the diagonal
elements of the covariance matrix of the random effects (Ψ), and the log-likelihood.

Here are some tips for interpreting the plots.

4 Simulation and Analysis

4-46

• The fitting function tries to maximize the log-likelihood. When the plot begins to display a flat line,
this might indicate that maximization is complete. Try setting the maximum iterations to a lower
number to reduce the number of iterations you need and improve performance.

• Plots for the fixed effects (thetas) and the variance parameters (Ψs) should show convergence. If
you see oscillations, or jumps without accompanying improvements in the log-likelihood, the
model may be overparameterized. Try the following:

• Reduce the number of fixed effects.
• Reduce the number of random effects.
• Simplify the covariance matrix pattern of random effects (if you have previously changed it

from the default diagonal matrix).

Progress Plot for Nonlinear Regression Methods
The progress plot figure shows a series of subplots, and there are two categories of plots: quality
measure plots on page 4-47 and estimated parameter plots on page 4-50. For a pooled fit, that is,
estimating one set of parameter values for all groups (or individuals), there is only one line for each
plot and the line is faded when the fit is finished. For an unpooled fit, that is, estimating one set of
parameter values for each group (or individual), each line represents a single individual or group. You
can select one or more lines by clicking and dragging the mouse cursor to create a rectangle on any
plot. All lines that intersect the rectangle are selected and highlighted across all plots.

You can terminate the fitting at any time by selecting Stop, and partial results are returned.
Specifically, for a pooled fit, the result up to the last function iteration is returned. For an unpooled
fit, results for any groups that have finished running are returned. The groups currently running are
interrupted and partial results from the last iteration are also returned.

Quality Measure Plots

The quality measure plots include the log-likelihood, first-order optimality, and termination condition
plots. They occupy the first row of the figure.

Log-likelihood

The estimation method tries to maximize the log-likelihood, and the plot shows the log-likelihood
value for each function iteration. When the plot begins to display a flat line, it often indicates that
maximization is complete. Try setting the maximum iterations to a lower number to reduce the
number of iterations you need and improve performance.

For a pooled fit, there is only one line in the plot and the line is faded when the fit finishes. The log-
likelihood plot shows whether the fit converges or fails along with the information on the estimation
method termination condition. The next figure is an example of the log-likelihood plot of a pooled fit.

 Progress Plot

4-47

First-order Optimality

First-order optimality is a measure of how close a point x is to optimal, and the plot is shown when
you are using the Optimization Toolbox methods (lsqnonlin, lsqcurvefit, fminunc, and
fmincon). The first-order optimality measure must be zero at a minimum, but a point with first-order
optimality equal to zero is not necessarily a minimum. For details, see First-order optimality
(Optimization Toolbox).

Termination Condition

For a pooled fit, the termination condition is displayed together with the log-likelihood plot. For
details about the termination condition, refer to the exitflag output argument description of the
corresponding estimation method. Suppose that you are using the lsqnonlin method and see a
message: The fit converged with criterion Residual. By checking the exitflag
conditions of the lsqnonlin with the keyword Residual, this termination condition corresponds to
the exitflag value of 3, that is, change in the residual was less than the specified tolerance.

For an unpooled fit, the Termination Conditions plot contains the summary (histogram) of
termination criteria for all groups (or individuals) as shown in the next figure. The y-axis represents
the total number of fits for each termination condition, and the x-axis displays all the termination
criteria.

4 Simulation and Analysis

4-48

Hybrid Functions

If you are performing a hybrid optimization by first running a global solver, such as ga or
particleswarm, followed by a hybrid function, the ProgressPlot also shows the quality measure
plots for the hybrid function in the second row. The following figure is an example where the global
optimization algorithm is ga and the hybrid function is fminunc. For an illustrated example, see
“Parameter Estimation with Hybrid Solvers”.

 Progress Plot

4-49

Estimated Parameter Plot

This plot displays the value of the estimated parameter versus iteration for each group. One
estimated parameter plot is displayed for each parameter. The plots start on the second row of the
figure and can span multiple rows. Each plot displays a horizontal dashed line for any lower or upper
bound you specify for the estimated parameter. The bound lines show only if the range of the plot can
include the lines.

For an unpooled fit, the Progress Plot also displays a histogram that shows the distribution of the
parameter values for the completed runs. Use the toggle button over the y-axis for each plot to switch
between the log and linear scale. The next figure shows an example of an estimated parameter plot
with the bound information and distribution of estimated values.

4 Simulation and Analysis

4-50

If you have a hierarchical model and are estimating parameters for each category such as estimating
parameters for males versus females, the Progress Plot displays one plot per estimated parameter for
each category. For example, in the next figure, the Central and Peripheral parameters are estimated
for the age categories while Q12 and Cl_Central are estimated for the sex categories.

 Progress Plot

4-51

Status Bar

For an unpooled fit running in parallel, the Progress Plot displays a status bar in the bottom right
corner. The bar shows information about the remaining and completed number of individuals (or
groups) throughout the fit.

See Also
sbiofit | sbiofitmixed | sbiofitstatusplot

More About
• “Nonlinear Regression” on page 4-36
• “Nonlinear Mixed-Effects Modeling” on page 4-30
• “Supported Methods for Parameter Estimation in SimBiology” on page 4-43
• “Troubleshooting Simulation Problems” on page 3-15
• “Accelerating Model Simulations and Analyses” on page 4-86

4 Simulation and Analysis

4-52

Fit One-Compartment Model to Individual PK Profile

Background

This example shows how to fit an individual's PK profile data to one-compartment model and estimate
pharmacokinetic parameters.

Suppose you have drug plasma concentration data from an individual and want to estimate the
volume of the central compartment and the clearance. Assume the drug concentration versus the
time profile follows the monoexponential decline Ct = C0e−ket, where Ct is the drug concentration at
time t, C0 is the initial concentration, and ke is the elimination rate constant that depends on the
clearance and volume of the central compartment ke = Cl/V.

The synthetic data in this example was generated using the following model, parameters, and dose:

• One-compartment model with bolus dosing and first-order elimination
• Volume of the central compartment (Central) = 1.70 liter
• Clearance parameter (Cl_Central) = 0.55 liter/hour
• Constant error model
• Bolus dose of 10 mg

Load Data and Visualize

The data is stored as a table with variables Time and Conc that represent the time course of the
plasma concentration of an individual after an intravenous bolus administration measured at 13
different time points. The variable units for Time and Conc are hour and milligram/liter, respectively.

load('data15.mat')
plot(data.Time,data.Conc,'b+')
xlabel('Time (hour)');
ylabel('Drug Concentration (milligram/liter)');

 Fit One-Compartment Model to Individual PK Profile

4-53

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the fitting
function sbiofit for later use. A groupedData object also lets you set independent variable and
group variable names (if they exist). Set the units of the Time and Conc variables. The units are
optional and only required for the “UnitConversion” feature, which automatically converts matching
physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};
gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Conc'}
 VariableDescriptions: {}
 VariableUnits: {'hour' 'milligram/liter'}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: ''
 IndependentVariableName: 'Time'

4 Simulation and Analysis

4-54

groupedData automatically set the name of the IndependentVariableName property to the Time
variable of the data.

Construct a One-Compartment Model

Use the built-in PK library to construct a one-compartment model with bolus dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library, see “Create
Pharmacokinetic Models” on page 5-14.

Define Dosing

Define a single bolus dose of 10 milligram given at time = 0. For details on setting up different dosing
schedules, see “Doses in SimBiology Models” on page 2-30.

dose = sbiodose('dose');
dose.TargetName = 'Drug_Central';
dose.StartTime = 0;
dose.Amount = 10;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map Response Data to the Corresponding Model Component

The data contains drug concentration data stored in the Conc variable. This data corresponds to the
Drug_Central species in the model. Therefore, map the data to Drug_Central as follows.

responseMap = {'Drug_Central = Conc'};

Specify Parameters to Estimate

The parameters to fit in this model are the volume of the central compartment (Central) and the
clearance rate (Cl_Central). In this case, specify log-transformation for these biological parameters
since they are constrained to be positive. The estimatedInfo object lets you specify parameter
transforms, initial values, and parameter bounds if needed.

paramsToEstimate = {'log(Central)','log(Cl_Central)'};
estimatedParams = estimatedInfo(paramsToEstimate,'InitialValue',[1 1],'Bounds',[1 5;0.5 2]);

Estimate Parameters

Now that you have defined one-compartment model, data to fit, mapped response data, parameters to
estimate, and dosing, use sbiofit to estimate parameters. The default estimation function that
sbiofit uses will change depending on which toolboxes are available. To see which function was
used during fitting, check the EstimationFunction property of the corresponding results object.

fitConst = sbiofit(model,gData,responseMap,estimatedParams,dose);

 Fit One-Compartment Model to Individual PK Profile

4-55

Display Estimated Parameters and Plot Results

Notice the parameter estimates were not far off from the true values (1.70 and 0.55) that were used
to generate the data. You may also try different error models to see if they could further improve the
parameter estimates.

fitConst.ParameterEstimates

ans=2×4 table
 Name Estimate StandardError Bounds
 ______________ ________ _____________ __________

 {'Central' } 1.6993 0.034821 1 5
 {'Cl_Central'} 0.53358 0.01968 0.5 2

s.Labels.XLabel = 'Time (hour)';
s.Labels.YLabel = 'Concentration (milligram/liter)';
plot(fitConst,'AxesStyle',s);

Use Different Error Models

Try three other supported error models (proportional, combination of constant and proportional error
models, and exponential).

4 Simulation and Analysis

4-56

fitProp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','proportional');
fitExp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','exponential');
fitComb = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','combined');

Use Weights Instead of an Error Model

You can specify weights as a numeric matrix, where the number of columns corresponds to the
number of responses. Setting all weights to 1 is equivalent to the constant error model.

weightsNumeric = ones(size(gData.Conc));
fitWeightsNumeric = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsNumeric);

Alternatively, you can use a function handle that accepts a vector of predicted response values and
returns a vector of weights. In this example, use a function handle that is equivalent to the
proportional error model.

weightsFunction = @(y) 1./y.^2;
fitWeightsFunction = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsFunction);

Compare Information Criteria for Model Selection

Compare the loglikelihood, AIC, and BIC values of each model to see which error model best fits the
data. A larger likelihood value indicates the corresponding model fits the model better. For AIC and
BIC, the smaller values are better.

allResults = [fitConst,fitWeightsNumeric,fitWeightsFunction,fitProp,fitExp,fitComb];
errorModelNames = {'constant error model','equal weights','proportional weights', ...
 'proportional error model','exponential error model',...
 'combined error model'};
LogLikelihood = [allResults.LogLikelihood]';
AIC = [allResults.AIC]';
BIC = [allResults.BIC]';
t = table(LogLikelihood,AIC,BIC);
t.Properties.RowNames = errorModelNames;
t

t=6×3 table
 LogLikelihood AIC BIC
 _____________ _______ _______

 constant error model 3.9866 -3.9732 -2.8433
 equal weights 3.9866 -3.9732 -2.8433
 proportional weights -3.8472 11.694 12.824
 proportional error model -3.8257 11.651 12.781
 exponential error model 1.1984 1.6032 2.7331
 combined error model 3.9163 -3.8326 -2.7027

Based on the information criteria, the constant error model (or equal weights) fits the data best since
it has the largest loglikelihood value and the smallest AIC and BIC.

Display Estimated Parameter Values

Show the estimated parameter values of each model.

 Fit One-Compartment Model to Individual PK Profile

4-57

Estimated_Central = zeros(6,1);
Estimated_Cl_Central = zeros(6,1);
t2 = table(Estimated_Central,Estimated_Cl_Central);
t2.Properties.RowNames = errorModelNames;
for i = 1:height(t2)
 t2{i,1} = allResults(i).ParameterEstimates.Estimate(1);
 t2{i,2} = allResults(i).ParameterEstimates.Estimate(2);
end
t2

t2=6×2 table
 Estimated_Central Estimated_Cl_Central
 _________________ ____________________

 constant error model 1.6993 0.53358
 equal weights 1.6993 0.53358
 proportional weights 1.9045 0.51734
 proportional error model 1.8777 0.51147
 exponential error model 1.7872 0.51701
 combined error model 1.7008 0.53271

Conclusion

This example showed how to estimate PK parameters, namely the volume of the central compartment
and clearance parameter of an individual, by fitting the PK profile data to one-compartment model.
You compared the information criteria of each model and estimated parameter values of different
error models to see which model best explained the data. Final fitted results suggested both the
constant and combined error models provided the closest estimates to the parameter values used to
generate the data. However, the constant error model is a better model as indicated by the
loglikelihood, AIC, and BIC information criteria.

See Also
sbiofit

More About
• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-72
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-59
• “Nonlinear Regression” on page 4-36

4 Simulation and Analysis

4-58

Estimate Category-Specific PK Parameters for Multiple
Individuals

This example shows how to estimate category-specific (such as young versus old, male versus
female), individual-specific, and population-wide parameters using PK profile data from multiple
individuals.

Background

Suppose you have drug plasma concentration data from 30 individuals and want to estimate
pharmacokinetic parameters, namely the volumes of central and peripheral compartment, the
clearance, and intercompartmental clearance. Assume the drug concentration versus the time profile
follows the biexponential decline Ct = Ae−at + Be−bt, where Ct is the drug concentration at time t,
and a and b are slopes for corresponding exponential declines.

Load Data

This synthetic data contains the time course of plasma concentrations of 30 individuals after a bolus
dose (100 mg) measured at different times for both central and peripheral compartments. It also
contains categorical variables, namely Sex and Age.

clear
load('sd5_302RAgeSex.mat')

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the fitting
function sbiofit. A groupedData object also allows you set independent variable and group
variable names (if they exist). Set the units of the ID, Time, CentralConc, PeripheralConc, Age,
and Sex variables. The units are optional and only required for the “UnitConversion” feature, which
automatically converts matching physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};
gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'ID' 'Time' 'CentralConc' 'PeripheralConc' 'Sex' 'Age'}
 VariableDescriptions: {}
 VariableUnits: {'' 'hour' 'milligram/liter' 'milligram/liter' '' ''}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'Time'

The IndependentVariableName and GroupVariableName properties have been automatically set
to the Time and ID variables of the data.

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-59

Visualize Data

Display the response data for each individual.

t = sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
 'Marker','+','LineStyle','none');
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

Set Up a Two-Compartment Model

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library, see “Create
Pharmacokinetic Models” on page 5-14.

4 Simulation and Analysis

4-60

Define Dosing

Assume every individual receives a bolus dose of 100 mg at time = 0. For details on setting up
different dosing strategies, see “Doses in SimBiology Models” on page 2-30.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map the Response Data to Corresponding Model Components

The data contains measured plasma concentration in the central and peripheral compartments. Map
these variables to the appropriate model components, which are Drug_Central and
Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify Parameters to Estimate

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to estimate. The
estimatedInfo object lets you optionally specify parameter transforms, initial values, and
parameter bounds. Since both Central and Peripheral are constrained to be positive, specify a
log-transform for each parameter.

paramsToEstimate = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Estimate Individual-Specific Parameters

Estimate one set of parameters for each individual by setting the 'Pooled' name-value pair
argument to false.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Display Results

Plot the fitted results versus the original data for each individual (group).

plot(unpooledFit);

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-61

For an unpooled fit, sbiofit always returns one results object for each individual.

Examine Parameter Estimates for Category Dependencies

Explore the unpooled estimates to see if there is any category-specific parameters, that is, if some
parameters are related to one or more categories. If there are any category dependencies, it might be
possible to reduce the number of degrees of freedom by estimating just category-specific values for
those parameters.

First extract the ID and category values for each ID

catParamValues = unique(gData(:,{'ID','Sex','Age'}));

Add variables to the table containing each parameter's estimate.

allParamValues = vertcat(unpooledFit.ParameterEstimates);
catParamValues.Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Central'));
catParamValues.Peripheral = allParamValues.Estimate(strcmp(allParamValues.Name, 'Peripheral'));
catParamValues.Q12 = allParamValues.Estimate(strcmp(allParamValues.Name, 'Q12'));
catParamValues.Cl_Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Cl_Central'));

Plot estimates of each parameter for each category. gscatter requires Statistics and Machine
Learning Toolbox™. If you do not have it, use other alternative plotting functions such as plot.

h = figure;
ylabels = ["Central","Peripheral","Q12","Cl_Central"];

4 Simulation and Analysis

4-62

plotNumber = 1;
for i = 1:4
 thisParam = estimatedParam(i).Name;

 % Plot for Sex category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Sex);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
 % Plot for Age category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

Based on the plot, it seems that young individuals tend to have higher volumes of central and
peripheral compartments (Central, Peripheral) than old individuals (that is, the volumes seem to

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-63

be age-specific). In addition, males tend to have lower clearance rates (Cl_Central) than females
but the opposite for the Q12 parameter (that is, the clearance and Q12 seem to be sex-specific).

Estimate Category-Specific Parameters

Use the 'CategoryVariableName' property of the estimatedInfo object to specify which
category to use during fitting. Use 'Sex' as the group to fit for the clearance Cl_Central and Q12
parameters. Use 'Age' as the group to fit for the Central and Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';
estimatedParam(2).CategoryVariableName = 'Age';
estimatedParam(3).CategoryVariableName = 'Sex';
estimatedParam(4).CategoryVariableName = 'Sex';
categoryFit = sbiofit(model,gData,responseMap,estimatedParam,dose)

categoryFit =
 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: []
 Beta: [8x5 table]
 ParameterEstimates: [120x6 table]
 J: [240x8x2 double]
 COVB: [8x8 double]
 CovarianceMatrix: [8x8 double]
 R: [240x2 double]
 MSE: 0.4362
 SSE: 205.8690
 Weights: []
 LogLikelihood: -477.9195
 AIC: 971.8390
 BIC: 1.0052e+03
 DFE: 472
 DependentFiles: {1x3 cell}
 Data: [240x6 groupedData]
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

When fitting by category (or group), sbiofit always returns one results object, not one for each
category level. This is because both male and female individuals are considered to be part of the
same optimization using the same error model and error parameters, similarly for the young and old
individuals.

Plot Results

Plot the category-specific estimated results.

plot(categoryFit);

4 Simulation and Analysis

4-64

For the Cl_Central and Q12 parameters, all males had the same estimates, and similarly for the
females. For the Central and Peripheral parameters, all young individuals had the same
estimates, and similarly for the old individuals.

Estimate Population-Wide Parameters

To better compare the results, fit the model to all of the data pooled together, that is, estimate one set
of parameters for all individuals by setting the 'Pooled' name-value pair argument to true. The
warning message tells you that this option will ignore any category-specific information (if they exist).

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Warning: CategoryVariableName property of the estimatedInfo object is ignored when using the 'Pooled' option.

Plot Results

Plot the fitted results versus the original data. Although a separate plot was generated for each
individual, the data was fitted using the same set of parameters (that is, all individuals had the same
fitted line).

plot(pooledFit);

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-65

Compare Residuals

Compare residuals of CentralConc and PeripheralConc responses for each fit.

t = gData.Time;
allResid(:,:,1) = pooledFit.R;
allResid(:,:,2) = categoryFit.R;
allResid(:,:,3) = vertcat(unpooledFit.R);

h = figure;
responseList = {'CentralConc', 'PeripheralConc'};
for i = 1:2
 subplot(2,1,i);
 oneResid = squeeze(allResid(:,i,:));
 plot(t,oneResid,'o');
 refline(0,0); % A reference line representing a zero residual
 title(sprintf('Residuals (%s)', responseList{i}));
 xlabel('Time');
 ylabel('Residuals');
 legend({'Pooled','Category-Specific','Unpooled'});
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

4 Simulation and Analysis

4-66

As shown in the plot, the unpooled fit produced the best fit to the data as it fit the data to each
individual. This was expected since it used the most number of degrees of freedom. The category-fit
reduced the number of degrees of freedom by fitting the data to two categories (sex and age). As a
result, the residuals were larger than the unpooled fit, but still smaller than the population-fit, which
estimated just one set of parameters for all individuals. The category-fit might be a good compromise
between the unpooled and pooled fitting provided that any hierarchical model exists within your data.

See Also
sbiofit

More About
• “Fit One-Compartment Model to Individual PK Profile” on page 4-53
• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-72
• “Nonlinear Regression” on page 4-36

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-67

Perform Hybrid Optimization Using sbiofit

This example shows how to configure sbiofit to perform a hybrid optimization by first running the
global solver particleswarm, followed by another minimization function, fmincon.

Load Data

Load the sample data to fit. The data is stored as a table with variables ID, Time, CentralConc, and
PeripheralConc. This synthetic data represents the time course of plasma concentrations measured at
eight different time points for both central and peripheral compartments after an infusion dose for
three individuals. The dose amount is 100 milligram and dose rate is 50 milligram/hour.

load('data10_32R.mat')
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

Create Model

Create a two-compartment model with an infusion dose.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';

4 Simulation and Analysis

4-68

pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';
responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Define Parameters to Estimate

Use the estimatedInfo object to define the estimated parameters.

paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1],...
 'Bounds',[0 10]);

Define the Options for Hybrid Optimization

Define the options for the global solver and the hybrid solver. Because the parameters are bounded,
make sure you use a compatible hybrid function for a constrained optimization, such as fmincon.
Use optimset to define the options for fminsearch. Use optimoptions to define the options for
fminunc, patternsearch, and fmincon.

rng('default');
globalMethod = 'particleswarm';
options = optimoptions(globalMethod);
hybridMethod = 'fmincon';
hybridopts = optimoptions(hybridMethod,'Display','none');
options = optimoptions(options,'HybridFcn',{hybridMethod,hybridopts});

Fit Data

Estimate model parameters. Turn on ProgressPlot to see the live feedback on the status of fitting.
The first row of plots are the quality measure plots for the global solver. The second row plots are for
the hybrid function. For details, see “Progress Plot” on page 4-46.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,globalMethod,...
 options,'Pooled',false,'ProgressPlot',true);

 Perform Hybrid Optimization Using sbiofit

4-69

Plot Results

plot(unpooledFit);

4 Simulation and Analysis

4-70

See Also
sbiofit

More About
• “Fit One-Compartment Model to Individual PK Profile” on page 4-53
• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-72
• “Nonlinear Regression” on page 4-36

 Perform Hybrid Optimization Using sbiofit

4-71

Fit Two-Compartment Model to PK Profiles of Multiple
Individuals

Estimate pharmacokinetic parameters of multiple individuals using a two-compartment model.

Suppose you have drug plasma concentration data from three individuals that you want to use to
estimate corresponding pharmacokinetic parameters, namely the volume of central and peripheral
compartment (Central, Peripheral), the clearance rate (Cl_Central), and intercompartmental
clearance (Q12). Assume the drug concentration versus the time profile follows the biexponential
decline Ct = Ae−at + Be−bt, where Ct is the drug concentration at time t, and a and b are slopes for
corresponding exponential declines.

The synthetic data set contains drug plasma concentration data measured in both central and
peripheral compartments. The data was generated using a two-compartment model with an infusion
dose and first-order elimination. These parameters were used for each individual.

 Central Peripheral Q12 Cl_Central
Individual 1 1.90 0.68 0.24 0.57
Individual 2 2.10 6.05 0.36 0.95
Individual 3 1.70 4.21 0.46 0.95

The data is stored as a table with variables ID, Time, CentralConc, and PeripheralConc. It
represents the time course of plasma concentrations measured at eight different time points for both
central and peripheral compartments after an infusion dose.

load('data10_32R.mat')

Convert the data set to a groupedData object which is the required data format for the fitting
function sbiofit for later use. A groupedData object also lets you set independent variable and
group variable names (if they exist). Set the units of the ID, Time, CentralConc, and
PeripheralConc variables. The units are optional and only required for the “UnitConversion”
feature, which automatically converts matching physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
gData.Properties

ans =

 struct with fields:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'ID' 'Time' 'CentralConc' 'PeripheralConc'}
 VariableDescriptions: {}
 VariableUnits: {'' 'hour' 'milligram/liter' 'milligram/liter'}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'

4 Simulation and Analysis

4-72

 IndependentVariableName: 'Time'

Create a trellis plot that shows the PK profiles of three individuals.

sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
 'Marker','+','LineStyle','none');

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour. For details on setting up different dosing strategies, see “Doses in SimBiology
Models” on page 2-30.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;

 Fit Two-Compartment Model to PK Profiles of Multiple Individuals

4-73

dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

The data contains measured plasma concentrations in the central and peripheral compartments. Map
these variables to the appropriate model species, which are Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

The parameters to estimate in this model are the volumes of central and peripheral compartments
(Central and Peripheral), intercompartmental clearance Q12, and clearance rate Cl_Central. In
this case, specify log-transform for Central and Peripheral since they are constrained to be
positive. The estimatedInfo object lets you specify parameter transforms, initial values, and
parameter bounds (optional).

paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Fit the model to all of the data pooled together, that is, estimate one set of parameters for all
individuals. The default estimation method that sbiofit uses will change depending on which
toolboxes are available. To see which estimation function sbiofit used for the fitting, check the
EstimationFunction property of the corresponding results object.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true)

pooledFit =

 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: []
 Beta: [4x3 table]
 ParameterEstimates: [4x3 table]
 J: [24x4x2 double]
 COVB: [4x4 double]
 CovarianceMatrix: [4x4 double]
 R: [24x2 double]
 MSE: 6.6220
 SSE: 291.3688
 Weights: []
 LogLikelihood: -111.3904
 AIC: 230.7808
 BIC: 238.2656
 DFE: 44
 DependentFiles: {1x3 cell}
 Data: [24x4 groupedData]
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

Plot the fitted results versus the original data. Although three separate plots were generated, the
data was fitted using the same set of parameters (that is, all three individuals had the same fitted
line).

4 Simulation and Analysis

4-74

plot(pooledFit);

Estimate one set of parameters for each individual and see if there is any improvement in the
parameter estimates. In this example, since there are three individuals, three sets of parameters are
estimated.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Plot the fitted results versus the original data. Each individual was fitted differently (that is, each
fitted line is unique to each individual) and each line appeared to fit well to individual data.

plot(unpooledFit);

 Fit Two-Compartment Model to PK Profiles of Multiple Individuals

4-75

Display the fitted results of the first individual. The MSE was lower than that of the pooled fit. This is
also true for the other two individuals.

unpooledFit(1)

ans =

 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: 1
 Beta: [4x3 table]
 ParameterEstimates: [4x3 table]
 J: [8x4x2 double]
 COVB: [4x4 double]
 CovarianceMatrix: [4x4 double]
 R: [8x2 double]
 MSE: 2.1380
 SSE: 25.6559
 Weights: []
 LogLikelihood: -26.4805
 AIC: 60.9610
 BIC: 64.0514

4 Simulation and Analysis

4-76

 DFE: 12
 DependentFiles: {1x3 cell}
 Data: [8x4 groupedData]
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

Generate a plot of the residuals over time to compare the pooled and unpooled fit results. The figure
indicates unpooled fit residuals are smaller than those of pooled fit as expected. In addition to
comparing residuals, other rigorous criteria can be used to compare the fitted results.

t = [gData.Time;gData.Time];
res_pooled = vertcat(pooledFit.R);
res_pooled = res_pooled(:);
res_unpooled = vertcat(unpooledFit.R);
res_unpooled = res_unpooled(:);
plot(t,res_pooled,'o','MarkerFaceColor','w','markerEdgeColor','b')
hold on
plot(t,res_unpooled,'o','MarkerFaceColor','b','markerEdgeColor','b')
refl = refline(0,0); % A reference line representing a zero residual
title('Residuals versus Time');
xlabel('Time');
ylabel('Residuals');
legend({'Pooled','Unpooled'});

 Fit Two-Compartment Model to PK Profiles of Multiple Individuals

4-77

This example showed how to perform pooled and unpooled estimations using sbiofit. As illustrated,
the unpooled fit accounts for variations due to the specific subjects in the study, and, in this case, the
model fits better to the data. However, the pooled fit returns population-wide parameters. If you want
to estimate population-wide parameters while considering individual variations, use sbiofitmixed.

See Also
sbiofit

More About
• “Fit One-Compartment Model to Individual PK Profile” on page 4-53
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-59
• “Nonlinear Regression” on page 4-36

4 Simulation and Analysis

4-78

Estimate the Bioavailability of a Drug

In this example, you will use the parameter estimation capabilities of SimBiology™ to calculate F, the
bioavailability, of the drug ondansetron. You will calculate F by fitting a model of absorption and
excretion of the drug to experimental data tracking drug concentration over time.

This example requires Optimization Toolbox™.

Background

Most drugs must be absorbed into the bloodstream in order to become active. An intravenous (IV)
administration of a drug is one way to achieve this. However, it is impractical or impossible in many
cases.

When a drug is not given by IV, it follows some other route into the bloodstream, such as absorption
through the mucous membranes of the GI tract or mouth. Drugs administered through a route other
than IV administration are generally not completely absorbed. Some portion of the drug is directly
eliminated and never reaches the bloodstream.

The percentage of drug absorbed is the bioavailability of the drug. Bioavailability is one of the most
important pharmacokinetic properties of a drug. It is useful when calculating safe dosages for non-IV
routes of administration. Bioavailability is calculated relative to an IV administration. When
administered intravenously, a drug has 100% bioavailability. Other routes of administration tend to
reduce the amount of drug that reaches the blood stream.

Modeling Bioavailability

Bioavailability can be modeled using one of several approaches. In this example, you use a model
with a GI compartment and a blood plasma compartment. Oral administration is modeled by a dose
event in the GI compartment. IV administration is modeled by a dose event in the blood plasma
compartment.

The example models the drug leaving the GI compartment in two ways. The available fraction of the
drug is absorbed into the bloodstream. The remainder is directly eliminated. The total rate of
elimination, ka, is divided into absorption, ka_Central, and direct elimination, Cl_Oral. The
bioavailability, F, connects total elimination with ka_Central and Cl_Oral via two initial
assignment rules.

ka_Central = F*ka
Cl_Oral = (1-F)*ka

The drug is eliminated from the Blood_Plasma compartment through first-order kinetics, at a rate
determined by the parameter Cl_Central.

 Estimate the Bioavailability of a Drug

4-79

Load the project that contains the model m1.

sbioloadproject('Bioavailability.sbproj','m1');

Format of the Data for Estimating Bioavailability

You can estimate bioavailability by comparing intrapatient measurements of drug concentration
under different dosing conditions. For instance, a patient receives an IV dose on day 1, then receives
an oral dose on day 2. On both days, we can measure the blood plasma concentration of the drug over
some period of time.

Such data allow us to estimate the bioavailability, as well as other parameters of the model.
Intrapatient time courses were generated for the drug ondansetron, reported in [2] and reproduced
in [1].

Load the data, which is a table.

load('ondansetron_data.mat');

Convert the data to a groupedData object because the fitting function sbiofit requires it to be a
groupedData object.

gd = groupedData(ondansetron_data);

Display the data.

gd

gd =

 33x5 groupedData

4 Simulation and Analysis

4-80

 Time Drug Group IV Oral
 ________ _______ _____ ___ ____

 0 NaN 1 8 NaN
 0.024358 69.636 1 NaN NaN
 0.087639 58.744 1 NaN NaN
 0.15834 49.824 1 NaN NaN
 0.38895 44.409 1 NaN NaN
 0.78392 40.022 1 NaN NaN
 1.3182 34.522 1 NaN NaN
 1.8518 28.972 1 NaN NaN
 2.4335 25.97 1 NaN NaN
 2.9215 22.898 1 NaN NaN
 3.41 20.75 1 NaN NaN
 3.8744 18.095 1 NaN NaN
 4.9668 13.839 1 NaN NaN
 5.8962 10.876 1 NaN NaN
 7.8717 6.6821 1 NaN NaN
 10.01 4.0166 1 NaN NaN
 12.08 2.5226 1 NaN NaN
 15.284 0.97816 1 NaN NaN
 0 NaN 2 NaN 8
 0.54951 5.3091 2 NaN NaN
 0.82649 14.262 2 NaN NaN
 1.0433 19.72 2 NaN NaN
 1.4423 21.654 2 NaN NaN
 2.0267 22.144 2 NaN NaN
 2.5148 19.739 2 NaN NaN
 2.9326 17.308 2 NaN NaN
 3.3743 15.599 2 NaN NaN
 3.9559 13.906 2 NaN NaN
 4.9309 10.346 2 NaN NaN
 6.1155 7.4489 2 NaN NaN
 8.0002 5.1919 2 NaN NaN
 10.091 2.9058 2 NaN NaN
 12.228 1.6808 2 NaN NaN

The data have variables for time, drug concentration, grouping information, IV, and oral dose
amounts. Group 1 contains the data for the IV time course. Group 2 contains the data for the oral
time course. NaN in the Drug column means no measurement was made at that time. NaN in one of
the dosing columns means no dose was given through that route at that time.

Plot the pharmacokinetic profiles of the oral dose and IV administration.

plot(gd.Time(gd.Group==1),gd.Drug(gd.Group==1),'Marker','+')
hold on
plot(gd.Time(gd.Group==2),gd.Drug(gd.Group==2),'Marker','x')
legend({'8 mg IV','8 mg Oral'})
xlabel('Time (hour)')
ylabel('Concentration (milligram/liter)')

 Estimate the Bioavailability of a Drug

4-81

Notice there is a lag phase in the oral dose of about an hour while the drug is absorbed from the GI
tract into the bloodstream.

Fitting the Data

Estimate the following four parameters of the model:

• Total forward rate out of the dose compartment, ka
• Clearance from the Blood_Plasma compartment, clearance
• Volume of the Blood_Plasma compartment
• Bioavailability of the orally administered drug, F

Set the initial values of these parameters and specify the log transform for all parameters using an
estimatedInfo object.

init = [1 1 2 .8];
estimated_parameters = estimatedInfo({'log(ka)','log(clearance)',...
 'log(Blood_Plasma)','logit(F)'},'InitialValue',init);

Because ka, clearance, and Blood_Plasma are positive physical quantities, log transforming
reflects the underlying physical constraint and generally improves fitting. This example uses a logit
transform on F because it is a quantity constrained between 0 and 1. The logit transform takes the
interval of 0 to 1 and transforms it by taking the log-odds of F (treating F as a probability). For a few
drugs, like theophyline, constraining F between 0 and 1 is inappropriate because oral bioavailability
can be greater than 1 for drugs with unusual absorption or metabolism mechanisms.

4 Simulation and Analysis

4-82

Next, map the response data to the corresponding model component. In the model, the plasma drug
concentration is represented by Blood_Plasma.Drug_Central. The corresponding concentration
data is the Drug variable of the groupedData object gd.

responseMap = {'Blood_Plasma.Drug_Central = Drug'};

Create the dose objects required by sbiofit to handle the dosing information. First, create the IV
dose targeting Drug_Central and the oral dose targeting Dose_Central.

iv_dose = sbiodose('IV','TargetName','Drug_Central');
oral_dose = sbiodose('Oral','TargetName','Drug_Oral');

Use these dose objects as template doses to generate an array of dose objects from the dosing data
variables IV and Oral.

doses_for_fit = createDoses(gd,{'IV','Oral'},'',[iv_dose, oral_dose]);

Estimate parameters using sbiofit.

opts = optimoptions('lsqnonlin','Display','final');
results = sbiofit(m1, gd,responseMap,estimated_parameters,doses_for_fit,...
 'lsqnonlin',opts,[],'pooled',true);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Interpreting Results

First, check if the fit is successful.

plot(results)

 Estimate the Bioavailability of a Drug

4-83

Overall, the results seem to be a good fit. However, they do not capture a distribution phase over the
first hour. It might be possible to improve the fit by adding another compartment, but more data
would be required to justify such an increase in model complexity.

When satisfied with the model fit, you can draw conclusions about the estimated parameters. Display
the parameters stored in the results object.

results.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError
 ________________ ________ _____________

 {'ka' } 0.77947 0.1786
 {'clearance' } 45.19 2.8674
 {'Blood_Plasma'} 138.73 4.5249
 {'F' } 0.64455 0.066013

The parameter F is the bioavailability. The result indicates that ondansetron has approximately a 64%
bioavailability. This estimate in line with the literature reports that oral administration of ondansetron
in the 2-24 milligram range has a 60% bioavailability [1,2].

Blood_Plasma is the volume of distribution. This result is reasonably close to the 160 liter Vd
reported for ondansetron [1]. The estimated clearance is 45.4 L/hr.

4 Simulation and Analysis

4-84

ka does not map directly onto a widely reported pharmacokinetic parameter. Consider it from two
perspectives. We can say that 64% of the drug is available, and that the available drug has an
absorption parameter of 0.4905/hr. Or, we can say that drug clearance from the GI compartment is
0.7402/hr, and 64% of the drug cleared from the GI tract is absorbed into the bloodstream.

Generalizing This Approach

lsqnonlin, as well as several other optimization algorithms supported by sbiofit, are local
algorithms. Local algorithms are subject to the possibility of finding a result that is not the best result
over all possible parameter choices. Because local algorithms do not guarantee convergence to the
globally best fit, when fitting PK models, restarting the fit with different initial conditions multiple
times is a good practice. Alternatively, sbiofit supports several global methods, such as particle
swarm, or genetic algorithm optimization. Verifying that a fit is of sufficient quality is an important
step before drawing inferences from the values of the parameters.

This example uses data that was the mean time course of several patients. When fitting a model with
data from more patients, some parameters might be the same between patients, some not. Such
requirements introduce the need for hierarchical modeling. You can perform hierarchical modeling
can by configuring the CategoryVariableName flag of EstimatedInfo object.

References

1 Roila, Fausto, and Albano Del Favero. "Ondansetron clinical pharmacokinetics." Clinical
Pharmacokinetics 29.2 (1995): 95-109.

2 Colthup, P. V., and J. L. Palmer. "The determination in plasma and pharmacokinetics of
ondansetron." European Journal of Cancer & Clinical Oncology 25 (1988): S71-4.

See Also
sbiofit

More About
• “Fit One-Compartment Model to Individual PK Profile” on page 4-53
• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-72
• “Nonlinear Regression” on page 4-36

 Estimate the Bioavailability of a Drug

4-85

Accelerating Model Simulations and Analyses

In this section...
“What Is Acceleration?” on page 4-86
“When to Accelerate” on page 4-86
“Prerequisites for Accelerating Simulations and Analyses” on page 4-86
“Accelerate Simulations Programmatically” on page 4-87
“Accelerate Simulations using SimBiology Model Analyzer” on page 4-88
“Troubleshooting Accelerated Simulations” on page 4-88

What Is Acceleration?
Normally, when simulating or analyzing a model in SimBiology, the model is expressed in MATLAB
code. You can accelerate the simulation by converting the model to compiled C code, which executes
faster. Because this compilation step has a small time overhead, acceleration is not recommended for
individual simulations of small models. However, for large models, or for repeated simulations during
analysis, acceleration can provide a significant speed increase that outweighs the small time
overhead.

When to Accelerate
The functionality to accelerate simulations performs optimally under the following conditions:

• Running repeated simulations with different initial conditions
• Running very long simulations (for example, simulations that take longer than a minute to run)

Prerequisites for Accelerating Simulations and Analyses
To prepare your models for accelerated simulations, install and set up a compiler:

1 Install a C compiler (if one is not already installed on your system). For a current list of
supported compilers, see Supported and Compatible Compilers.

2 Ensure that any user-defined functions in your model can be used for code generation from
MATLAB, so they can convert to compiled C. For more information, see Language, Function, and
Object support for C and C++ code generation (MATLAB Coder) or contact MathWorks Technical
Support.

Note

• On Windows, if you have not installed another compiler, SimBiology uses the lcc-win64 compiler
for model accelerations. If you have installed another supported compiler, it will be selected
automatically. For better performance of the acceleration functionality, you may want to install a
supported compiler other than lcc-win64, and it will be selected automatically.

4 Simulation and Analysis

4-86

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs
https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs
https://www.mathworks.com/support/requirements/supported-compilers.html

Accelerate Simulations Programmatically
Use sbioaccelerate if you are accelerating a SimBiology model. For a SimFunction object and
an exported model (SimBiology.export.Model), use the corresponding accelerate method.

Using sbioaccelerate

Follow the two-step process for acceleration.

1 Run sbioaccelerate to prepare your model for accelerated simulations. Use the same input
arguments that you plan to use with sbiosimulate in the next step. For example:

sbioaccelerate(model,configset,doses);

For a very large model, this step may take a minute or longer to complete.
2 Run sbiosimulate with the same input arguments that you used with sbioaccelerate. For

example:

simdata = sbiosimulate(model,configset,doses);

If you pass in an array of doses to sbioaccelerate, you can simulate the model using any subset of
these doses and do not need to run acceleration again.

For illustrated examples, see the following.

• “Prepare a Model for Accelerated Simulation”
• “Accelerate Simulation With Array of Doses”

Using accelerate

A SimFunction object is automatically accelerated at the first function execution. Hence it is not
necessary to accelerate the model before you create the object. However, manually accelerate using
the accelerate method of the object if you want it accelerated in your deployment applications.

For exported model, see accelerate.

When to Rerun Acceleration

If you make any modifications to the model, such as changes to reactions or adding events, you need
to rerun the acceleration, before running simulations.

However, there are exceptions. You do not need to accelerate again if you are making the changes to:

• Any variants
• InitialAmount property of species
• Capacity property of compartments
• Value property of parameters
• StopTime property of configset
• OutputTimes property of SolverOptions
• Active, Amount, and Rate properties of ScheduleDose and RepeatDose
• Time property of ScheduleDose
• Interval, RepeatCount, and StartTime properties of RepeatDose

 Accelerating Model Simulations and Analyses

4-87

• Notes, Tag, and UserData properties of any applicable objects

Accelerate Simulations using SimBiology Model Analyzer
You can enable the model acceleration in the SimBiology Model Analyzer app by checking the
Prepare the model for accelerated simulation box in the Model step of the program.

Troubleshooting Accelerated Simulations
If you have custom functions, use persistent variables only for those (constant) variables that you do
not want to recalculate or reload every function call. The reason is that during the acceleration
process, SimBiology converts the model and custom functions to compiled C code. If you try to use a
persistent variable to share data across generated (or compiled) C functions, you may have different
results. For instance, if you use a persistent variable to count how many times a function is called,
each compiled function will have a separate count. Those persistent variables in the corresponding
compiled functions will be different from the one used in the MATLAB function that you defined.

If you specify custom functions in SimBiology expressions, you might see the following warning if
your code is not compatible with code generation from MATLAB:

The SimBiology Expression and any user-defined functions
could not be accelerated. Please check that these expressions
and any user-defined functions are supported for code generation
as described in the Code Generation from MATLAB documentation.

where Expression is any of the following:

• Reaction rate/rule expression
• Initial assignment rule expression
• Repeated assignment rule expression
• Event trigger expression
• Event function expression

For more information, see Language, Function, and Object support for C and C++ code generation
(MATLAB Coder) or contact MathWorks Technical Support.

See Also
sbioaccelerate | SimFunction object | SimBiology.export.Model | accelerate |
accelerate

More About
• “SimBiology Apps”
• “Model Simulation” on page 4-3
• “Troubleshooting Simulation Problems” on page 3-15

4 Simulation and Analysis

4-88

https://www.mathworks.com/support/contact_us.html

Noncompartmental Analysis
Noncompartmental analysis (NCA) lets you compute pharmacokinetic (PK) parameters of a drug from
the time course of measured drug concentrations. This approach does not require the assumption of a
specific compartmental model. NCA is often used to determine the degree of exposure following
administration of a drug, such as AUC, and other PK parameters, such as the clearance and the
terminal half-life.

Data
SimBiology lets you calculate NCA parameters from concentration–time data. The data must contain
a time column, a concentration column, and a dose column that defines dose amounts. Three types of
drug administration routes are supported: IV bolus, IV infusion, and Extravascular. You can have a
column for each type. For infusion doses, an infusion rate column is also needed.

If you have data containing multiple groups of observations, you can define a group column. If
needed, you can use two levels of hierarchy to specify grouping. Specify the outer level of grouping
using the group column, and specify the inner level (subgroups) in the ID column. Consider data that
contains three groups, where each group contains four patients. The group column labels the three
groups, and the ID column labels each patient.

Dosing
Single-dosing data contains a single dose amount for each individual. Multiple-dosing data has
several doses at different times for each individual. There are common parameters calculated for
either type of dosing data, and parameters that are specific to single or multiple dosing.

Common Parameters for Single and Multiple Dosing

SimBiology computes some common parameters for single- or multiple-dosing data. This figure
represents the concentration-time profile after a single dose. For multiple dosing, the same principles
apply, except that SimBiology uses a steady state dosing period.

 Noncompartmental Analysis

4-89

Figure A shows concentration–time data in a linear scale and illustrates how the AUC from time 0 to
infinity is calculated. Figure B shows the same data in a semilogarithmic scale. To compute the
terminal rate constant (Lambda_z), SimBiology performs a set of linear regressions of the log-
transformed data using each of the last n points (n = 3, 4, 5, ...) from the terminal portion of
the curve. Lambda_z is chosen from the regression that uses the most points and has the maximum
adjusted_R2.

This table describes the common parameters for single and multiple dosing.

Parameter Description
AUC_0_last Area under the measured concentration–time curve from time = 0 to the last time

point.

AUC_0_last = ∫
0

Tlast
C(t)dt,

where C(t) is the plasma concentration at time t.

SimBiology uses the linear trapezoidal method to calculate the AUC.
AUC_infinit
y

Total area under the concentration–time curve extrapolating to Inf using the terminal
rate constant Lambda_z.

AUC_inf inity = AUC_0_last + C_last
Lambda_z ,

where C_last is the last observed concentration and Lambda_z is the terminal rate
constant.

AUC_infinit
y_dose AUC_inf inity_dose = AUC_inf inity

DM .

AUCx_y Partial AUC computed for a custom time range, where x and y are the start and end
times, respectively.

AUC_extrap
_percent

Fraction of total AUC_infinity obtained from extrapolation.

AUC_extrap_percent = AUC_inf inity − AUC_0_last
AUC_inf inity * 100.

Lambda_z To calculate the terminal rate constant (Lambda_z), SimBiology performs a set of linear
regressions of the log(concentration)–time data using each of the last n points (n = 3,
4, 5, ...) from the terminal portion of the curve, that is, points satisfying the
conditions: Time ≥ Tmax & Conc ≤ Cmax . A minimum of three points is required to
determine Lambda_z.

Lambda_z is chosen from the regression that uses the most points and has the
maximum adjusted_R2 among all regressions.

ad justed_R2 = 1− (1− R2) * (n− 1)
n− 2

R2 Coefficient of determination for the linear regressions used in the Lambda_z
calculation.

Num_points Number of data points from the profile used in the determination of Lambda_z.

4 Simulation and Analysis

4-90

Parameter Description
C_0 Extrapolated concentration at time = 0, computed using a regression of the first two

data points in a profile. This parameter is for IV Bolus doses only.
C_max Maximum observed concentration.
C_max_Dos
e C_max_Dose = C_max

DM .

C_max_x_y Maximum observed concentration within a given time range, specified by the start time
x and the end time y. This parameter is computed when you specify a custom time
range in the Cmax Time Range box in the SimBiology Model Analyzer app or set the
C_max_ranges property of the options object created by sbioncaoptions.

Tlast Time of the last observed concentration value above the lower limit of quantization
(LOQ).

T_half Terminal half-life of the drug.

T_half = ln(2)
Lambda_z .

T_max T_max is the time point at which the maximum concentration (C_max) is observed.
T_max_x_y Time point at which maximum concentration is observed within a given time range,

specified by the start time x and the end time y. This parameter is computed when you
specify a custom time range in the Cmax Time Range box in the SimBiology Model
Analyzer or set the C_max_ranges property of the options object created by
sbioncaoptions.

V_ss Apparent volume of distribution at equilibrium. This parameter is for IV Bolus doses
only.

V_ss = MRT * CL.
V_z Volume of distribution during the terminal phase.

V_z = DM
AUC_inf inity * Lambda_z .

DM Administered dose amount. For multiple dosing, the last administered dose is reported.
doseSchedu
le

Single- or multiple-dosing data.

administrati
onRoute

Dose administration route. Supported routes are IVBolus, IVInfusion,
ExtraVascular.

Parameters for Single Dosing

In addition to the common parameters, SimBiology reports parameters for single-dosing data.

Parameter Description
AUMC_0_la
st

Area under the first moment of the concentration–time curve from time 0 to the last
time point Tlast.

AUMC_0_last = ∫
0

Tlast
t * C(t)dt.

 Noncompartmental Analysis

4-91

Parameter Description
AUMC Total area under the first moment of the concentration–time curve extrapolating to Inf

using Lambda_z.

AUMC = AUMC_0_last + C_last
Lambda_z2 + Tlast * C_last

Lambda_z .

AUMC_extr
ap_percent

Fraction of total AUMC obtained from extrapolation.

AUMC_extrap_percent = AUMC− AUMC_0_last
AUMC * 100.

CL Total drug clearance.

CL = DM
AUC_inf inity ,

where DM is the dose amount.
MRT Mean residence time.

MRT = AUMC
AUC_inf inity .

Parameters for Multiple Dosing

This figure shows the concentration-time profile after multiple doses. SimBiology uses a steady state
dosing period to compute the following NCA parameters for multiple-dosing data, in addition to the
common parameters listed previously. In the following figure, the last dosing period is used for
illustration purposes.

4 Simulation and Analysis

4-92

Parameter Description
AUC_Tau Area under the concentration–time curve during a dosing period of length Tau.

SimBiology uses a steady-state dosing period (SS_period).

AUC_Tau =∫TSS_period

TSS_period + Tau
C(t)dt.

Tau Dosing interval.
AUMC_Tau Area under the first moment of the concentration–time curve during a steady-state

dosing period of length Tau.

AUMC_Tau =∫TSS_period

TSS_period + Tau
t * C(t)dt.

C_avg Average concentration over one period.

C_avg = AUC_Tau
Tau .

C_min Minimum observed concentration during the first period, that is, C_min = C(T_min).
PTF_percen
t

Peak trough fluctuation over one dosing interval at steady state.

PTF_Percent = C_max− C_min
C_Avg * 100.

 Noncompartmental Analysis

4-93

Parameter Description
Accumulati
on_Index

Theoretical accumulation ratio.

Accumulation_Index = 1
1− e−Lambda_z * Tau .

T_min Time at which the minimum concentration is reached in a dosing interval.
MRT Mean residence time.

MRT = AUMC_Tau + Tau * AUC_inf inity − AUC_0_last
AUC_Tau .

Note that for drugs with prolonged half-lives, the extrapolation necessary to compute
the term AUC_infinity-AUC_0_last can lead to approximation errors.

CL Total drug clearance.

CL = DM
AUC_Tau

Here, DM is the dose amount.

Sparse Sampling

To calculate PK parameters, measured concentrations at multiple time points for each individual is
needed after the drug administration. Under certain circumstances, it is not feasible or not practical
to obtain such longitudinal data on a single subject. In such cases, concentration data is collected
from multiple individuals at each time point and then averaged to calculate NCA parameters for each
group instead. SimBiology performs such sparse sampling by taking the average of the dependent
variable for all individuals at the same time point. It then returns the values of NCA parameters for
each group. Time values for each measurement across individuals (IDs) within a group must be
identical.

Calculating NCA Parameters
You can calculate NCA parameters using the sbionca function in the command line or using the
SimBiology Model Analyzer app.

Using sbionca

sbionca provides command line functionality to compute NCA parameters. Define the data
classification options and parameter calculation options using an option object created by
sbioncaoptions. For an example, see “Compute NCA Parameters from Concentration-Time Data”.

Using SimBiology Model Analyzer

After you import the data, select Program > Non-Compartmental Analysis on the Home tab. You
can classify your data column in the NCA step of the program. If your data has a grouping column,
specify it using Group. Use ID to specify the inner level of grouping. Specify the dosing data column
(IV Bolus Dose or Extravascular Dose). Lower limit of quantization (LOQ) is a threshold below
which the values of dependent variables are truncated to zero.

4 Simulation and Analysis

4-94

Lambda Time Range lets you specify a custom time range to compute the terminal rate constant
(Lambda_z). The time range applies to all groups; you cannot specify a different time range for each
group.

Cmax Time Range lets you specify a custom time range to report the maximum observed
concentration within the range (C_max) and the time (T_max) when it is observed. You can specify a
different time range for each group.

Partial AUC lets you specify a custom time range to compute the partial AUC bounded by the start
and end times. You can specify a different time range for each group.

You can export the NCA results to MATLAB workspace. By default, the data is exported as a table. To
convert it to a dataset, use table2dataset.

For a workflow example, see “Calculate NCA Parameters and Fit Model to PK/PD Data Using
SimBiology Model Analyzer” on page 1-156.

See Also
sbioncaoptions | sbionca

More About
• “SimBiology Apps”

 Noncompartmental Analysis

4-95

Stochastic Simulation of Radioactive Decay

This example shows how to build and simulate a model using the SSA stochastic solver.

The following model will be constructed and stochastically simulated:

• Reaction 1: x -> z with a first-order reaction rate, c = 0.5.
• Initial conditions: x = 1000 molecules, z = 0.

This model can also be used to represent irreversible isomerization.

This example uses parameters and conditions as described in Daniel T. Gillespie, 1977, "Exact
Stochastic Simulation of Coupled Chemical Reactions," The Journal of Physical Chemistry, vol. 81, no.
25, pp. 2340-2361.

Read the Radioactive Decay Model Saved in SBML Format

model = sbmlimport('radiodecay.xml')

model =
 SimBiology Model - RadioactiveDecay

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 1
 Reactions: 1
 Rules: 0
 Species: 2
 Observables: 0

View Species Objects of the Model

model.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed x 1000 molecule
 2 unnamed z 0 molecule

View Reaction Objects of the Model

model.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 x -> z

4 Simulation and Analysis

4-96

View Parameter Objects for the Kinetic Law

model.Reactions(1).KineticLaw(1).Parameters

ans =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 c 0.5 1/second

Update the Reaction to use MassAction Kinetic Law for Stochastic Solvers.

model.Reactions(1).KineticLaw(1).KineticLawName = 'MassAction';
model.Reactions(1).KineticLaw(1).ParameterVariableNames = {'c'};

Simulate the Model Using the Stochastic (SSA) Solver & Plot

cs = getconfigset(model,'active');
cs.SolverType = 'ssa';
cs.StopTime = 14.0;
cs.CompileOptions.DimensionalAnalysis = false;
[t,X] = sbiosimulate(model);

plot(t,X);
legend('x', 'z', 'AutoUpdate', 'off');
title('Stochastic Radioactive Decay Simulation');
ylabel('Number of molecules');
xlabel('Time (seconds)');

 Stochastic Simulation of Radioactive Decay

4-97

Repeat the Simulation to Show Run-to-Run Variability

title('Multiple Stochastic Radioactive Decay Simulations');
hold on;
for loop = 1:20
 [t,X] = sbiosimulate(model);
 plot(t,X); % Just plot number of reactant molecules
 drawnow;
end

4 Simulation and Analysis

4-98

Overlay the Reaction's ODE Solution in Red

cs = getconfigset(model,'active');
cs.SolverType = 'sundials';
cs.StopTime = 20;
[t,X] = sbiosimulate(model);
plot(t,X,'red');
hold off;

 Stochastic Simulation of Radioactive Decay

4-99

4 Simulation and Analysis

4-100

Stochastic Simulation of the Lotka-Volterra Reactions

This example shows how to build and simulate a model using the SSA stochastic solver.

The following model will be constructed and stochastically simulated:

• Reaction 1: x + y1 -> 2 y1 + x, with rate constant, c1 = 10.
• Reaction 2: y1 + y2 -> 2 y2, with rate constant, c2 = 0.01.
• Reaction 3: y2 -> z, with rate constant, c3 = 10.
• Initial conditions: x=1 (constant), y1=y2=1000, z=0.
• Note: Species 'x' in Reaction 1 is represented on both sides of the reaction to model the

assumption that the amount of x is constant.

These reactions can be interpreted as a simple predator-prey model if one considers that the prey
population (y1) increases in the presence of food (x) (Reaction 1), that the predator population (y2)
increases as they eat prey (Reaction 2), and that predators (y2) die of natural causes (Reaction 3).

This example uses parameters and conditions as described in Daniel T. Gillespie, 1977, "Exact
Stochastic Simulation of Coupled Chemical Reactions," The Journal of Physical Chemistry, vol. 81, no.
25, pp. 2340-2361.

Register Units for the Model

sbioaddtolibrary(sbiounit('rabbit','molecule',1));
sbioaddtolibrary(sbiounit('coyote','molecule',1));
sbioaddtolibrary(sbiounit('food','molecule',1));
sbioaddtolibrary(sbiounit('amountDimension','molecule',1));

Create the Lotka-Volterra Model

model = sbiomodel('Lotka-Volterra Model');
c = addcompartment(model,'C');
c.CapacityUnits = 'meter^3';

Add Reaction 1 to the Model Object

r1 = addreaction(model,'x + y1 -> 2 y1 + x')

r1 =
 SimBiology Reaction Array

 Index: Reaction:
 1 x + y1 -> 2 y1 + x

% Set the Kinetic Law for Reaction 1.
kl1 = addkineticlaw(r1, 'MassAction');

% Add rate constant parameter, c1, to reaction with value = 10
p1 = addparameter(kl1, 'c1', 'Value', 10);

kl1.ParameterVariableNames = {'c1'};

% Add units to c1

 Stochastic Simulation of the Lotka-Volterra Reactions

4-101

p1.ValueUnits = '1/(second*rabbit)';

% Set initial amounts for species in Reaction 1
r1.Reactants(1).InitialAmount = 1; % x
r1.Reactants(2).InitialAmount = 1000; % y1

% Set the initial amount units for species in Reaction 1
r1.Reactants(1).InitialAmountUnits = 'food'; % x
r1.Reactants(2).InitialAmountUnits = 'rabbit'; % y1

Add Reaction 2 to the Model Object

r2 = addreaction(model,'y1 + y2 -> 2 y2')

r2 =
 SimBiology Reaction Array

 Index: Reaction:
 1 y1 + y2 -> 2 y2

% Set the kinetic law for Reaction 2.
kl2 = addkineticlaw(r2, 'MassAction');

% Add rate constant parameter, c2, to kinetic law with value = 0.01
p2 = addparameter(kl2, 'c2', 'Value', 0.01);

kl2.ParameterVariableNames = {'c2'};

% Add units to c2
p2.ValueUnits = '1/(second*coyote)';

% Set initial amounts for new species in Reaction 2
r2.Products(1).InitialAmount = 1000; % y2
% Set the initial amount units for new species in Reaction 2
r2.Products(1).InitialAmountUnits = 'coyote'; % y2

Add Reaction 3 to the Model Object

r3 = addreaction(model,'y2 -> z')

r3 =
 SimBiology Reaction Array

 Index: Reaction:
 1 y2 -> z

% Add "bogus" units to trash variable 'z'
r3.Products(1).InitialAmountUnits = 'amountDimension';

% Set the kinetic law for Reaction 3.
kl3 = addkineticlaw(r3, 'MassAction');

% Add rate constant parameter, c3, to reaction with value = 10
p3 = addparameter(kl3, 'c3', 'Value', 10);

kl3.ParameterVariableNames = {'c3'};

4 Simulation and Analysis

4-102

% Add units to c3
p3.ValueUnits = '1/second';

Display the Completed Model Objects

model

model =
 SimBiology Model - Lotka-Volterra Model

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 3
 Reactions: 3
 Rules: 0
 Species: 4
 Observables: 0

Display the Reaction Objects

model.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 x + y1 -> 2 y1 + x
 2 y1 + y2 -> 2 y2
 3 y2 -> z

Display the Species Objects

model.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 C x 1 food
 2 C y1 1000 rabbit
 3 C y2 1000 coyote
 4 C z 0 amountDimension

Simulate with the Stochastic (SSA) Solver & Plot

cs = getconfigset(model,'active');
cs.SolverType = 'ssa';
cs.StopTime = 30;
cs.SolverOptions.LogDecimation = 200;
cs.CompileOptions.UnitConversion = true;
[t,X] = sbiosimulate(model);

plot(t, X(:,2), t, X(:,3));
legend('Y1', 'Y2');

 Stochastic Simulation of the Lotka-Volterra Reactions

4-103

title('Lotka-Volterra Reaction - State History');
ylabel('Number of predator-prey');
grid on;

Show Phase Portrait of Y1 to Y2

plot(X(:,2),X(:,3));
title('Lotka-Volterra Reaction - Y1 vs. Y2');
xlabel('Number of Y1 rabbits');
ylabel('Number of Y2 coyotes');

4 Simulation and Analysis

4-104

% Clean up units.
sbioremovefromlibrary('unit', 'rabbit');
sbioremovefromlibrary('unit', 'coyote');
sbioremovefromlibrary('unit', 'food');
sbioremovefromlibrary('unit', 'amountDimension');

 Stochastic Simulation of the Lotka-Volterra Reactions

4-105

Comparing SSA and Explicit Tau-Leaping Stochastic Solvers

This example shows how to build and simulate a model using the SSA stochastic solver and the
Explicit Tau-Leaping solver.

The following decaying-dimerizing reactions will be constructed and stochastically simulated:

• Reaction 1: s1 -> null, with reaction rate constant, c1 = 1.0
• Reaction 2: 2 s1 < - > s2, with reaction rate constants, forward: c2f = 0.002 reverse: c2r = 0.5
• Reaction 3: s2 -> s3, with reaction rate constant, c3 = 0.04
• Initial conditions: s1 = 100000 molecules, s2 = s3 = 0

This example uses parameters and conditions as described in Daniel T. Gillespie, 2001, "Approximate
accelerated stochastic simulation of chemically reacting systems," Journal of Chemical Physics, vol.
115, no. 4, pp. 1716-1733.

Create Decaying-Dimerizing Model
model = sbiomodel('Decaying-Dimerizing Reaction Set');

Enter Reactions
r1 = addreaction(model, 's1 -> null');
r2 = addreaction(model, '2 s1 <-> s2');
r3 = addreaction(model, 's2 -> s3');

Set Reactions to be MassAction
kl1 = addkineticlaw(r1, 'MassAction');
kl2 = addkineticlaw(r2, 'MassAction');
kl3 = addkineticlaw(r3, 'MassAction');

Add Rate Constants for Each Reaction
p1 = addparameter(kl1, 'c1', 'Value', 1.0);
p2f = addparameter(kl2, 'c2f', 'Value', 0.002);
p2r = addparameter(kl2, 'c2r', 'Value', 0.5);
p3 = addparameter(kl3, 'c3', 'Value', 0.04);

Set the Kinetic Law Constants for Each Kinetic Law.
kl1.ParameterVariableNames = {'c1'};
kl2.ParameterVariableNames = {'c2f', 'c2r'};
kl3.ParameterVariableNames = {'c3'};

Specify Initial Amounts of Each Species
model.species(1).InitialAmount = 100000; % s1
model.species(2).InitialAmount = 0; % s2
model.species(3).InitialAmount = 0; % s3

Display the Completed Model Objects
model

model =
 SimBiology Model - Decaying-Dimerizing Reaction Set

4 Simulation and Analysis

4-106

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 4
 Reactions: 3
 Rules: 0
 Species: 3
 Observables: 0

Display the Reaction Objects

model.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 s1 -> null
 2 2 s1 <-> s2
 3 s2 -> s3

Display the Species Objects

model.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed s1 100000
 2 unnamed s2 0
 3 unnamed s3 0

Get the Active Configuration Set for the Model.

cs = getconfigset(model,'active');

Simulate Model Using SSA Stochastic Solver and Plot

tfinal = 30, logging every 10th datapoint.

cs.SolverType = 'ssa';
cs.StopTime = 30;
solver = cs.SolverOptions;
solver.LogDecimation = 10;
cs.CompileOptions.DimensionalAnalysis = false;
[t_ssa, x_ssa] = sbiosimulate(model);

h1 = subplot(2,1,1);
plot(h1, t_ssa, x_ssa(:,1),'.');
h2 = subplot(2,1,2);
plot(h2, t_ssa, x_ssa(:,2:3),'.');
grid(h1,'on');
grid(h2,'on');
title(h1,'Decay Dimerizing Reactions');

 Comparing SSA and Explicit Tau-Leaping Stochastic Solvers

4-107

ylabel(h1,'Amount of S1');
ylabel(h2,'Amount of S2 & S3');
xlabel(h2,'Time');
legend(h2, 'S2', 'S3');

Simulate Model Using Explicit Tau-Leaping Solver and Plot in the Same Figure

Without closing the figure window, plot the results from using the Explicit Tau-Leaping Solver.

tfinal = 30, logging every 10th datapoint. Acceptable error tolerance for solver, 0.03.

cs.StopTime = 30;
cs.SolverType = 'explTau';
solver = cs.SolverOptions;
solver.LogDecimation = 10;
[t_etl, x_etl] = sbiosimulate(model);

hold(h1,'on');
hold(h2,'on');
plot(h1, t_etl, x_etl(:,1),'o');
plot(h2, t_etl, x_etl(:,2:3),'o');
legend(h2, 'S2 (SSA)', 'S3 (SSA)', 'S2 (Exp. Tau)', 'S3 (Exp. Tau)');
hold(h1,'off');
hold(h2,'off');

4 Simulation and Analysis

4-108

Comparison of Number of Steps for SSA and Explicit Tau-Leaping Algorithms

fprintf('Approximate Number of SSA steps: %d\n', (length(t_ssa) * 10));

Approximate Number of SSA steps: 616010

fprintf('Approximate Number of Explicit Tau-Leaping steps: %d\n', ...
 (length(t_etl) * 10));

Approximate Number of Explicit Tau-Leaping steps: 620

 Comparing SSA and Explicit Tau-Leaping Stochastic Solvers

4-109

Deterministic Simulation of a Model Containing a Discontinuity

This example shows how to correctly build a SimBiology® model that contains discontinuities.

Background

The model you create in this example simulates the first-order elimination of a protein that is
produced at a specified rate. The production rate contains two discontinuities. To simulate the model
accurately, you must create events that are triggered at the time of the discontinuity.

The production rate has three "modes" of production, as illustrated in the following plot:

plot([0 3 3 6 6 10], [5 5 3 3 0 0]);
ylim([-0.5 5.5]);
xlabel('Time');
ylabel('Rate');
title('Discontinuous Protein Production Rate');

Initially ("Mode 1"), the production rate is a constant value of 5. From 3 to 6 seconds ("Mode 2"), the
production rate is 3. After 6 seconds ("Mode 3"), the production rate is 0. These production rates are
implemented in a MATLAB function discontSimBiologyRateFunction.m, which requires two
arguments, simulation time and production mode.

In this example, you will add events to the model to change the mode of protein production. This
approach ensures that discontinuities in the model occur only via events, which further ensures that
the ODE solver accurately calculates the numerical behavior near the discontinuities.

4 Simulation and Analysis

4-110

Note that to simulate a model accurately you must use events to handle any discontinuity, whether
related to function values or their derivatives.

Construct the Model, Compartment, and Species
model = sbiomodel('discontinuous rate');
central = addcompartment(model,'Central');
addspecies(central,'protein')

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 Central protein 0

Construct the Reaction for First-Order Elimination
reaction1 = addreaction(model,'protein -> null')

reaction1 =
 SimBiology Reaction Array

 Index: Reaction:
 1 protein -> null

ke = addparameter(model,'ke', 0.5);
kineticLaw1 = addkineticlaw(reaction1,'MassAction');
kineticLaw1.ParameterVariableNames = {ke.Name};
reaction1.ReactionRate;

Construct the Events That Are Triggered at the Time of Discontinuities

These events set a parameter mode that controls the mode of protein production. The mode is initially
1, changes to 2 at time 3, and changes to 3 at time 6.

counter = addparameter(model,'mode', 1, 'ConstantValue', false);
addevent(model,'time > 3', 'mode = 2')

ans =
 SimBiology Event Array

 Index: Trigger: EventFcns:
 1 time > 3 mode = 2

addevent(model,'time > 6', 'mode = 3')

ans =
 SimBiology Event Array

 Index: Trigger: EventFcns:
 1 time > 6 mode = 3

Construct the Reaction for Protein Production

We assign this rate to a parameter using a repeated assignment rule. This lets us store the production
rate in the simulation results.

 Deterministic Simulation of a Model Containing a Discontinuity

4-111

reaction2 = addreaction(model, 'null -> protein');
rate2 = addparameter(model,'rate2', 0, 'ConstantValue', false);
reaction2.ReactionRate = 'rate2'

reaction2 =
 SimBiology Reaction Array

 Index: Reaction:
 1 null -> protein

addrule(model,'rate2 = discontSimBiologyRateFunction(time, mode)', 'repeatedAssignment')

ans =
 SimBiology Rule Array

 Index: RuleType: Rule:
 1 repeatedAssignment rate2 = discontSimBiologyRateFunction(time, mode)

View the Contents of discontSimBiologyRateFunction

type discontSimBiologyRateFunction

function rate = discontSimBiologyRateFunction(time, mode) %#ok<INUSL>
%discontSimBiologyRateFunction - Helper function for SimBiology examples.
% RATE = discontSimBiologyRateFunction(TIME, MODE);

% Copyright 2010-2021 The MathWorks, Inc.

% Mode is a double precision number subject to round-off errors. We need to
% round to the nearest integer to correctly handle this issue.
mode = round(mode);
switch mode
 case 1
 rate = 5;
 case 2
 rate = 3;
 case 3
 rate = 0;
 otherwise
 error('Invalid mode.');
end

Simulate and Plot the Model

model

model =
 SimBiology Model - discontinuous rate

 Model Components:
 Compartments: 1
 Events: 2
 Parameters: 3
 Reactions: 2
 Rules: 1
 Species: 1

4 Simulation and Analysis

4-112

 Observables: 0

sd = sbiosimulate(model);
plot(sd.Time, sd.Data);
ylim([-0.5 8]);
xlabel('Time');
ylabel('State');
title('Simulation Results');
legend(sd.DataNames);

Conclusion

This example illustrates how to create a SimBiology model that contains discontinuities. It illustrates
how to add events to the model to address the discontinuities, so you can simulate the model
accurately.

 Deterministic Simulation of a Model Containing a Discontinuity

4-113

Analysis of Stochastic Ensemble Data in SimBiology

This example shows how to make ensemble runs and how to analyze the generated data in
SimBiology®.

Introduction

When the behavior of a model is stochastic in nature, a single simulation run does not provide enough
insight into the model. One has to perform an ensemble of runs. Ensemble runs produce large
amounts of data that require systematic analysis.

This example illustrates how to make ensemble runs using SimBiology and how to analyze the
generated data.

Load Model

We will use the G Protein model that was built using published data from Yi et al. (2003). Load the
wild-type G Protein model and look at its species and reactions.

sbioloadproject gprotein_norules m1
m1.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed G 7000
 2 unnamed Gd 3000
 3 unnamed Ga 0
 4 unnamed RL 0
 5 unnamed L 6.022e+17
 6 unnamed R 10000
 7 unnamed Gbg 3000

m1.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 L + R <-> RL
 2 R <-> null
 3 RL -> null
 4 Gd + Gbg -> G
 5 G + RL -> Ga + Gbg + RL
 6 Ga -> Gd

Perform Ensemble Runs

Ensemble runs can be done only if you are using stochastic solvers. With deterministic solvers, it does
not make sense to do ensemble runs since you will always get exactly identical results. Due to
stochasticity, the sample plots on this page might not exactly match the plots you get from running
this example yourself.

4 Simulation and Analysis

4-114

Change the solver type to SSA and perform 10 runs of the model. To speed up the simulation, let's log
only every 100th reaction event.

numRuns = 10;
configsetObj = getconfigset(m1,'active');
configsetObj.SolverType = 'ssa';
configsetObj.SolverOptions.LogDecimation = 100;
simdata = sbioensemblerun(m1, numRuns);

Plot of Raw Data

Plot the raw data corresponding to the species named G, Ga and RL and annotate the plot
appropriately.

figure;
speciesNames = {'G', 'Ga', 'RL'};
[t, x] = selectbyname(simdata, speciesNames);
hold on;
for i = 1:numRuns
 plot(t{i}, x{i});
end

grid on;
xlabel('Time in seconds');
ylabel('Species amount');
title('Raw Ensemble Data');
legend(speciesNames);

 Analysis of Stochastic Ensemble Data in SimBiology

4-115

Ensemble Statistics

Let's compute ensemble statistics for these species.

[timeVals, meanVals, varianceVals] = sbioensemblestats(simdata, speciesNames);

Let's plot the mean and standard deviation as a function of time.

figure;
plot(timeVals, meanVals);
grid on;
xlabel('Time in seconds');
ylabel('Mean');
title('Variation of Mean');
legend(speciesNames, 'Location', 'NorthEastOutside');

figure;
plot(timeVals, sqrt(varianceVals));
grid on;
xlabel('Time in seconds');
ylabel('Standard Deviation');
title('Variation of Standard Deviation');
legend(speciesNames, 'Location', 'NorthEastOutside');

4 Simulation and Analysis

4-116

From these plots it appears that G and Ga have exactly identical standard deviations, though the
variation of their means is different. Let's see if we can find out why that is so. The first step would be
to figure out if there is any relationship between them. Let's look at the reactions in the model once
again to see if anything is obvious.

m1.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 L + R <-> RL
 2 R <-> null
 3 RL -> null
 4 Gd + Gbg -> G
 5 G + RL -> Ga + Gbg + RL
 6 Ga -> Gd

Moiety Conservation

From the reactions, the relationship between G and Ga is not quite clear. To analyze further we are
going to use sbioconsmoiety to see if there is any moiety conservation.

sbioconsmoiety(m1, 'semipos', 'p')

ans = 2x1 cell
 {'G + Gbg' }

 Analysis of Stochastic Ensemble Data in SimBiology

4-117

 {'G + Gd + Ga'}

From this we can see that 'G + Gd + Ga' is always conserved. But that does not completely explain
why the variances of G and Ga are identical. What about Gd? Why doesn't its variance affect G or Ga?
To look into it further, let's compute the ensemble statistics for Gd and plot their variation.

[timeValsGd, meanValsGd, varianceValsGd] = sbioensemblestats(simdata, 'Gd');
figure;
plot(timeValsGd, meanValsGd, '-', ...
 timeValsGd, sqrt(varianceValsGd), 'r:');
axis([-50 600 -500 3000]);
xlabel('Time in seconds');
title('Mean and Standard Deviation of Gd');
legend('Mean', 'Standard Deviation')

Explanation of Identical Variances

From the plot, it can be seen that Gd starts out with a non-zero value at time = 0, but both its mean
and variance approach zero very sharply and stay there. Thus, when Gd stays near zero, the moiety
conservation equation reduces to

G + Ga ≈ constant

This means as G goes up Ga goes down by an equal amount and vice versa. This explains why the
variances of G and Ga are almost identical. If you look at the data in matrix varianceVals, you'll see

4 Simulation and Analysis

4-118

that the two variances are very close but not exactly equal. This is due to the presence of Gd which is
very close to zero but not exactly zero.

Ensemble Plots: 2D Distribution Plots

One way to visualize stochastic ensemble data is to plot histograms of species concentrations at
particular time points. Each histogram shows the distribution of concentrations for a particular
species over the entire ensemble of runs. These histograms may be generated using the SimBiology
command sbioensembleplot.

Let's create histograms for the species G, Ga, and RL at time t = 10. Note that in this example, we
generated the ensemble data without specifying an interpolation option for sbioensemblerun. The
time vectors for each run within the ensemble are therefore different from each other.
sbioensembleplot interpolates the simulation data to find species amounts for every run at the
precise time t = 10.

sbioensembleplot(simdata, speciesNames, 10);

 Analysis of Stochastic Ensemble Data in SimBiology

4-119

4 Simulation and Analysis

4-120

Ensemble Plots: 3D Mountain Plots

It is clear that to get a full understanding of how the distribution changes with time, you will need to
make these distribution plots at every time interval of interest. Moreover, the distribution plots need
to be seen along with the mean and variance plots. It would be nice to put all of this information
together in just one plot.

Well, the 3D ensemble data plots do exactly that. With these 3D plots you can view how mean and
variance change as a function of time. In addition, instead of having to plot the distribution of species
at every possible time step, in one view you can see how a fitted normal distribution, with the same
mean and variance as the actual data, changes with time. The 3D ensemble plot is excellent for
getting an overview of how mean, variance and distribution vary as a function of time.

Let's see a 3D ensemble plot of species Ga.

sbioensembleplot(simdata, 'Ga');

 Analysis of Stochastic Ensemble Data in SimBiology

4-121

This example showed how stochastic ensemble data of SimBiology models can be analyzed using
various tools in SimBiology.

4 Simulation and Analysis

4-122

Deploy a SimBiology Model Using SimFunction

This example shows how to compile a SimBiology model using SimFunction and MATLAB Compiler
and create a web app archive to deploy in MATLAB Web App Server. The example uses a tumor
growth model that focuses on the target or receptor occupancy (TO) as a biomarker and explores the
dosing efficacy and toxicity.

Target-Mediated Drug Disposition (TMDD) Model

Target-mediated drug disposition is a phenomenon in which a drug binds with high affinity to its
pharmacologic target site, such as a receptor or enzyme, in an interaction that is reflected in the
pharmacokinetic characteristics of the drug. For details about the model, see “Scan Dosing Regimens
Using SimBiology Model Analyzer App” on page 1-58.

Load the model.

sbioloadproject tmdd_with_TO.sbproj;

Get Dosing Information

Get the dosing information. The dose object name is Adaptive amount. The object has its amount
property parameterized so that you can change the dose amount property by changing another model
parameter (Amount).

dose = getdose(m1,"Adaptive amount")

dose =
 SimBiology Dose Array

 Index: Name: Type:
 1 Adaptive amount repeat

Generate a dosing table from the dose object to reuse it later.

doseTable = getTable(dose)

doseTable=1×5 table
 StartTime Amount Rate Interval RepeatCount
 _________ __________ ____ ________ ___________

 0 {'Amount'} 0 24 6

Create SimFunction

Create a SimFunction object that creates a function-like interface to let you vary the dose amount
and simulate the model response (target occupancy).

input = "Amount";
output = "TO";
% Suppress informational warning about dosing.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY');
simFun = createSimFunction(m1,input,output,dose);

Accelerate the SimFunction object for faster simulation in the deployed app.

 Deploy a SimBiology Model Using SimFunction

4-123

accelerate(simFun);
% Restore the warning.
warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');

Simulate Model

Run the SimFunction object and check the target occupancy for a given dose amount.

doseAmount = 100;
stopTime = 8; % Simulate for 8 days
results = simFun(doseAmount,stopTime,doseTable);

Plot the target occupancy. Define the safety threshold as 0.8 and efficacy threshold as 0.2.

lh = plot(results.Time, results.Data, Linewidth=2);
yline(0.8,'r--',"safety",LabelVerticalAlignment="middle",Linewidth=2);
yline(0.2,'g--',"efficacy",LabelVerticalAlignment="middle",Linewidth=2);
ylim([-0.05,1.05]);
axis padded
xlabel("Time (days)")
ylabel("Target Occupancy")

Save SimFunction and dosing information as a MAT file to reuse in the deployed app.

save tmdd_simfun_dosetable.mat simFun doseTable

4 Simulation and Analysis

4-124

Compile Application and Create Web App Archive

A prebuilt MATLAB app, app_tmdd_with_TO.mlapp, has a simple slider to control the dose amount.
The app simulates the model each time you change the slider value and plots the corresponding time
course of the target occupancy. On startup, the app loads the necessary SimFunction and dose table
from the MAT file you saved previously. To learn how to build such MATLAB apps, see “Develop Apps
Using App Designer”.

The next steps show you how to compile such an app with additional dependent files needed to create
a web app archive that can run on MATLAB Web App Server.

appfilename = "app_tmdd_with_TO.mlapp";

To check the dependent files required by SimFunction, uncomment the following.

% simFun.DependentFiles'

Specify the MAT file and SimFunction dependent files as the required dependencies for the app.

appDependencies = ["tmdd_simfun_dosetable.mat";simFun.DependentFiles'];

Build the web app archive.

compiler.build.webAppArchive(appfilename,AdditionalFiles=appDependencies);

The build function generates a folder named app_tmdd_with_TOwebAppArchive with the necessary
files needed for deployment in MATLAB Web App Server. For details, see “Deploy Web App” (MATLAB
Compiler).

See Also
SimBiology Model Builder | SimBiology Model Analyzer | Application Compiler |
compiler.build.standaloneApplication | compiler.build.webAppArchive

Related Examples
• “Deploy a SimBiology Exported Model” on page 4-126
• “Develop Apps Using App Designer”
• “Deploy Web App” (MATLAB Compiler)

 Deploy a SimBiology Model Using SimFunction

4-125

Deploy a SimBiology Exported Model

This example shows how to deploy a graphical application that simulates a SimBiology® model. The
example model is the Lotka-Volterra reaction system as described by Gillespie [1], which can be
interpreted as a simple predator-prey model.

This example requires MATLAB Compiler™.

Overview

You can create standalone SimBiology applications using MATLAB Compiler and the SimBiology
exported model. To make your application compatible with MATLAB Compiler, do the following:

• Create an exported model, using the model's export method.
• Accelerate the model (optional).
• Save the model to a MAT file.
• Ensure your application loads the model from the MAT file.
• Add the %#function pragma to the application's top-level function.
• Call the compiler.build.standaloneApplication function, explicitly adding the MAT file

and the exported model's dependent files to the application.

Load the Model

sbioloadproject lotka m1

Create the Exported Model

exportedModel = export(m1);

Accelerate the Model

Acceleration requires a correctly configured MEX compiler (see the documentation for mex -setup).

accelerate(exportedModel);

Save the Exported Model

Save the model in a MAT file.

save exportedLotka exportedModel

Compile and Build Standalone Application

The code that builds an application for the purposes of this example is provided in
simulateLotkaGUI.m.The app lets you vary the Lotka-Volterra model parameter values with sliders
and plots the prey and predator populations. It uses the exported model from the MAT file. The code
also contains the following %#function pragma, which tells the MATLAB Compiler that the
application uses a SimBiology exported model: %#function SimBiology.export.Model.

appfile = fullfile(pwd,"simulateLotkaGUI.m");

If you want to see what the app looks like, you can open the file and hit Run on the toolstrip.

4 Simulation and Analysis

4-126

Next, specify the list of dependency files that are needed for the application. This list includes the
MAT file containing the exported model and any files listed in the DependentFiles property of the
exported model.

appDependencies = ["exportedLotka.mat";string(exportedModel.DependentFiles)'];

Define the standalone application build options that contain the app file and dependency files.

opts = compiler.build.StandaloneApplicationOptions(appfile,AdditionalFiles=appDependencies);

Create a deployable standalone application using MATLAB Compiler. It creates a folder named
simulateLotkaGUIstandaloneApplication that contains an executable file that you can deploy.

if ispc
 compiler.build.standaloneWindowsApplication(opts);
else
 compiler.build.standaloneApplication(opts);
end

Compile Using mcc As an Alternative Approach

You can also use the mcc command to build the standalone application. Note that the MAT file must
be loaded into the workspace before mcc is called, so that the exported model's files are available for
deployment.

To speed up compilation, use the option -N -p simbio, which informs mcc that the deployed
application does not depend on any additional toolboxes. For the purposes of this example,
programmatically construct the mcc command.

mccCommand = ['mcc -m simulateLotkaGUI.m -N -p simbio -a exportedLotka.mat ' ...
 sprintf(' -a %s', exportedModel.DependentFiles{:})];
%
% eval(mccCommand)

References
[1] Gillespie, Daniel T. “Exact Stochastic Simulation of Coupled Chemical Reactions.” The Journal of

Physical Chemistry 81, no. 25 (December 1977): 2340–61.

See Also
SimBiology.export.Model | compiler.build.standaloneApplication |
compiler.build.webAppArchive

Related Examples
• “Deploy a SimBiology Model Using SimFunction” on page 4-123
• “Develop Apps Using App Designer”
• “Deploy Web App” (MATLAB Compiler)

 Deploy a SimBiology Exported Model

4-127

Parameter Scanning, Parameter Estimation, and Sensitivity
Analysis in the Yeast Heterotrimeric G Protein Cycle

This example shows how to build, simulate and analyze a model in SimBiology® using a pathway
taken from the literature.

Reference

A quantitative characterization of the yeast heterotrimeric G protein cycle. Tau-Mu Yi, Hiroaki Kitano,
and Melvin I. Simon. PNAS (2003) vol. 100, 10764-10769.

Aims

• Create a model for the yeast TMY101(wt) strain that shows the wild-type (catalyzed) rate of G-
Protein inactivation.

• Create a variant for the TMY111(mut) strain that shows the mutant (uncatalyzed) rate of G-
Protein inactivation.

• Simulate and store the data from the two models.

• Compare the timecourse for G-Protein activation between the wild-type pathway, mutant pathway,
and experimental data.

• Perform a parameter scan to determine the effect of varying the value of a parameter on a species
of interest.

• Estimate model parameter values using experimental data.

• Perform sensitivity analysis to determine which and to what extent model parameters affect a
species of interest.

Background

In the yeast Saccharomyces cerevisiae, G protein signaling in the mating response is a well
characterized signal transduction pathway. The pheromone secreted by alpha cells activates the G-
protein coupled alpha-factor receptor (Ste2p) in 'a' cells which results in a variety of cell responses
including cell-cycle arrest and synthesis of new proteins. G proteins and G protein coupled receptors
(GPCRs) are the focus of drug discovery efforts in the pharmaceutical industry. Many marketed drugs
target GPCRs - some examples include those for reducing stomach acid (ranitidine, targets histamine
H2 receptor), migraine (sumatriptan, targets a serotonin receptor subtype), schizophrenia
(olanzapine, targets serotonin and dopamine receptors), and allergies (desloratadine, targets
histamine receptors). Further, some estimates suggest that GPCRs are the targeted focus of 40% of
drug discovery efforts. One approach is to model GPCR signaling pathways to analyze and predict
both downstream effects and effects in related pathways. This example examines model building,
simulation, and analysis of the G protein cycle in the yeast pheromone response pathway.

This figure is a graphical representation of the conceptual framework used to model the yeast G
protein cycle.

The following abbreviations are used:

• L = Ligand

4 Simulation and Analysis

4-128

• R = Receptor
• Gd = G alpha- GDP
• Gbg = free levels of G beta-gamma
• Ga = G alpha - GTP
• G = inactive heterotrimeric G-Protein (contains G alpha and G beta-gamma)
• null = source or sink
• Sst2 denotes the G protein regulator (RGS) Sst2p

Pathway Reactions

As shown in the figure, the cycle can be condensed into a set of biochemical reactions:

1) Receptor-Ligand Interaction (reversible reaction)

 L + R < - > RL

2) Heterotrimeric G-Protein formation

 Gd + Gbg -> G

3) G-Protein activation - Note below that RL appears on both sides of the equation because RL is a
modifier or catalyst for the reaction. RL is neither produced nor consumed by this reaction.

 RL + G -> Ga + Gbg + RL

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-129

4) Receptor synthesis and degradation (treated as reversible reaction to represent degradation and
synthesis)

 R < - > null

5) Receptor-ligand degradation

 RL -> null

6) G-Protein inactivation, catalyzed by Sst2p in wild-type strain TMY101 and uncatalyzed in mutant
strain TMY111 with a disruption in the SST2 gene.

 Ga -> Gd

All values have been converted to molecule for species amounts, and molecule/second, or 1/second
for rate parameters.

Building a SimBiology® Model for the Wild-Type Pathway

Create a SimBiology model object with the name 'Heterotrimeric G Protein wt'.

 modelObj = sbiomodel('Heterotrimeric G Protein wt');

Add the Receptor-Ligand interaction (reversible reaction).

 reactionObj1 = addreaction(modelObj, 'L + R <-> RL', ...
 'Name', 'Receptor-ligand interaction');

Use a 'MassAction' kinetic law for the reaction. This model is built using mass action kinetics for all
reactions.

 kineticlawObj1 = addkineticlaw(reactionObj1, 'MassAction');

Add the forward and reverse rate parameters.

 addparameter(modelObj, 'kRL', 3.32e-18);
 addparameter(modelObj, 'kRLm', 0.01);

Assign ParameterVariableNames in the kinetic law object. This maps ParameterVariables to
ParameterVariableNames in the kinetic law object so that the reaction rate can be determined.

kineticlawObj1.ParameterVariableNames = {'kRL', 'kRLm'};

SimBiology automatically creates species objects for each of the participating species in the
reactions. Set the initial amounts of these species.

% Set initial amount for 'L'
 modelObj.Reactions(1).Reactants(1).InitialAmount = 6.022E17;
% Set initial amount for 'R'
 modelObj.Reactions(1).Reactants(2).InitialAmount = 10000.0;
% Leave initial amount for 'RL' at default value (0.0)

The ReactionRate for the first reaction has now been configured.

 reactionObj1.ReactionRate

ans =

4 Simulation and Analysis

4-130

 'kRL*L*R - kRLm*RL'

Completing the Wild-Type Model

To create the model of the wild-type strain (TMY101), add the rest of the reactions and parameters,
create kinetic law objects for each of the reactions, and assign parameter variables for the kinetic
laws.

Add and configure the reaction for Heterotrimeric G-Protein formation.

 reactionObj2 = addreaction(modelObj, 'Gd + Gbg -> G', ...
 'Name', 'G protein complex formation');
 kineticlawObj2 = addkineticlaw(reactionObj2, 'MassAction');
 addparameter(modelObj, 'kG1', 1.0);
 kineticlawObj2.ParameterVariableNames = 'kG1';
% Set initial amount for 'Gd'
 modelObj.Reactions(2).Reactants(1).InitialAmount = 3000;
% Set initial amount for 'Gbg'
 modelObj.Reactions(2).Reactants(2).InitialAmount = 3000;
% Set initial amount for 'G'
 modelObj.Reactions(2).Products(1).InitialAmount = 7000;

Add and configure the reaction for G-Protein activation.

 reactionObj3 = addreaction(modelObj, 'G + RL -> Ga + Gbg + RL', ...
 'Name', 'G protein activation');
 kineticlawObj3 = addkineticlaw(reactionObj3, 'MassAction');
 addparameter(modelObj, 'kGa', 1.0E-5);
 kineticlawObj3.ParameterVariableNames = 'kGa';
% Set initial amount for 'Ga'
 modelObj.Reactions(3).Products(1).InitialAmount = 0.0;

Add and configure the reaction for receptor synthesis and degradation.

 reactionObj4 = addreaction(modelObj, 'R <-> null', ...
 'Name', 'R synthesis/degradation');
 kineticlawObj4 = addkineticlaw(reactionObj4, 'MassAction');
 addparameter(modelObj, 'kRdo', 4.0E-4);
 addparameter(modelObj, 'kRs', 4.0);
 kineticlawObj4.ParameterVariableNames = {'kRdo','kRs'};

Add and configure the reaction for receptor-ligand degradation.

 reactionObj5 = addreaction(modelObj, 'RL -> null', 'Name', 'RL degradation');
 kineticlawObj5 = addkineticlaw(reactionObj5, 'MassAction');
 addparameter(modelObj, 'kRD1', 0.0040);
 kineticlawObj5.ParameterVariableNames = 'kRD1';

Add and configure the reaction for G-Protein inactivation.

 reactionObj6 = addreaction(modelObj, 'Ga -> Gd', 'Name', 'Gprotein inactivation');
 kineticlawObj6 = addkineticlaw(reactionObj6, 'MassAction');
 addparameter(modelObj, 'kGd', 0.11);
 kineticlawObj6.ParameterVariableNames = 'kGd';

Check the ReactionRate of all the reactions.

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-131

 get(modelObj.Reactions, {'Reaction', 'ReactionRate'})

ans =

 6x2 cell array

 {'L + R <-> RL' } {'kRL*L*R - kRLm*RL'}
 {'Gd + Gbg -> G' } {'kG1*Gd*Gbg' }
 {'G + RL -> Ga + Gbg + RL'} {'kGa*G*RL' }
 {'R <-> null' } {'kRdo*R - kRs' }
 {'RL -> null' } {'kRD1*RL' }
 {'Ga -> Gd' } {'kGd*Ga' }

Simulating the Wild-Type Model and Plotting the Results

To note the fast rise and subsequent decline of the species Ga, simulate the model for 600s and store
the results.

Change the StopTime of the default configuration set object from 10s (simulationTime) to 600s. In
addition, don't log data for the ligand 'L' (modelObj.Species(1)) because it takes on values that are
orders of magnitude higher than the other species. This makes visualizing the species in a plot more
convenient. To accomplish this, define StatesToLog to include all species except 'L'.

 configsetObj = getconfigset(modelObj);
 configsetObj.StopTime = 600;
 configsetObj.SolverOptions.AbsoluteTolerance = 1.e-9;
 configsetObj.RuntimeOptions.StatesToLog = ...
 sbioselect(modelObj, 'Type', 'species', 'Where', 'Name', '~=', 'L');

Simulate the model and return the results to the three variables 'time', 'data', and 'names'.

 [time, data, names] = sbiosimulate(modelObj);

Plot the data.

 plot(time, data);
 legend(names, 'Location', 'NorthEastOutside');
 xlabel('Time (seconds)');
 ylabel('Species Amounts');
 grid on;

4 Simulation and Analysis

4-132

Creating a Model Variant for the Mutant Strain

The G-Protein cycle model for the mutant strain differs in the rate at which the inactivation of the
active G-protein (Ga) takes place. This rate is governed by the value of the rate parameter kGd. You
can represent the mutant strain using a Variant object. A SimBiology Variant stores alternate values
for one or more properties of a SimBiology model, such as the InitialAmount of a species or the Value
of a parameter.

Add a variant named 'mutant' to the model.

 variantObj = addvariant(modelObj, 'mutant');

Add content to the variant to specify an alternate value of 0.004 for the parameter kGd.

 addcontent(variantObj, {'parameter', 'kGd', 'Value', 0.004});

Simulating the Mutant Pathway and Plotting the Results

Simulate the model using the mutant variant object. This applies the value of 0.004 to the parameter
kGd during simulation. Return the simulation results in a SimData object. In addition to storing
SimBiology simulation data, SimData objects provide methods for data access, plotting, and analysis.

Set the Active property of the mutant variant object to true and simulate.

 variantObj.Active = true;
 mutantData = sbiosimulate(modelObj);

Plot the data using dashed lines. See also sbioplot for convenient plotting of SimData objects.

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-133

 plot(mutantData.Time, mutantData.Data, 'LineStyle', '--');
 legend(mutantData.DataNames, 'Location', 'NorthEastOutside');
 xlabel('Time (seconds)');
 ylabel('Species Amounts');
 grid on;

Compare the behavior of the active G-Protein species (Ga) in the wild-type and mutant pathways.

 GaIndex = strcmp(names, 'Ga'); % index for wild-type results
 [tmut, xmut] = selectbyname(mutantData, 'Ga');
 plot(time, data(:,GaIndex), tmut, xmut, '--');
 xlabel('Time (seconds)');
 ylabel('Species Amounts');
 legend({'Ga (wt)','Ga (mutant)'}, 'Location', 'NorthEastOutside');
 grid on;

4 Simulation and Analysis

4-134

Performing a Parameter Scan

The rate of G-protein inactivation is much lower in the mutant strain relative to the wild-type (kGd =
0.004 vs kGd = 0.11), which explains the higher levels of activated G-protein (Ga) over time observed
in the above comparison. For a more detailed look at how the variation of kGd affects levels of Ga,
perform a parameter scan of several simulations in which the value of kGd is varied over a range of
values. The following example illustrates a parameter scan over five values of kGd; to increase the
number of iterations, change the values in the arguments for the linspace function below.

Generate five evenly-spaced kGd values ranging from 0.001 to 0.15.

 kGdValues = linspace(1e-3, 0.15, 5);

Store the results of the parameter scan in an array of SimData objects. Initialize a variable to hold
this array.

 scanData = [];

Prepare the model for accelerated simulation.

 sbioaccelerate(modelObj);

Loop over kGdValues and perform a simulation for each value. Use the mutant variant on the model
to modify the value of kGd used during simulation.

for kGd = kGdValues

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-135

 % Set the desired value of kGd in the variant.
 variantObj.Content{1}{4} = kGd;

 % Simulate the model, storing the results in a SimData object.
 sd = sbiosimulate(modelObj);
 scanData = [scanData; sd];
end

scanData is now a five element array of SimData objects. Each object contains the data from one run
in the parameter scan.

Extract the timecourses for Ga from the SimData object array and plot on a single axis. The following
code constructs the plot step-by-step; alternatively, see sbioplot and sbiosubplot.

 [tscan, xscan] = selectbyname(scanData, 'Ga');

 fh = figure;
 hold on;
 for c = 1:5
 plot(tscan{c}, xscan{c});
 str = sprintf(' k = %5.3f', kGdValues(c));
 text(tscan{c}(end), xscan{c}(end), str);
 end

 % Annotate the plot.
 axis(gca(fh), 'square');
 title('Varying the Value of kGd: Effect on Ga');
 xlabel('Time (seconds)');
 ylabel('Species Amounts');
 grid on;
 hold off;

4 Simulation and Analysis

4-136

Parameter Estimation - Background

When modeling biological systems, it is often necessary to include parameters whose numerical value
is unknown or only roughly known. If experimental data is available for one or more species in the
system, the values of these parameters can be estimated by varying them and looking for those
values which lead to the best fit between the model's simulated results and the experimental data.

In this section of the example we explore parameter estimation functionality in the context of trying
to fit the G protein model to experimental data.

Parameter Estimation - Comparing Model Results to Experimental Data

For experimental data, Fig. 5 of the reference paper contains the timecourse for the fraction of active
G protein.

Store the experimental time and state data.

 tExpt = [0 10 30 60 110 210 300 450 600]';
 GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';
 data = groupedData(table(tExpt, GaFracExpt));
 data.Properties.IndependentVariableName = 'tExpt';

Instead of converting this experimental data to absolute amounts of Ga, add this fraction to the model
using a non-constant parameter and a repeatedAssignment rule.

 GaFracObj = modelObj.addparameter('GaFrac', 'ConstantValue', 0);
 GaFracRule = modelObj.addrule('GaFrac = Ga / (Ga + G + Gd)', 'repeatedAssignment')

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-137

GaFracRule =

 SimBiology Rule Array

 Index: RuleType: Rule:
 1 repeatedAssignment GaFrac = Ga / (Ga + G + Gd)

Change the RuntimeOptions on the configuration set to log GaFrac.

 configsetObj.RuntimeOptions.StatesToLog = GaFracObj;

Deactivate the mutant variant.

 variantObj.Active = false;

Simulate the model, storing the results in a SimData object.

 sdWild = sbiosimulate(modelObj);

Get the data for 'GaFrac' to be used later in a plot.

 [tWild, GaFracWild] = selectbyname(sdWild, 'GaFrac');

Resample the simulation results onto the experimental time vector.

 sdWildResampled = resample(sdWild, tExpt, 'pchip');

Get the resampled data for the species 'Ga'.

 [~, GaFracWildResampled] = selectbyname(sdWildResampled, 'GaFrac');

Compute the R-square value measuring the fit between the simulated and experimental data.

 sst = norm(GaFracExpt - mean(GaFracExpt))^2;
 sse = norm(GaFracExpt - GaFracWildResampled)^2;
 rSquare = 1-sse/sst;

Plot the simulation results against the experimental data for Ga.

 fh = figure;
 plot(tExpt, GaFracExpt, 'ro');
 legendText = {'Experiment'};
 title('Fit to Experimental Data for GaFrac');
 xlabel('Time (seconds)');
 ylabel('Species Amount');
 hold on;
 plot(tWild, GaFracWild);
 legendText{end+1} = sprintf('Original, R^2 = %4.2f', rSquare);
 legend(legendText{:});
 grid on;

4 Simulation and Analysis

4-138

Parameter Estimation - Estimating a Single Model Parameter

From the parameter scan, we've seen that the value of the parameter kGd has a significant effect on
the timecourse of the species Ga. Let's see if we can improve the fit of the model results to the
experimental data by varying the value of kGd.

Perform parameter estimation against the experimental data, optimizing the value of kGd. Plot
information about iterations while the optimization progresses, up to a maximum of 15 iterations.

 paramToEst = estimatedInfo('kGd');
 kGdObj = sbioselect(modelObj, 'Name', 'kGd');
 opt = optimset('PlotFcns',@optimplotfval,'MaxIter',15);
 result1 = sbiofit(modelObj, data, 'GaFrac = GaFracExpt', paramToEst, ...
 [], 'fminsearch', opt);
 estValues1 = result1.ParameterEstimates

estValues1 =

 1x3 table

 Name Estimate StandardError
 _______ ________ _____________

 {'kGd'} 0.12142 0.0018548

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-139

Store the estimated value of kGd in a new model Variant.

 optimVariantObj = addvariant(modelObj, 'Optimized kGd');
 addcontent(optimVariantObj, {'parameter', 'kGd', 'Value', estValues1.Estimate});

Activate the new variant and inactivate the 'mutant' variant.

 optimVariantObj.Active = true;
 mutantVariantObj = getvariant(modelObj, 'mutant');
 mutantVariantObj.Active = false;

Simulate the model using the estimated value of kGd.

 sdEst1 = sbiosimulate(modelObj);

Plot the data for GaFrac and compare with the previous results.

 [t1, GaFracEst1] = selectbyname(sdEst1, 'GaFrac');
 sdEst1Resampled = resample(sdEst1, tExpt, 'pchip');
 [~, GaFracEst1Resampled] = selectbyname(sdEst1Resampled, 'GaFrac');
 sse1 = norm(GaFracExpt - GaFracEst1Resampled)^2;
 rSquare1 = 1-sse1/sst;
 figure(fh);
 plot(t1, GaFracEst1, 'm-');
 legendText{end+1} = sprintf('kGd Changed, R^2 = %4.2f', rSquare1);
 legend(legendText{:});

4 Simulation and Analysis

4-140

From the R-square values, we see that the fit to the experimental data is slightly better with the new,
estimated value of kGd. If the original value for kGd was only a rough estimate, we could interpret
these results either as a confirmation of the original estimate or an improvement over it.

Sensitivity Analysis - Background

So far we have been interested in the dynamic behavior of the active G protein, species Ga. A
parameter scan revealed that this species is significantly affected by the value of the rate constant
kGd governing G-protein inactivation. Using parameter estimation, we found that by optimizing the
value of kGd, we were able to better fit an experimental timecourse for Ga.

A natural question to ask is, what other parameters of the model affect Ga levels, and what are the
magnitudes of those effects? Sensitivity analysis allows you to answer these questions by computing
the time-dependent derivatives of one or more species ("outputs") relative to either model parameter
values, or species initial conditions ("input factors").

Sensitivity Analysis - Computing Sensitivities

Compute the sensitivity of Ga with respect to various parameters in the model. Normalize the
sensitivities fully so they can be compared with each other.

Deactivate the mutant variant object on the model so that sensitivities are computed with kGd at its
original value.

 optimVariantObj.Active = false;

Set up the sensitivity calculation in the model configset.

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-141

% Turn on SensitivityAnalysis in the solver options.
 configsetObj.SolverOptions.SensitivityAnalysis = true;

% Configure the sensitivity outputs and inputs for sensitivity analysis.
 sensitivityOpt = configsetObj.SensitivityAnalysisOptions;
 GaObj = sbioselect(modelObj, 'Type', 'species', 'Name', 'Ga');
 sensitivityOpt.Outputs = GaObj;
 params = sbioselect(modelObj, 'Type', 'parameter', 'Where', 'Name', '~=', 'GaFrac');
 sensitivityOpt.Inputs = params;
 sensitivityOpt.Normalization = 'Full';

Simulate the model.

 sdSens = sbiosimulate(modelObj);

Extract the sensitivity data from the SimData object and plot the computed sensitivities.

 [t, R, sensOutputs, sensInputs] = getsensmatrix(sdSens);
 R = squeeze(R);

 figure;
 plot(t,R);
 title('Normalized sensitivity of Ga with respect to various parameters');
 xlabel('Time (seconds)');
 ylabel('Sensitivity');
 legend(sensInputs, 'Location', 'NorthEastOutside');
 grid on;

4 Simulation and Analysis

4-142

Parameter Estimation - Estimating Multiple Parameters

These results show that Ga is not only sensitive to the parameter kGd, but also to kGa, kRs, and
kRD1. (The other sensitivities are indistinguishable from zero on the plot.) Varying these four
parameters may make the fit to experimental data better still.

Estimate these four parameters to match the target data. Use the previously configured optimization
options and the current parameter values in the model as the starting point for optimization.

Select the parameters kGa, kRs, kRD1, and kGd for estimation.

 paramsToEst = estimatedInfo({'kGa', 'kRs', 'kRD1', 'kGd'});

Parameter estimation will ignore the sensitivity analysis option if it is enabled in the configset. Turn
off SensitivityAnalysis in the solver options to avoid warnings.

 configsetObj.SolverOptions.SensitivityAnalysis = false;
 result2 = sbiofit(modelObj, data, 'GaFrac = GaFracExpt', paramsToEst, ...
 [], 'fminsearch', opt);
 estValues2 = result2.ParameterEstimates

estValues2 =

 4x3 table

 Name Estimate StandardError
 ________ __________ _____________

 {'kGa' } 9.0068e-06 3.0249e-06
 {'kRs' } 4.549 11.786
 {'kRD1'} 0.0031018 0.0027417
 {'kGd' } 0.12381 0.053702

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-143

Store the estimated values of the four parameters in a new model variant.

 optimVariantObj2 = addvariant(modelObj, 'Four parameter optimization');
 addcontent(optimVariantObj2, {'parameter','kGa', 'Value', estValues2.Estimate(1)});
 addcontent(optimVariantObj2, {'parameter','kRs', 'Value', estValues2.Estimate(2)});
 addcontent(optimVariantObj2, {'parameter','kRD1','Value', estValues2.Estimate(3)});
 addcontent(optimVariantObj2, {'parameter','kGd', 'Value', estValues2.Estimate(4)});

Now simulate the model with the newly estimated parameter values.

 optimVariantObj.Active = false;
 optimVariantObj2.Active = true;
 sdEst2 = sbiosimulate(modelObj);

Compare with the previous results.

 [t2, GaFracEst2] = selectbyname(sdEst2, 'GaFrac');
 sdEst2Resampled = resample(sdEst2, tExpt, 'pchip');
 [~, GaFracEst2Resampled] = selectbyname(sdEst2Resampled, 'GaFrac');
 sse2 = norm(GaFracExpt - GaFracEst2Resampled)^2;
 rSquare2 = 1-sse2/sst;
 figure(fh);
 plot(t2, GaFracEst2, 'g-');
 legendText{end+1} = sprintf('4 Constants Changed, R^2 = %4.2f', rSquare2);
 legend(legendText{:});

4 Simulation and Analysis

4-144

With parameter estimation free to vary four parameters, the fit to experimental data has improved
further. The displayed optimization iterations show that the objective function has decreased and the
R-square value has increased.

Note that the four-parameter estimation performed here may or may not be biologically relevant and
is for illustrative purposes only.

Note also that storing the estimation results in variants makes it easy to switch back and forth
between simulating different versions of the model. There are four versions at this point: the original,
the mutant, and two versions based on the results of parameter estimations.

Conclusion

This example introduced various aspects of SimBiology functionality for model building, simulation,
and analysis using a model of G protein signaling.

 Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle

4-145

Finding Conserved Quantities in a Pathway Model

This example shows how to use the sbioconsmoiety function to find conserved quantities in a
SimBiology® model.

Aims

• Use sbioconsmoiety to determine the conserved quantities present in two models of glycolysis
in T. brucei.

• Use the computed conserved quantities in an analysis of these models.

Background

Trypanosoma brucei is the single-celled, eukaryotic parasite responsible for African sleeping
sickness. This organism survives inside an infected host by metabolizing glucose from the host
bloodstream. In T. brucei as well as other trypanosomes, a large portion of glycolysis occurs inside a
specialized organelle called the glycosome.

To investigate the function of the glycosome, Bakker et al. (2000, 1997) constructed and validated a
computational model of glycolysis in T. brucei that explicitly includes glycosomal compartmentation.
They compared the properties of this model to those of a derived model in which the glycosome is
absent. Among other results, they found that in the absence of the glycosome, hexose phosphate
intermediates in the glycolytic pathway can accumulate to high levels that would be hazardous to the
cell. In their analysis, Bakker et al. were able to explain how the compartmentation of metabolites
provided by the glycosome prevents this potentially toxic accumulation.

One way to understand the effect of compartmentation is to examine how it affects the conserved
quantities present in the system. In this example, we calculate the conserved quantities in the two
models of T. brucei glycolysis and discuss their significance in the context of the analysis of Bakker et
al.

Load the Project

Begin by loading the project at the command-line using sbioloadproject.

sbioloadproject trypanosome_glycolysis

The project contains two models. The first model, m1, contains the wild-type glycolysis network
displayed below. (You can explore the network interactively by starting the SimBiology Model Builder
app with simBiologyModelBuilder and opening the project file trypanosome_glycolysis.sbproj
located in (matlabroot/toolbox/simbio/simbiodemos.)

4 Simulation and Analysis

4-146

 Finding Conserved Quantities in a Pathway Model

4-147

This system is a slightly simplified version of the pathway used by Bakker et al. The model has three
compartments: glycosome, cytosol, and external. Metabolites contained in the glycosome are in blue,
while metabolites in the cytosol or external to the cell are in green. Some species, such as glycerol 3-
phosphate (Gly-3-P), are present in multiple compartments.

The pathway begins with the import of extracellular glucose into the glycosome (for convenience, the
cytosol is "skipped" in this process). The pathway proceeds downwards in the diagram, ending with
the transport of pyruvate out of the cytosol. Under aerobic conditions, glycerol 3-phosphate (Gly-3-P)
is oxidized via glycerol-3-phosphate oxidase (GPO) outside the glycosome; as a consequence, glucose
is fully converted to pyruvate. Under anaerobic conditions, this reaction does not occur and the
glycolytic pathway produces glycerol in addition to pyruvate.

Compute the Conserved Quantities in the Wild-Type Network

The function sbioconsmoiety examines the structure of a model's stoichiometry matrix to find
linear combinations of species that are conserved. This analysis is structural in that it relies only on
the stoichiometry and structure of the network and not on reaction kinetics. In fact, all the reaction
rates in this model have been set to 0 because these rates are not important to our analysis. Here we
call sbioconsmoiety with the algorithm specification 'semipos', so that all conserved quantities
returned involve only positive sums of species. The third argument 'p' asks for the output to be
printed to a cell array of strings.

cons_wt = sbioconsmoiety(m1,'semipos','p')

cons_wt = 10x1 cell
 {'external.glucose' }
 {'external.glycerol' }
 {'external.pyruvate' }
 {'cytosol.H20' }
 {'cytosol.O2' }
 {'cytosol.Gly-3-P + cytosol.DHAP' }
 {'cytosol.ATP + cytosol.ADP + cytosol.AMP' }
 {'glycosome.ATP + glycosome.ADP + glycosome.AMP' }
 {'glycosome.NAD+ + glycosome.NADH' }
 {'2 glycosome.ATP + glycosome.ADP + glycosome.G-6-P + glycosome.F-6-P + 2 glycosome.F-1,6-BP + glycosome.DHAP + glycosome.GA-3-P + glycosome.Gly-3-P + glycosome.1,3-BPGA'}

The last cell in the cell array contains a long string. Break this string up and display it so it can be
read.

disp(cons_wt{end}(1:68));

2 glycosome.ATP + glycosome.ADP + glycosome.G-6-P + glycosome.F-6-P

disp(cons_wt{end}(69:147));

+ 2 glycosome.F-1,6-BP + glycosome.DHAP + glycosome.GA-3-P + glycosome.Gly-3-P

disp(cons_wt{end}(148:end));

+ glycosome.1,3-BPGA

The output of sbioconsmoiety contains ten quantities whose time rate of change is zero, regardless
of reaction kinetics. There are two conserved pools of the adenine nucleotides ATP, ADP, and AMP, one
in the glycosome and one in the cytosol. The glycosomal pool of nicotinamide nucleotides NAD+ and
NADH is conserved as well. The singly conserved species such as external.glucose and cytosol.O2 are
species on the boundary of the system that have their BoundaryCondition property set to true. These

4 Simulation and Analysis

4-148

species are included in the output of sbioconsmoiety because their amounts would indeed remain
constant during a hypothetical simulation.

The remaining two conserved quantities represent pools of bound phosphate, one inside and one
outside the glycosome. The one inside includes nine different species. Note that the coefficients of
ATP and fructose-1,6-biphosphate (F-1,6-BP) are both 2, as these species each have two transferable
phosphate groups.

The species participating in the conserved sum have been highlighted below. This figure was
generated by selecting the relevant species in the Diagram Table View in the SimBiology desktop. The
conserved cycle "begins" when glucose is phosphorylated by ATP to form glucose 6-phosphate (G-6-
P). This phosphate group propagates down through the pathway until it is transferred back to ATP
from 1,3-biphosphoglycerate (1,3-BPGA) or glycosomal glycerol 3-phosphate (Gly-3-P), completing the
cycle.

 Finding Conserved Quantities in a Pathway Model

4-149

4 Simulation and Analysis

4-150

Note that the sum cytosol.DHAP + cytosol.Gly-3-P arises as an independently conserved pool because
the DHAP/Gly-3-P antiporter exchanges one glycosomal DHAP molecule for one cytosolic Gly-3-P
molecule and vice versa. There are fluxes of phosphate groups in and out of this pool, but the next
flux is zero because these fluxes cancel each other out.

View the Experimental Model with No Glycosome

Now let's consider the second model, m2, that contains the in silico experimental network of Bakker
et al. in which the glycosome has been removed. In this model all metabolites reside in the cytosol. In
particular, there is no longer an antiport exchange of DHAP and Gly-3-P in and out of the glycosome,
and there is a single pool for the adenine nucleotides ATP, ADP, and AMP.

 Finding Conserved Quantities in a Pathway Model

4-151

4 Simulation and Analysis

4-152

Compute the Conserved Quantities in the Experimental Network

cons_exp = sbioconsmoiety(m2,'semipos','p')

cons_exp = 7x1 cell
 {'external.glucose' }
 {'external.glycerol' }
 {'external.pyruvate' }
 {'cytosol.H20' }
 {'cytosol.O2' }
 {'cytosol.NADH + cytosol.NAD+' }
 {'cytosol.AMP + cytosol.ADP + cytosol.ATP'}

The species on the boundary of the system are still present in the experimental model, and their
amounts are again conserved. Without the glycosome, however, the conservation of bound
phosphates has disappeared, leaving only conservation relations for the nicotinamide and adenine
nucleotides.

Discussion

In their analysis of the function of the glycosome in T. brucei, Bakker et al. find that glycosomal
compartmentation prevents the potentially toxic accumulation of the hexose phosphate intermediates
G-6-P and F-1,6-BP during glycolysis. This observation can be understood in light of the observed
difference in the conservation of phosphates with and without the glycosome. When the glycosome is
present, intermediates such as G-6-P or F-1,6-BP cannot accumulate to arbitrarily high levels, as they
are limited by the total amount of organic phosphate present in a conserved pool. Without the
glycosome, this restriction is absent. Insight may also be gained by considering the glycosomal
compartmentation of adenine nucleotides. When the extracellular level of glucose is increased, the
reactions HK and PFK are stimulated. When the glycosome is present, these reactions are self-
limiting, as they deplete the ATP from a conserved pool of glycosomal ATP, ADP, and AMP. When the
glycosome is absent, on the other hand, the cytosolic ATP/ADP ratio in fact increases with increasing
levels of extracellular glucose. As a consequence, the reactions HK and PFK are further stimulated,
leading to the accumulation of their products, G-6-P and F-1,6-BP.

This analysis shows that glycosomal compartmentation provides a negative feedback mechanism on
the buildup of intermediates. Bakker et al. suggest that the conserved pool of organic phosphates
may also serve as an energy storage mechanism for wild-type T. brucei during times of starvation.

In this example we have shown how to calculate the conserved quantities in a SimBiology model and
how an analysis of these conserved quantities can lead to insight into the behavior of a network.

References

Bakker, B. M., Mensonides, F. I. C., Teusink, B., van Hoek, P., Michels, P. A. M., and Westerhoff, H. V.
Compartmentation Protects Trypanosomes from the Dangerous Design of Glycolysis. PNAS (2000)
vol. 97, 2087-2092.

Bakker, B. M., Michels, P. A. M., Opperdoes, F. R., and Westerhoff, H. V. Glycolysis in Bloodstream
Form Trypanosoma brucei Can Be Understood in Terms of the Kinetics of the Glycolytic Enzymes. J.
Biol. Chem. (1997) vol. 272, 3207-3215.

 Finding Conserved Quantities in a Pathway Model

4-153

Model the Population Pharmacokinetics of Phenobarbital in
Neonates

This example shows how to build a simple nonlinear mixed-effects model from clinical
pharmacokinetic data.

Data were collected on 59 pre-term infants given phenobarbital for prevention of seizures during the
first 16 days after birth. Each individual received an initial dose followed by one or more sustaining
doses by intravenous bolus administration. A total of between 1 and 6 concentration measurements
were obtained from each individual at times other than dose times, as part of routine monitoring, for
a total of 155 measurements. Infant weights and APGAR scores (a measure of newborn health) were
also recorded.

This example uses data described in [1], a study funded by NIH/NIBIB grant P41-EB01975.

This example requires Statistics and Machine Learning Toolbox™.

Load the Data

These data were downloaded from the website http://depts.washington.edu/rfpk/ (no longer
active) of the Resource Facility for Population Pharmacokinetics as a text file, and saved as a dataset
array for ease of use.

load pheno.mat ds

Visualize the Data in a Trellis Plot

t = sbiotrellis(ds, 'ID', 'TIME', 'CONC', 'marker', 'o',...
 'markerfacecolor', [.7 .7 .7], 'markeredgecolor', 'r', ...
 'linestyle', 'none');

% Format the plot.
t.plottitle = 'States versus Time';
t.hFig.Color = [1 1 1];

4 Simulation and Analysis

4-154

Describe the Data

In order to perform nonlinear mixed-effects modeling on this dataset, we need to convert the data to
a groupedData object, a container for holding tabular data that is divided into groups. The
groupedData constructor automatically identifies commonly use variable names as the grouping
variable or the independent (time) variable. Display the properties of the data and confirm that
GroupVariableName and IndependentVariableName are correctly identified as 'ID' and
'TIME', respectively.

data = groupedData(ds);
data.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Observations' 'Variables'}
 VariableNames: {'ID' 'TIME' 'DOSE' 'WEIGHT' 'APGAR' 'CONC'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'TIME'

 Model the Population Pharmacokinetics of Phenobarbital in Neonates

4-155

Define the Model

We will fit a simple one-compartment model, with bolus dose administration and linear clearance
elimination, to the data.

pkmd = PKModelDesign;
pkmd.addCompartment('Central', 'DosingType', 'Bolus', 'EliminationType', ...
 'Linear-Clearance', 'HasResponseVariable', true);
model = pkmd.construct;

% The model species |Drug_Central| corresponds to the data variable |CONC|.
responseMap = 'Drug_Central = CONC';

Specify Initial Estimates for the Parameters

The parameters fit in this model are the volume of the central compartment (Central) and the
clearance rate (Cl_Central). NLMEFIT calculates fixed and random effects for each parameter. The
underlying algorithm assumes parameters are normally distributed. This assumption may not hold for
biological parameters that are constrained to be positive, such as volume and clearance. We need to
specify a transform for the estimated parameters, such that the transformed parameters do follow a
normal distribution. By default, SimBiology® chooses a log transform for all estimated parameters.
Therefore, the model is:

log(Vi) = log(ϕV, i) = θV + ηV, i

and

log(Cli) = log(ϕCl, i) = θCl + ηCl, i,

where θ, eta, and ϕ are the fixed effects, random effects, and estimated parameter values
respectively, calculated for each group i. We provide some arbitrary initial estimates for V and Cl in
the absence of better empirical data.

estimatedParams = estimatedInfo({'log(Central)', 'log(Cl_Central)'}, ...
 'InitialValue', [1 1]);

Extract the Dosing Information from the Data

Create a sample dose that targets species Drug_Central and use the createDoses method to
generate doses for each infant based on the dosing amount listed in variable DOSE.

sampleDose = sbiodose('sample', 'TargetName', 'Drug_Central');
doses = createDoses(data, 'DOSE', '', sampleDose);

Fit the Model

Slightly loosen the tolerances to speed up the fit.

fitOptions.Options = statset('TolFun', 1e-3, 'TolX', 1e-3);
[nlmeResults, simI, simP] = sbiofitmixed(model, data, responseMap, ...
 estimatedParams, doses, 'nlmefit', fitOptions);

Visualize the Fitted Model with the Data

Overlay the fitted simulation results on top of the observed data already displayed on the trellis plot.
For the population results, simulations are run using the estimated fixed effects as the parameter

4 Simulation and Analysis

4-156

values. For the individual results, simulations are run using the sum of the fixed and random effects
as the parameter values.

t.plot(simP, [], '', 'Drug_Central');
t.plot(simI, [], '', 'Drug_Central',...
 'legend',{'Observed', 'Fit-Pop.', 'Fit-Indiv.'});

Examine Fitted Parameters and Covariances
disp('Summary of initial results');

Summary of initial results

disp('Parameter Estimates Without Random Effects:');

Parameter Estimates Without Random Effects:

disp(nlmeResults.PopulationParameterEstimates(1:2,:));

 Group Name Estimate
 _____ ______________ ________

 1 {'Central' } 1.4086
 1 {'Cl_Central'} 0.006137

disp('Estimated Fixed Effects:');

Estimated Fixed Effects:

disp(nlmeResults.FixedEffects);

 Model the Population Pharmacokinetics of Phenobarbital in Neonates

4-157

 Name Description Estimate StandardError
 __________ ______________ ________ _____________

 {'theta1'} {'Central' } 0.34257 0.061246
 {'theta2'} {'Cl_Central'} -5.0934 0.079501

disp('Estimated Covariance Matrix of Random Effects:');

Estimated Covariance Matrix of Random Effects:

disp(nlmeResults.RandomEffectCovarianceMatrix);

 eta1 eta2
 _______ _______

 eta1 0.20323 0
 eta2 0 0.19338

Generate a Box Plot of the Estimated Parameters

This example uses MATLAB® plotting commands to visualize the results. Several commonly used
plots are also available as built-in options when performing parameter fits through the SimBiology®
desktop interface.

% Create a box plot of the calculated random effects.
boxplot(nlmeResults);

4 Simulation and Analysis

4-158

Generate a Plot of the Residuals over Time

% The vector of observation data also includes NaN's at the time points at
% which doses were given. We need to remove these NaN's to be able to plot
% the residuals over time.
timeVec = data.(data.Properties.IndependentVariableName);
obsData = data.CONC;
indicesToKeep = ~isnan(obsData);
timeVec = timeVec(indicesToKeep);

% Get the residuals from the fitting results.
indRes = nlmeResults.stats.ires(indicesToKeep);
popRes = nlmeResults.stats.pres(indicesToKeep);

% Plot the residuals. Get a handle to the plot to be able to add more data
% to it later.
resplot = figure;
plot(timeVec,indRes,'d','MarkerFaceColor','b','markerEdgeColor','b');
hold on;
plot(timeVec,popRes,'d','MarkerFaceColor','w','markerEdgeColor','b');
hold off;

% Create a reference line representing a zero residual, and set its
% properties to omit this line from the plot legend.
refl = refline(0,0);
refl.Annotation.LegendInformation.IconDisplayStyle = 'off';

% Label the plot.
title('Residuals versus Time');
xlabel('Time');
ylabel('Residuals');
legend({'Individual','Population'});

 Model the Population Pharmacokinetics of Phenobarbital in Neonates

4-159

Extract Group-dependent Covariate Values from the Dataset

Get the mean value of each covariate for each group.

covariateLabels = {'WEIGHT', 'APGAR'};
covariates = grpstats(ds, data.Properties.GroupVariableName, 'mean',...
 'DataVars', covariateLabels);

Examine NLME Parameter Fit Results for Possible Covariate Dependencies

% Get the parameter values for each group (empirical Bayes estimates).
paramValues = nlmeResults.IndividualParameterEstimates.Estimate;
isCentral = strcmp('Central', nlmeResults.IndividualParameterEstimates.Name);
isCl = strcmp('Cl_Central', nlmeResults.IndividualParameterEstimates.Name);

% Plot the parameter values vs. covariates for each group.
figure;
subplot(2,2,1);
plot(covariates.mean_WEIGHT,paramValues(isCentral), '.');
ylabel('Volume');

subplot(2,2,3);
plot(covariates.mean_WEIGHT,paramValues(isCl), '.');
ylabel('Clearance');
xlabel('weight');

subplot(2,2,2);
plot(covariates.mean_APGAR, paramValues(isCentral), '.');

4 Simulation and Analysis

4-160

subplot(2,2,4);
plot(covariates.mean_APGAR, paramValues(isCl), '.');
xlabel('APGAR');

Create a CovariateModel to Model the Covariate Dependencies

Based on the plots, there appears to be a correlation between volume and weight, clearance and
weight, and possibly volume and APGAR score. We choose to focus on the effect of weight by
modeling two of these covariate dependencies: volume ("Central") varying with weight and clearance
("Cl_Central") varying with weight. Our model is:

log(Vi) = log(ϕV, i) = θV + θV /weight * weighti + ηV, i

and

log(Cli) = log(ϕCl, i) = θCl + θCl/weight * weighti + ηCl, i

% Define the covariate model.
covmodel = CovariateModel;
covmodel.Expression = ({'Central = exp(theta1 + theta2*WEIGHT + eta1)','Cl_Central = exp(theta3 + theta4*WEIGHT + eta2)'});

% Use constructDefaultInitialEstimate to create a initialEstimates struct.
initialEstimates = covmodel.constructDefaultFixedEffectValues;
disp('Fixed Effects Description:');

Fixed Effects Description:

 Model the Population Pharmacokinetics of Phenobarbital in Neonates

4-161

disp(covmodel.FixedEffectDescription);

 {'Central' }
 {'Cl_Central' }
 {'Central/WEIGHT' }
 {'Cl_Central/WEIGHT'}

Update the initial estimates using the values estimated from fitting the base model.

initialEstimates.theta1 = nlmeResults.FixedEffects.Estimate(1);
initialEstimates.theta3 = nlmeResults.FixedEffects.Estimate(2);
covmodel.FixedEffectValues = initialEstimates;

Fit the Model

[nlmeResults_cov, simI_cov, simP_cov] = sbiofitmixed(model, data, responseMap, ...
 covmodel, doses, 'nlmefit', fitOptions);

Examine Fitted Parameters and Covariances

disp('Summary of results when modeling covariate dependencies');

Summary of results when modeling covariate dependencies

disp('Parameter Estimates Without Random Effects:');

Parameter Estimates Without Random Effects:

disp(nlmeResults_cov.PopulationParameterEstimates);

 Group Name Estimate
 _____ ______________ _________

 1 {'Central' } 1.2973
 1 {'Cl_Central'} 0.0061576
 2 {'Central' } 1.3682
 2 {'Cl_Central'} 0.0065512
 3 {'Central' } 1.3682
 3 {'Cl_Central'} 0.0065512
 4 {'Central' } 0.99431
 4 {'Cl_Central'} 0.0045173
 5 {'Central' } 1.2973
 5 {'Cl_Central'} 0.0061576
 6 {'Central' } 1.1664
 6 {'Cl_Central'} 0.00544
 7 {'Central' } 1.0486
 7 {'Cl_Central'} 0.004806
 8 {'Central' } 1.1664
 8 {'Cl_Central'} 0.00544
 9 {'Central' } 1.2973
 9 {'Cl_Central'} 0.0061576
 10 {'Central' } 1.2973
 10 {'Cl_Central'} 0.0061576
 11 {'Central' } 1.1664
 11 {'Cl_Central'} 0.00544
 12 {'Central' } 1.2301
 12 {'Cl_Central'} 0.0057877
 13 {'Central' } 1.1059
 13 {'Cl_Central'} 0.0051132
 14 {'Central' } 1.1059

4 Simulation and Analysis

4-162

 14 {'Cl_Central'} 0.0051132
 15 {'Central' } 1.2301
 15 {'Cl_Central'} 0.0057877
 16 {'Central' } 1.1664
 16 {'Cl_Central'} 0.00544
 17 {'Central' } 1.1059
 17 {'Cl_Central'} 0.0051132
 18 {'Central' } 1.0486
 18 {'Cl_Central'} 0.004806
 19 {'Central' } 1.0486
 19 {'Cl_Central'} 0.004806
 20 {'Central' } 1.1664
 20 {'Cl_Central'} 0.00544
 21 {'Central' } 1.605
 21 {'Cl_Central'} 0.0078894
 22 {'Central' } 1.3682
 22 {'Cl_Central'} 0.0065512
 23 {'Central' } 3.2052
 23 {'Cl_Central'} 0.017654
 24 {'Central' } 3.3803
 24 {'Cl_Central'} 0.018782
 25 {'Central' } 0.89394
 25 {'Cl_Central'} 0.0039908
 26 {'Central' } 3.9653
 26 {'Cl_Central'} 0.022619
 27 {'Central' } 1.6927
 27 {'Cl_Central'} 0.0083936
 28 {'Central' } 3.3803
 28 {'Cl_Central'} 0.018782
 29 {'Central' } 1.0486
 29 {'Cl_Central'} 0.004806
 30 {'Central' } 1.605
 30 {'Cl_Central'} 0.0078894
 31 {'Central' } 1.2973
 31 {'Cl_Central'} 0.0061576
 32 {'Central' } 4.1819
 32 {'Cl_Central'} 0.024064
 33 {'Central' } 1.5218
 33 {'Cl_Central'} 0.0074154
 34 {'Central' } 1.5218
 34 {'Cl_Central'} 0.0074154
 35 {'Central' } 2.3292
 35 {'Cl_Central'} 0.012173
 36 {'Central' } 1.3682
 36 {'Cl_Central'} 0.0065512
 37 {'Central' } 1.1664
 37 {'Cl_Central'} 0.00544
 38 {'Central' } 1.2301
 38 {'Cl_Central'} 0.0057877
 39 {'Central' } 1.6927
 39 {'Cl_Central'} 0.0083936
 40 {'Central' } 1.1059
 40 {'Cl_Central'} 0.0051132
 41 {'Central' } 1.5218
 41 {'Cl_Central'} 0.0074154
 42 {'Central' } 2.7323
 42 {'Cl_Central'} 0.014659
 43 {'Central' } 0.99431

 Model the Population Pharmacokinetics of Phenobarbital in Neonates

4-163

 43 {'Cl_Central'} 0.0045173
 44 {'Central' } 1.2973
 44 {'Cl_Central'} 0.0061576
 45 {'Central' } 0.94279
 45 {'Cl_Central'} 0.0042459
 46 {'Central' } 1.1059
 46 {'Cl_Central'} 0.0051132
 47 {'Central' } 2.4565
 47 {'Cl_Central'} 0.012951
 48 {'Central' } 0.89394
 48 {'Cl_Central'} 0.0039908
 49 {'Central' } 1.2301
 49 {'Cl_Central'} 0.0057877
 50 {'Central' } 1.1059
 50 {'Cl_Central'} 0.0051132
 51 {'Central' } 0.99431
 51 {'Cl_Central'} 0.0045173
 52 {'Central' } 0.99431
 52 {'Cl_Central'} 0.0045173
 53 {'Central' } 1.5218
 53 {'Cl_Central'} 0.0074154
 54 {'Central' } 1.605
 54 {'Cl_Central'} 0.0078894
 55 {'Central' } 1.1059
 55 {'Cl_Central'} 0.0051132
 56 {'Central' } 0.84763
 56 {'Cl_Central'} 0.003751
 57 {'Central' } 1.8827
 57 {'Cl_Central'} 0.0095009
 58 {'Central' } 1.2973
 58 {'Cl_Central'} 0.0061576
 59 {'Central' } 1.1059
 59 {'Cl_Central'} 0.0051132

disp('Estimated Fixed Effects:');

Estimated Fixed Effects:

disp(nlmeResults_cov.FixedEffects);

 Name Description Estimate StandardError
 __________ _____________________ ________ _____________

 {'theta1'} {'Central' } -0.48453 0.067952
 {'theta3'} {'Cl_Central' } -5.9575 0.12199
 {'theta2'} {'Central/WEIGHT' } 0.53203 0.040788
 {'theta4'} {'Cl_Central/WEIGHT'} 0.61957 0.074264

disp('Estimated Covariance Matrix:');

Estimated Covariance Matrix:

disp(nlmeResults_cov.RandomEffectCovarianceMatrix);

 eta1 eta2
 ________ _______

 eta1 0.029793 0
 eta2 0 0.04644

4 Simulation and Analysis

4-164

Visualize the Fitted Model with the Data

t.plot(simP_cov, [], '', 'Drug_Central');
t.plot(simI_cov, [], '', 'Drug_Central',...
 'legend',{'Observed', 'Fit-Pop..', 'Fit-Indiv.', 'Cov. Fit-Pop.', 'Cov. Fit-Indiv.'});

Compare the Residuals to Those from a Model Without Covariate Dependencies

The following plot shows that the population residuals are smaller in the covariate model fit
compared to the original fit.

% Get the residuals from the fitting results.
indRes = nlmeResults_cov.stats.ires(indicesToKeep);
popRes = nlmeResults_cov.stats.pres(indicesToKeep);

% Return to the original residual plot figure and add the new data.
figure(resplot);
hold on;
plot(timeVec,indRes,'d','MarkerFaceColor','r','markerEdgeColor','r');
plot(timeVec,popRes,'d','MarkerFaceColor','w','markerEdgeColor','r');
hold off;

% Update the legend.
legend('off');
legend({'Individual','Population','Individual(Cov.)','Population(Cov.)'});

 Model the Population Pharmacokinetics of Phenobarbital in Neonates

4-165

References

[1] Grasela TH Jr, Donn SM. Neonatal population pharmacokinetics of phenobarbital derived from
routine clinical data. Dev Pharmacol Ther 1985:8(6). 374-83.

4 Simulation and Analysis

4-166

Simulate the Glucose-Insulin Response

This example shows how to simulate and analyze a model in SimBiology® using a physiologically
based model of the glucose-insulin system in normal and diabetic humans.

References

1 Meal Simulation Model of the Glucose-Insulin System. C. Dalla Man, R.A. Rizza, and C. Cobelli.
IEEE Transactions on Biomedical Engineering (2007) 54(10), 1740-1749.

2 A System Model of Oral Glucose Absorption: Validation on Gold Standard Data. C. Dalla Man, M.
Camilleri, and C. Cobelli. IEEE Transactions on Biomedical Engineering (2006) 53(12),
2472-2478.

Aims

• Implement a SimBiology model of the glucose-insulin response.
• Simulate the glucose-insulin response to one or more meals for normal and impaired (diabetic)

subjects.
• Perform parameter estimation using sbiofit with a forcing function strategy.

Background

In their 2007 publication, Dalla Man et al. developed a model for the human glucose-insulin response
after a meal. This model describes the dynamics of the system using ordinary differential equations.
The authors used their model to simulate the glucose-insulin response after one or more meals, for
normal human subjects and human subjects with various kinds of insulin impairments. The
impairments were represented as alternate sets of parameter values and initial conditions.

We implemented the SimBiology model, m1, by:

• Translating the model equations in Dalla Man et al. (2007) into reactions, rules, and events.
• Organizing the model into two compartments, one for glucose-related species and reactions

(named Glucose appearance) and one for insulin-related species and reactions (named
Insulin secretion).

• Using the parameter values and initial conditions from the model equations and from Table 1 and
Figure 1.

• Including an equation for the gastric emptying rate as presented in Dalla Man et al. (2006).
• Setting the units for all species, compartments, and parameters as specified by Dalla Man et al.

(2007), which allows the SimBiology model to be simulated using unit conversion. (Note that
SimBiology also supports the use of dimensionless parameters by setting their ValueUnits
property to dimensionless.)

• Setting the configuration set TimeUnits to hour, since simulations were conducted over 7 or 24
hours.

• Using a basis of 1 kilogram of body weight to transform species and parameters that were
normalized by body weight in the original model. Doing so made species units in amount or
concentration, as required by SimBiology.

We represented the insulin impairments in the SimBiology model as variant objects with the following
names:

 Simulate the Glucose-Insulin Response

4-167

• Type 2 diabetic
• Low insulin sensitivity
• High beta cell responsivity
• Low beta cell responsivity
• High insulin sensitivity

We represented the meals in the SimBiology model as dose objects:

• A dose named Single Meal represents a single meal of 78 grams of glucose at the start of a
simulation.

• A dose named Daily Life represents one day's worth of meals, relative to a simulation starting
at midnight: breakfast is 45 grams of glucose at 8 hours of simulation time (8 a.m.), lunch is 70
grams of glucose at 12 hours (noon), and dinner is 70 grams of glucose at 20 hours (8 p.m.).

A diagram of the SimBiology model is shown below:

Setup

Load the model.

sbioloadproject('insulindemo', 'm1')

4 Simulation and Analysis

4-168

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off', 'SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Simulating the Glucose-Insulin Response for a Normal Subject

Select the Single Meal dose object and display its properties.

mealDose = sbioselect(m1, 'Name', 'Single Meal');
get(mealDose)

ans = struct with fields:
 Amount: 78
 Interval: 0
 Rate: 0
 RepeatCount: 0
 StartTime: 0
 Active: 0
 AmountUnits: 'gram'
 DurationParameterName: ''
 EventMode: 'stop'
 LagParameterName: ''
 RateUnits: ''
 TargetName: 'Dose'
 TimeUnits: 'hour'
 Name: 'Single Meal'
 Parent: [1x1 SimBiology.Model]
 Notes: ''
 Tag: ''
 Type: 'repeatdose'
 UserData: []

Simulate for 7 hours.

configset = getconfigset(m1,'active');
configset.StopTime = 7;

Display the simulation time units (and StopTime units).

configset.TimeUnits

ans =
'hour'

Simulate a single meal for a normal subject.

normalMealSim = sbiosimulate(m1, configset, [], mealDose);

Simulating the Glucose-Insulin Response for a Type 2 Diabetic

Select the Type 2 diabetic variant and display its properties.

diabeticVar = sbioselect(m1, 'Name', 'Type 2 diabetic')

diabeticVar =
 SimBiology Variant - Type 2 diabetic (inactive)

 ContentIndex: Type: Name: Property: Value:

 Simulate the Glucose-Insulin Response

4-169

 1 parameter Plasma Volume ... Value 1.49
 2 parameter k1 Value .042
 3 parameter k2 Value .071
 4 parameter Plasma Volume ... Value .04
 5 parameter m1 Value .379
 6 parameter m2 Value .673
 7 parameter m4 Value .269
 8 parameter m5 Value .0526
 9 parameter m6 Value .8118
 10 parameter Hepatic Extrac... Value .6
 11 parameter kmax Value .0465
 12 parameter kmin Value .0076
 13 parameter kabs Value .023
 14 parameter kgri Value .0465
 15 parameter f Value .9
 16 parameter a Value 6e-05
 17 parameter b Value .68
 18 parameter c Value .00023
 19 parameter d Value .09
 20 parameter kp1 Value 3.09
 21 parameter kp2 Value .0007
 22 parameter kp3 Value .005
 23 parameter kp4 Value .0786
 24 parameter ki Value .0066
 25 parameter [Ins Ind Glu U... Value 1.0
 26 parameter Vm0 Value 4.65
 27 parameter Vmx Value .034
 28 parameter Km Value 466.21
 29 parameter p2U Value .084
 30 parameter K Value .99
 31 parameter alpha Value .013
 32 parameter beta Value .05
 33 parameter gamma Value .5
 34 parameter ke1 Value .0007
 35 parameter ke2 Value 269.0
 36 parameter Basal Plasma G... Value 164.18
 37 parameter Basal Plasma I... Value 54.81

Simulate a single meal for a Type 2 diabetic.

diabeticMealSim = sbiosimulate(m1, configset, diabeticVar, mealDose);

Compare the results for the most important outputs of the simulation.

• Plasma Glucose (species Plasma Glu Conc)
• Plasma Insulin (species Plasma Ins Conc)
• Endogenous Glucose Production (parameter Glu Prod)
• Glucose Rate of Appearance (parameter Glu Appear Rate)
• Glucose Utilization (parameter Glu Util)
• Insulin Secretion (parameter Ins Secr)

outputNames = {'Plasma Glu Conc', 'Plasma Ins Conc', 'Glu Prod', ...
 'Glu Appear Rate', 'Glu Util', 'Ins Secr'};
figure;
for i = 1:numel(outputNames)

4 Simulation and Analysis

4-170

 subplot(2, 3, i);

 [tNormal, yNormal] = normalMealSim.selectbyname(outputNames{i});
 [tDiabetic, yDiabetic] = diabeticMealSim.selectbyname(outputNames{i});

 plot(tNormal , yNormal , '-' , ...
 tDiabetic , yDiabetic , '--');

 % Annotate figures
 outputParam = sbioselect(m1, 'Name', outputNames{i});
 title(outputNames{i});
 xlabel('time (hour)');
 if strcmp(outputParam.Type, 'parameter')
 ylabel(outputParam.ValueUnits);
 else
 ylabel(outputParam.InitialAmountUnits);
 end
 xlim([0 7]);

 % Add legend
 if i == 3
 legend({'Normal', 'Diabetic'}, 'Location', 'Best');
 end

end

 Simulate the Glucose-Insulin Response

4-171

Note the much higher concentrations of glucose and insulin in the plasma, as well as the prolonged
duration of glucose utilization and insulin secretion.

Simulating One Day with Three Meals for a Normal Subject

Set the simulation StopTime to 24 hours.

configset.StopTime = 24;

Select daily meal dose.

dayDose = sbioselect(m1, 'Name', 'Daily Life');

Simulate three meals for a normal subject.

normalDaySim = sbiosimulate(m1, configset, [], dayDose);

Simulating One Day with Three Meals for Impaired Subjects

Simulate the following combinations of impairments:

• Impairment 1: Low insulin sensitivity
• Impairment 2: Impairment 1 with high beta cell responsivity
• Impairment 3: Low beta cell responsivity
• Impairment 4: Impairment 3 with high insulin sensitivity

Store the impairments in a cell array.

impairVars{1} = sbioselect(m1, 'Name', 'Low insulin sensitivity') ;
impairVars{2} = [impairVars{1}, ...
 sbioselect(m1, 'Name', 'High beta cell responsivity')];
impairVars{3} = sbioselect(m1, 'Name', 'Low beta cell responsivity') ;
impairVars{4} = [impairVars{3}, ...
 sbioselect(m1, 'Name', 'High insulin sensitivity')];

Simulate each impairment.

for i = 1:4
 impairSims(i) = sbiosimulate(m1, configset, impairVars{i}, dayDose);
end

Compare the plasma glucose and plasma insulin results.

figure;
outputNames = {'Plasma Glu Conc', 'Plasma Ins Conc'};

legendLabels = {{'Normal'}, ...
 {'-Ins =\beta', '-Ins +\beta'}, ...
 {'=Ins -\beta', '+Ins -\beta'}};
yLimits = [80 240; 0 500];

for i = 1:numel(outputNames)

 [tNormal, yNormal] = selectbyname(normalDaySim , outputNames{i});
 [tImpair, yImpair] = selectbyname(impairSims , outputNames{i});

 % Plot Normal

4 Simulation and Analysis

4-172

 subplot(2, 3, 3*i-2);
 plot(tNormal, yNormal, 'b-');
 xlim([0 24]);
 ylim(yLimits(i,:));
 xlabel('time (hour)');
 legend(legendLabels{1}, 'Location', 'NorthWest');

 % Plot Low Insulin
 subplot(2, 3, 3*i-1);
 plot(tImpair{1}, yImpair{1}, 'g--', tImpair{2}, yImpair{2}, 'r:');
 xlim([0 24]);
 ylim(yLimits(i,:));
 xlabel('time (hour)');
 legend(legendLabels{2}, 'Location', 'NorthWest');
 title(outputNames{i});

 % Plot Low Beta
 subplot(2, 3, 3*i);
 plot(tImpair{3}, yImpair{3}, 'c-.', tImpair{4}, yImpair{4}, 'm-');
 xlim([0 24]);
 ylim(yLimits(i,:));
 xlabel('time (hour)');
 legend(legendLabels{3}, 'Location', 'NorthWest');

end

 Simulate the Glucose-Insulin Response

4-173

Note that either low insulin sensitivity (dashed green line, −Ins = β) or low beta-cell sensitivity
(dashed-dotted cyan line, = Ins− β) lead to increased and prolonged plasma glucose concentrations
(top row of plots). Low sensitivity in one system can be partially compensated by high sensitivity in
another system. For example, low insulin sensitivity and high beta-cell sensitivity (dotted red line,
−Ins + β) results in relatively normal plasma glucose concentrations (top row of plots). However, in
this case, the resulting plasma insulin concentration is extremely high (bottom row of plots).

Parameter Estimation Methodology

Rather than simultaneously estimating parameters for the entire model, the authors perform
parameter estimation for different subsystems of the model using a forcing function strategy. This
approach requires additional experimental data for the "inputs" of the submodel. During fitting, the
input data determine the dynamics of the inputs species. (In the full model, the dynamics of the
inputs are determined from the differential equations.) In SimBiology terms, you can implement a
forcing function as a repeated assignment rule that controls the value of a species or parameter that
serves as an input for a subsystem of the model. In the following sections, we use the parameter
fitting capabilities of SimBiology to refine the authors' reported parameter values.

Fitting the Gastrointestinal Model of Glucose Appearance Using nlinfit

The gastrointestinal model represents how glucose in a meal is transported through the stomach, gut,
and intestine, and then absorbed into the plasma. The input to this subsystem is the amount of
glucose in a meal, and the output is the rate of appearance of glucose in the plasma. However, we
also estimate the meal size since the value reported by the authors is inconsistent with the
parameters and simulation results. Because this input only occurs at the start of the simulation, no
forcing function is required.

The function sbiofit supports the estimation of parameters in SimBiology models using several
different algorithms from MATLAB™, Statistics and Machine Learning Toolbox, Optimization Toolbox,
and Global Optimization Toolbox. First, estimate the parameters using Statistics and Machine
Learning Toolbox function nlinfit.

% Load the experimental data
fitData = groupedData(readtable('GlucoseData.csv', 'Delimiter', ','));

% Set the units on the data
fitData.Properties.VariableUnits = {...
 'hour', ... % Time units
 'milligram/minute', ... % GluRate units
 'milligram/deciliter', ... % PlasmaGluConc units
 'milligram/minute', ... % GluUtil units
 };

% Identify which model components corresponds to observed data variables.
gastroFitObs = '[Glu Appear Rate] = GluRate';

% Estimate the value of the following parameters:
gastroFitEst = estimatedInfo({'kmax', 'kmin', 'kabs', 'Dose'});

% Ensure the parameter estimates are always positive during estimation by
% using a log transform on all parameters.
[gastroFitEst.Transform] = deal('log');

% Set the initial estimate for Dose to the reported meal dose amount. The
% remaining initial estimates will be taken from the parameter values in
% the model.

4 Simulation and Analysis

4-174

gastroFitEst(4).InitialValue = mealDose.Amount;

% Generate simulation data with the initial parameter estimates
configset.StopTime = 7;
gastroInitSim = sbiosimulate(m1, mealDose);

% Fit the data using |nlinfit|, displaying output at each iteration
fitOptions = statset('Display', 'iter');
[gastroFitResults, gastroFitSims] = sbiofit(m1, fitData, ...
 gastroFitObs, gastroFitEst, [], 'nlinfit', fitOptions);

 Norm of Norm of
 Iteration SSE Gradient Step

 0 43.798
 1 2.23537 22.9971 0.596828
 2 1.65217 1.33015 0.107431
 3 1.6491 0.0778306 0.0239131
 4 1.64909 0.000589276 0.00225236
 5 1.64908 2.50592e-05 4.70209e-05
 6 1.64908 0.0882335 0.000107703
 7 1.64908 0.0589321 6.47376e-10
Iterations terminated: relative norm of the current step is less than OPTIONS.TolX

Fitting the Data Using fminunc

Now, estimate the parameters using the Optimization Toolbox function fminunc.

% Fit the data, plotting the objective function at each iteration
fitOptions2 = optimoptions('fminunc', 'PlotFcns', @optimplotfval);
[gastroFitResults(2), gastroFitSims(2)] = sbiofit(m1, fitData, ...
 gastroFitObs, gastroFitEst, [], 'fminunc', fitOptions2);

 Simulate the Glucose-Insulin Response

4-175

Compare the simulation before and after fitting.

gastroSims = selectbyname([gastroInitSim gastroFitSims], 'Glu Appear Rate');

figure;
plot(gastroSims(1).Time , gastroSims(1).Data , '-' , ...
 gastroSims(2).Time , gastroSims(2).Data , '--' , ...
 gastroSims(3).Time , gastroSims(3).Data , '-.' , ...
 fitData.Time , fitData.GluRate, 'x');

xlabel('Time (hour)');
ylabel('mg/min');
legend('Reported', 'Estimated (nlinfit)', ...
 'Estimated (fminunc)', 'Experimental');
title('Glucose Appearance Fit');

4 Simulation and Analysis

4-176

Plot the change in parameter values, relative to reported values.

figure;
fitResults = [gastroFitResults(1).ParameterEstimates.Estimate ...
 gastroFitResults(2).ParameterEstimates.Estimate];
% The initial values for kmax, kmin, and kabs come from the model.
gastroFitInitValues = [
 get(sbioselect(m1, 'Name', 'kmax'), 'Value')
 get(sbioselect(m1, 'Name', 'kmin'), 'Value')
 get(sbioselect(m1, 'Name', 'kabs'), 'Value')
 gastroFitEst(4).InitialValue
];
relFitChange = fitResults ./ [gastroFitInitValues gastroFitInitValues] - 1;
bar(relFitChange);
ax = gca;
ax.XTickLabel = {gastroFitEst.Name};
ylabel('Relative change in estimated values');
title('Comparing Reported and Estimated Gastrointestinal Parameter Values');
legend({'nlinfit', 'fminunc'}, 'Location', 'North')

 Simulate the Glucose-Insulin Response

4-177

Note that the model fits the experimental data significantly better if the meal size (Dose) is
significantly larger than reported, the parameter kmax is significantly larger than reported, and kabs
is smaller than reported.

Fitting the Muscle and Adipose Tissue Model of Glucose Utilization

The muscle and adipose tissue model represents how glucose is utilized in the body. The "inputs" to
this subsystem are the concentration of insulin in the plasma (Plasma Ins Conc), the endogenous
glucose production (Glu Prod), and the rate of appearance of glucose (Glu Appear Rate). The
"outputs" are the concentration of glucose in the plasma (Plasma Glu Conc) and the rate of glucose
utilization (Glu Util).

Because the inputs are a function of time, they need to be implemented as forcing functions.
Specifically, the values of Plasma Ins Conc, Glu Prod, and Glu Appear Rate are controlled by
repeated assignments that call functions to do linear interpolation of the reported experimental
values. When using these functions to control a species or parameter, you must make inactive any
other rule that is used to set its value. To facilitate the selection of these rules, the rule Name
properties contain meaningful names.

% Create forcing functions for the "inputs":
% Plasma Insulin
PlasmaInsRule = sbioselect(m1, 'Name', 'Plasma Ins Conc definition');
PlasmaInsForcingFcn = sbioselect(m1, 'Name', 'Plasma Ins Conc forcing function')

PlasmaInsForcingFcn =
 SimBiology Rule Array

4 Simulation and Analysis

4-178

 Index: RuleType: Rule:
 1 repeatedAssignment [Plasma Ins Conc] = [picomole per liter]*PlasmaInsulin(time/[one hour])

PlasmaInsRule.Active = false;
PlasmaInsForcingFcn.Active = true;

% Endogenous Glucose Production (Glu Prod)
GluProdRule = sbioselect(m1, 'Name', 'Glu Prod definition');
GluProdForcingFcn = sbioselect(m1, 'Name', 'Glu Prod forcing function')

GluProdForcingFcn =
 SimBiology Rule Array

 Index: RuleType: Rule:
 1 repeatedAssignment [Glu Prod] = [milligram per minute]*EndogenousGlucoseProduction(time/[one hour])

GluProdRule.Active = false;
GluProdForcingFcn.Active = true;

% Glucose Rate of Appearance (Glu Appear Rate)
GluRateRule = sbioselect(m1, 'Name', 'Glu Appear Rate definition');
GluRateForcingFcn = sbioselect(m1, 'Name', 'Glu Appear Rate forcing function')

GluRateForcingFcn =
 SimBiology Rule Array

 Index: RuleType: Rule:
 1 repeatedAssignment [Glu Appear Rate] = [milligram per minute]*GlucoseAppearanceRate(time/[one hour])

GluRateRule.Active = false;
GluRateForcingFcn.Active = true;

% Simulate with the initial parameter values
muscleInitSim = sbiosimulate(m1);

% Identify which model components corresponds to observed data variables.
muscleFitObs = {'[Plasma Glu Conc] = PlasmaGluConc', ...
 '[Glu Util] = GluUtil'};

% Estimate the value of the following parameters:
muscleFitEst = estimatedInfo({'[Plasma Volume (Glu)]', 'k1', 'k2', ...
 'Vm0', 'Vmx', 'Km', 'p2U'});

% Ensure the parameter estimates are always positive during estimation by
% using a log transform on all parameters.
[muscleFitEst.Transform] = deal('log');

% Fit the data, displaying output at each iteration
[muscleFitResults, muscleFitSim] = sbiofit(m1, fitData, ...
 muscleFitObs, muscleFitEst, [], 'nlinfit', fitOptions);

 Norm of Norm of
 Iteration SSE Gradient Step

 Simulate the Glucose-Insulin Response

4-179

 0 2181.51
 1 616.336 6826.17 0.494514
 2 426.721 8055.96 0.454639
 3 371.887 11968.3 0.882069
 4 255.6 2221.87 0.163143
 5 247.162 1167.02 0.0246181
 6 247.05 2852.4 0.0214781
 7 241.805 738.802 0.0111547
 8 241.805 932.979 0.0011313
 9 241.771 1412.43 0.000249884
 10 241.767 1827.53 0.000101224
 11 241.767 1700.25 3.11774e-17
Iterations terminated: relative norm of the current step is less than OPTIONS.TolX

Plot the change in parameter values, relative to reported values.

figure;
muscleFitInitValues = [
 get(sbioselect(m1, 'Name', 'Plasma Volume (Glu)'), 'Value')
 get(sbioselect(m1, 'Name', 'k1'), 'Value')
 get(sbioselect(m1, 'Name', 'k2'), 'Value')
 get(sbioselect(m1, 'Name', 'Vm0'), 'Value')
 get(sbioselect(m1, 'Name', 'Vmx'), 'Value')
 get(sbioselect(m1, 'Name', 'Km'), 'Value')
 get(sbioselect(m1, 'Name', 'p2U'), 'Value')
];

bar(muscleFitResults.ParameterEstimates.Estimate ./ muscleFitInitValues - 1);
ax = gca;
ax.XTickLabel = {muscleFitEst.Name};
ylabel('Relative change in estimated values');
title('Comparing Reported and Estimated Glucose Parameter Values');

4 Simulation and Analysis

4-180

Clean up the changes to the model.

PlasmaInsRule.Active = true;
GluProdRule.Active = true;
GluRateRule.Active = true;

PlasmaInsForcingFcn.Active = false;
GluProdForcingFcn.Active = false;
GluRateForcingFcn.Active = false;

Compare the simulation before and after fitting

muscleSims = selectbyname([muscleInitSim muscleFitSim], ...
 {'Plasma Glu Conc', 'Glu Util'});
figure;
plot(muscleSims(1).Time, muscleSims(1).Data(:,1), '-', ...
 muscleSims(2).Time, muscleSims(2).Data(:,1), '--', ...
 fitData.Time, fitData.PlasmaGluConc, 'x');
xlabel('Time (hour)');
ylabel('mg/dl');
legend('Initial (Simulation)', 'Estimated (Simulation)', 'Experimental');
title('Plasma Glucose Fit');

 Simulate the Glucose-Insulin Response

4-181

figure;
plot(muscleSims(1).Time, muscleSims(1).Data(:,2), '-', ...
 muscleSims(2).Time, muscleSims(2).Data(:,2), '--', ...
 fitData.Time, fitData.GluUtil, 'x');
xlabel('Time (hour)');
ylabel('mg/min');
legend('Initial (Simulation)', 'Estimated (Simulation)', 'Experimental');
title('Glucose Utilization Fit');

4 Simulation and Analysis

4-182

Note that significantly increasing some parameters, such as Vmx, allows a much better fit of late-time
plasma glucose concentrations.

Cleanup

Restore warning settings.

warning(warnSettings);

Conclusions

SimBiology contains several features that facilitate the implementation and simulation of a complex
model of the glucose-insulin system. Reactions, events, and rules provide a natural way to describe
the dynamics of the system. Unit conversion allows species and parameters to be specified in
convenient units and ensures the dimensional consistency of the model. Dose objects are a simple
way to describe recurring inputs to a model, such as the daily meal schedule in this example.
SimBiology also provides built-in support for analysis tasks like simulation and parameter estimation.

 Simulate the Glucose-Insulin Response

4-183

Perform PK/PD Modeling and Simulation to Guide Dosing
Strategy for Antibiotics

This example shows how to perform a Monte Carlo simulation of a pharmacokinetic/
pharmacodynamic (PK/PD) model for an antibacterial agent. This example is adapted from Katsube et
al. [1] This example also shows how to use the SimBiology® SimFunction object to perform
parameter scans in parallel.

This example requires Statistics and Machine Learning Toolbox™. The performance can be improved
if you have the Parallel Computing Toolbox™ software.

Background

Katsube et al. [1] used a PK/PD modeling and simulation approach to determine the most effective
dosage regimens for doripenem, a carbapenem antibiotic. The objectives of their study were:

• Develop a PK/PD model to describe the antibacterial effect of doripenem against several
Pseudomonas aeruginosa strains

• Use Monte Carlo simulations to compare the efficacy of four common antibiotic dosage regimes,
and to determine the most effective dosing strategy

• Investigate the effect of renal function on the antibacterial efficacy of the treatments

In this example, we will implement the antibacterial PK/PD model developed by Katsube et al. [1] in
SimBiology®, and replicate the results of the Monte Carlo simulation described in their work.

References

[1] T. Katsube, Y. Yano, T. Wajima, Y. Yamano and M. Takano. Pharmacokinetic/pharmacodynamic
modeling and simulation to determine effective dosage regimens for doripenem. Journal of
Pharmaceutical Sciences (2010) 99(5), 2483-91.

PK/PD Model

Katsube et al. assumed a two-compartment infusion model with linear elimination from the central
compartment to describe the pharmacokinetics of the doripenem. For the bacterial growth model,
they assumed that the total bacterial population is comprised of drug-susceptible growing cells and
drug-insensitive resting cells. The antibacterial effect of the drug was included in the killing rate of
the bacteria via a simple Emax type model:

where [Drug] is the concentration (ug/ml) of the drug in the central compartment, and [Growing]
is the count of the growing bacterial population in CFU/ml (CFU = Colony Forming Units). Kmax is
the maximal killing rate constant (1/hour) and KC50 is the Michaelis-Menten rate constant (ug/ml).

A graphical view of the SimBiology implementation of the model is shown below.

4 Simulation and Analysis

4-184

% Load model
sbioloadproject('AntibacterialPKPD.sbproj', 'm1') ;

Dosage Regimens

Katsube et al. simulated the model using four common antibiotic dosage strategies.

• 250 mg two times a day (b.i.d.)
• 250 mg three times a day (t.i.d.)
• 500 mg two times a day (b.i.d.)
• 500 mg three times a day (t.i.d.)

Infusion dosing was used in all four dosages regimens, and infusion time was set to 30 minutes. In
SimBiology, these dosage regimens have been implemented as dose objects.

% Select dose objects in the model

 Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics

4-185

doseNames = {'250 mg bid', '250 mg tid', '500 mg bid', '500 mg tid'};
for iDoseGrp = 1:length(doseNames)
 doseRegimens(iDoseGrp) = sbioselect(m1, 'Name', doseNames{iDoseGrp}) ;
end

Description of the Virtual Population

A virtual population of individuals was generated based on the distribution of demographic variables
and PK/PD parameters. The type of distribution and the values of the distribution parameters were
based on data from earlier clinical trials of doripenem conducted in Japan.

Note: In [1], 5,000 virtual patients were simulated in each dosage group. In this example, we will use
1,000 patients in each group. To simulate a different population size, change the value of nPatients
below.

% Setup
nPatients = 1000 ; % Number of patients per dosage group
nDoseGrps = 4 ; % Number of tested dosage regimens

Distribution of Demographic Variables:

Weight (Wt) and age (Age) were sampled from a normal distribution with a mean of 51.6 kg and 71.8
years, respectively, and a standard deviation of 11.8 kg and 11.9 years, respectively. 26% of the
population was assumed to be female. Serum creatinine levels (Scr) were sampled from a lognormal
distribution with the typical value (geometric mean) of 0.78 mg/dL, and coefficient of variation (CV) of
32.8%. The creatinine clearance rates (CrCL) were calculated using the Cockcroft-Gault equation.

The inputs to the lognrnd function are the mean (mu) and standard deviation (sigma) of the
associated normal distribution. Here and throughout the example, mu and sigma were calculated
from the reported typical value and coefficient of variation of the lognormal distribution. You can use
the following definitions to calculate them. See the lognstat documentation for more information.

mu = @(m,v) log(m^2/sqrt(v+m^2));
sigma = @(m,v) sqrt(log(v/m^2+1));
m = @(typicalValue) typicalValue;
v = @(typicalValue,CV) typicalValue^2*CV^2;

% Patient demographics
rng('default');
Wt = normrnd(51.6, 11.8, nPatients , nDoseGrps) ; % units: kg
Age = normrnd(71.8, 11.9, nPatients , nDoseGrps) ; % units: years
Scr_mu = mu(m(0.78), v(0.78,0.328));
Scr_sigma = sigma(m(0.78), v(0.78,0.328));
Scr = lognrnd(Scr_mu, Scr_sigma, nPatients , nDoseGrps) ; % units: ml/minute
% Gender ratio
id = 1:nPatients*nDoseGrps ;
idFemale = randsample(id , round(0.26*nDoseGrps*nPatients)) ; % 26% Female

Creatinine Clearance (using Cockcroft-Gault equation)

CrCL = (140 - Age).*Wt./(Scr*72) ; % units: ml/minute
CrCL(idFemale) = CrCL(idFemale)*0.85 ; % multiply by 0.85 for females

Distribution of Pharmacokinetic (PK) parameters:

PK parameters, Central, k12, and k21, were sampled from a lognormal distribution with typical
values of 7.64 liters, 1.59 1/hour and 2.26 1/hour, respectively, and a 20% coefficient of variation

4 Simulation and Analysis

4-186

(CV). Central is the distribution volume of the central compartment, and k12 and k21 are transfer
rate constants between the Central and the Peripheral compartments.

Central_mu = mu(m(7.64), v(7.64,0.20));
Central_sigma = sigma(m(7.64), v(7.64,0.20));
k12_mu = mu(m(1.59), v(1.59,0.20));
k12_sigma = sigma(m(1.59), v(1.59,0.20));
k21_mu = mu(m(2.26), v(2.26, 0.2));
k21_sigma = sigma(m(2.26), v(2.26, 0.2));

Central = lognrnd(Central_mu , Central_sigma, nPatients , nDoseGrps); % units: liter
k12 = lognrnd(k12_mu, k12_sigma, nPatients , nDoseGrps) ; % units: 1/hour
k21 = lognrnd(k21_mu, k21_sigma, nPatients , nDoseGrps) ; % units: 1/hour

The drug clearance rate, CL, was assumed to depend linearly on the creatinine clearance rate via the
following equation:

where is the additive residual error sampled from a normal distribution with a mean of 0 ml/minute
and standard deviation of 22 ml/minute.

CL = 1.07*CrCL + 45.6 + normrnd(0,22,nPatients,nDoseGrps); % units: ml/minute

Distribution of Pharmacodynamic (PD) parameters:

Growing-to-resting transformation rate constants, k1 and k2, were sampled from a lognormal
distribution with typical value of 5.59e-5 and 0.0297 1/hour, respectively, each with a CV of 20%.
Kmax was sampled from a lognormal distribution with a typical value of 3.5 1/hour and 15.9% CV.

k1_mu = mu(m(5.59e-5), v(5.59e-5, 0.2));
k1_sigma = sigma(m(5.59e-5), v(5.59e-5, 0.2));
k2_mu = mu(m(0.0297) , v(0.0297, 0.2));
k2_sigma = sigma(m(0.0297) , v(0.0297, 0.2));
Kmax_mu = mu(m(3.50) , v(3.50, 0.159));
Kmax_sigma = sigma(m(3.50) , v(3.50, 0.159));

k1 = lognrnd(k1_mu, k1_sigma, nPatients , nDoseGrps) ; % units: 1/hour
k2 = lognrnd(k2_mu, k2_sigma, nPatients , nDoseGrps) ; % units: 1/hour
Kmax = lognrnd(Kmax_mu, Kmax_sigma, nPatients , nDoseGrps) ; % units: 1/hour

Katsube et al. assumed that values k1, k2 and Kmax were independent of the bacterial strain being
treated. The value of Beta, the net growth rate constant, was fixed at 1.5 1/hour.

Based on experiments with several strains, the authors concluded that the value of KC50 was linearly
dependent on the minimum inhibition concentration (MIC) of bacterial strain via the following
equation.

where is the additive residual error sampled from a normal distribution with a mean of 0 and
standard deviation of 1.06 ug/ml. In the simulation, the MIC values were sampled from a discrete
distribution, and the KC50 value was calculated for the selected MIC using the above equation.

% Discrete distribution of MIC values based on 71 P. aeruginosa strains
micValue = [0.0625, 0.125, 0.25, 0.5 , 1 , 2 , 4 , 8 , 16 , 32] ;

 Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics

4-187

micFreq = [5 , 8 , 9 , 14 , 7 , 8 , 9 , 5 , 2 , 4] ;

% Sample MIC values from a discrete distribution using randsample
MIC = nan(nPatients, nDoseGrps) ; % preallocate
for iDoseGrp = 1:nDoseGrps
 MIC(:, iDoseGrp) = randsample(micValue , nPatients, true , micFreq);
end

KC50 = exp(-1.91 + 0.898*log(MIC) + 1.06*randn(nPatients , nDoseGrps)) ; % units: microgram/milliliter

Simulation Setup & Design

Create a SimFunction object that lets you perform model simulations and parameter scans in
parallel. In this example, you will vary 8 parameters, Central, k12, k21, CL, k1, k2, Kmax, and
KC50. Select the growing and resting bacterial counts, Growing and Resting, as responses, that is,
simulation results that you want to observe while varying those input parameters.

Select the parameters to vary.

params = {'Central', 'k12', 'k21', 'CL', 'k1', 'k2', 'Kmax', 'KC50'};

Select the responses.

observables = {'[Bacterial Growth Model].Growing',...
 '[Bacterial Growth Model].Resting'};

Set up a template dose.

tempdose = sbiodose('dose');
tempdose.Target = 'Central.Drug';
tempdose.AmountUnits = 'milligram';
tempdose.TimeUnits = 'hour';
tempdose.DurationParameterName = 'TDose';

Create a SimFunction object. Set UseParallel to true to enable parallel computing.

simfunc = createSimFunction(m1,params,observables,tempdose,'UseParallel',true);

Create an input matrix phi for each dosage group.

phi = cell(1,nDoseGrps);
for i = 1:nDoseGrps
 phi{i} = [Central(:,i),k12(:,i),k21(:,i), ...
 CL(:,i), k1(:,i), k2(:,i), ...
 Kmax(:,i), KC50(:,i)];
end

Cluster Computing

This example uses the local cluster profile that is pre-configured to your local machine. You can also
search for other MATLAB® Parallel Server™ clusters that are running on Amazon EC2®. On the
Home tab in the Environment section, select Parallel > Discover Clusters. To access these
clusters, you must provide your MathWorks® Account login information. For details, see “Discover
Clusters and Use Cluster Profiles” (Parallel Computing Toolbox).

Create a parallel pool if none exists.

if isempty(gcp)

4 Simulation and Analysis

4-188

 parpool;
end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 4 workers.

For all dosage scenarios, the model was simulated until t = 2 weeks from the time of the first dose.
Total bacterial count, CFU, was sampled every 24 hours (once a day) for the entire duration of the
dosage regimen.

tObs = 0:24:336 ; % hour
nTPoints = length(tObs) ; % Number of sampling points

Monte Carlo Simulation of Patients with Severe Infection

The antibacterial efficacy of a drug can be measured using different PK/PD indices. Katsube et al. set
the criterion for bacterial elimination at log10(CFU) < 0, where CFU is the total bacterial count.
The efficacy of each dose regimen was measured as the fraction of the population that achieved the
success criteria in the dosage group. This efficacy metric, Pr{log10(CFU) < 0}, was tracked as a
function of time for each dosage group.

In their simulation studies, the authors investigated the efficacy of the dosage regimens on two
classes of patients:

• Moderate infection (Initial bacterial count = 1e4 CFU/ml)
• Severe infection (Initial bacterial count = 1e7 CFU/ml)

In this example, we will replicate the results for the severe infection case only. Note that you can
easily simulate the other scenario, patients with moderate infection, by changing the initial amount of
bacterial count (the Growing species), in the model to 1e4 CFU/ml.

% Preallocate
cfu = nan(nTPoints,nPatients);
log10CFU = cell(1,nDoseGrps) ;

for i = 1:nDoseGrps
 disp(['Simulating group ', num2str(i),'...'])

 % Get the dose table directly from an existing dose object for each
 % dosing regimen.
 doseTable = getTable(doseRegimens(i));

 % Simulate
 simdata = simfunc(phi{i},[],doseTable,tObs);

 % Sum of growing and resting bacterial counts for each patient
 for j = 1:nPatients
 cfu(:,j) = sum(simdata(j).Data,2);
 end
 % Store log-transformed counts for each dose group.
 log10CFU{i} = log10(cfu);
end

% Save results
log10CFU_250bid = log10CFU{1} ;
log10CFU_250tid = log10CFU{2} ;

 Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics

4-189

log10CFU_500bid = log10CFU{3} ;
log10CFU_500tid = log10CFU{4} ;

Simulating group 1...
Simulating group 2...
Simulating group 3...
Simulating group 4...

Shut down the parallel pool.

delete(gcp('nocreate'));

Parallel pool using the 'Processes' profile is shutting down.

Time Course Profiles of Bacterial Counts

We plot the median (in red) and percentile (shaded) profiles of the log10(CFU) levels for all four
dosage regimens. Observe that in all four groups, the median time course profile shows that bacterial
eradication is complete before the end of the treatment period (336 hours). However, it is evident
from the higher percentile profiles that the treatments are not successful for all patients. The 95th
and 90th percentile profiles also indicate that dosing a lower amount with a higher frequency (250
tid) is more effective than less frequent dosing with higher amount (500 bid).

hax1(1) = subplot(2,2,1)
plotCFUCount(tObs, log10CFU_250bid, 'a. Dose 250 bid')
hax1(2) = subplot(2,2,2)
plotCFUCount(tObs, log10CFU_250tid, 'b. Dose 250 tid')
hax1(3) = subplot(2,2,3)
plotCFUCount(tObs, log10CFU_500bid, 'c. Dose 500 bid')
hax1(4) = subplot(2,2,4)
plotCFUCount(tObs, log10CFU_500tid, 'd. Dose 500 tid')

% Link subplot axes
linkaxes(hax1)

hax1 =

 Axes with properties:

 XLim: [0 1]
 YLim: [0 1]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.5838 0.3347 0.3412]
 Units: 'normalized'

 Use GET to show all properties

hax1 =

 1×2 Axes array:

 Axes Axes

4 Simulation and Analysis

4-190

hax1 =

 1×3 Axes array:

 Axes Axes Axes

hax1 =

 1×4 Axes array:

 Axes Axes Axes Axes

Effect of Renal Function on Antibacterial Activity

Finally, the authors compared the efficacy profiles of the dosages regimens as a function of the renal
function. They classified the patients into four renal function groups based on the creatinine
clearance rates (CrCL):

• Creatinine Clearance Group 1: CrCL < 30
• Creatinine Clearance Group 2: 30 <= CrCL < 50
• Creatinine Clearance Group 3: 50 <= CrCL < 70
• Creatinine Clearance Group 4: CrCL >= 70

 Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics

4-191

The next figure shows the effect of renal function (creatinine clearance rate) on the antibacterial
efficacy of the four dosage regimens. Observe that in the normal renal function group (CrCL >= 70),
the efficacy profiles of the four treatment strategies are significantly different from each other. In this
case, the 500 mg t.i.d. dose is much more effective than the other regimens. In contrast, simulations
involving patients with renal dysfunction (CrCL < 30 and 30 <= CrCL < 50), we don't see much
difference between the treatment groups. This indicates that for patients with a renal dysfunction, a
less intense or less frequent dosing strategy would work almost as well as a dosing strategy with
higher frequency or dosing amount.

% Preallocate
idCrCLGrp = false(nPatients, nDoseGrps) ;

% Line Style
ls = {'bd:', 'b*:', 'rd:', 'r*:'} ;

titleStr = {'CL_c_r < 30' , ...
 '30 <= CL_c_r < 50' , ...
 '50 <= CL_c_r < 70' , ...
 'CL_c_r > 70' };

f = figure;
f.Color = 'w'

for iCrCLGrp = 1:4 % Creatinine Clearance Groups

 hax2(iCrCLGrp) = subplot(2,2, iCrCLGrp) ;
 title(titleStr{iCrCLGrp}) ;
 ylabel('Prob(log10CFU < 0)') ;
 xlabel('Time (hours)') ;

end

% Set axes properties
set(hax2, 'XTick' , 0:48:336 , ...
 'XTickLabel' , 0:48:336 , ...
 'Ylim' , [0 1] , ...
 'Xlim' , [0 336] , ...
 'NextPlot' , 'add' , ...
 'Box' , 'on');

% Plot results by renal function group:
for iDoseGrp = 1:nDoseGrps

 % Extract indices for renal function
 idCrCLGrp(:, 1) = CrCL(:,iDoseGrp) < 30 ;
 idCrCLGrp(:, 2) = CrCL(:,iDoseGrp) >= 30 & CrCL(:,iDoseGrp) < 50 ;
 idCrCLGrp(:, 3) = CrCL(:,iDoseGrp) >= 50 & CrCL(:,iDoseGrp) < 70 ;
 idCrCLGrp(:, 4) = CrCL(:,iDoseGrp) >= 70 ;

 for iCrCLGrp = 1:4 % Creatinine Clearance Groups

 % Calculate probability
 Pr = sum((log10CFU{iDoseGrp}(:, idCrCLGrp(:, iCrCLGrp)') < 0) , 2)/sum(idCrCLGrp(:,iCrCLGrp)) ;

 % Plot
 plot(hax2(iCrCLGrp), tObs, Pr , ls{iDoseGrp}, 'MarkerSize', 7)

4 Simulation and Analysis

4-192

 end

end

legend(hax2(4), {'250 b.i.d.', '250 t.i.d.', '500 b.i.d.', '500 t.i.d.'})
legend location NorthWest
legend boxoff

linkaxes(hax2)

f =

 Figure (1) with properties:

 Number: 1
 Name: ''
 Color: [1 1 1]
 Position: [1256 1106 560 420]
 Units: 'pixels'

 Use GET to show all properties

 Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics

4-193

Fit PK Parameters Using SimBiology Problem-Based Workflow

This example shows how to estimate PK parameters of a SimBiology model using a problem-based
approach.

Load a synthetic data set. It contains drug plasma concentration data measured in both central and
peripheral compartments.

load('data10_32R.mat')

Convert the data set to a groupedData object.

gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Display the data.

sbiotrellis(gData,"ID","Time",["CentralConc","PeripheralConc"],...
 Marker="+",LineStyle="none");

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";

4 Simulation and Analysis

4-194

pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model2cpt = construct(pkmd);
configset = getconfigset(model2cpt);
configset.CompileOptions.UnitConversion = true;

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour. For details on setting up different dosing strategies, see “Doses in SimBiology
Models” on page 2-30.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

Create a problem object.

problem = fitproblem

problem =
 fitproblem with properties:

 Required:
 Data: [0x0 groupedData]
 Estimated: [1x0 estimatedInfo]
 FitFunction: "sbiofit"
 Model: [0x0 SimBiology.Model]
 ResponseMap: [1x0 string]

 Optional:
 Doses: [0x0 SimBiology.Dose]
 FunctionName: "auto"
 Options: []
 ProgressPlot: 0
 UseParallel: 0
 Variants: [0x0 SimBiology.Variant]

 sbiofit options:
 ErrorModel: "constant"
 Pooled: "auto"
 SensitivityAnalysis: "auto"
 Weights: []

Define the required properties of the object.

problem.Data = gData;
problem.Estimated = estimatedInfo(["log(Central)","log(Peripheral)","Q12","Cl_Central"],InitialValue=[1 1 1 1]);
problem.Model = model2cpt;
problem.ResponseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Define the dose to be applied during fitting.

problem.Doses = dose;

 Fit PK Parameters Using SimBiology Problem-Based Workflow

4-195

Show the progress of the estimation.

problem.ProgressPlot = true;

Fit the model to all of the data pooled together: that is, estimate one set of parameters for all
individuals by setting the Pooled property to true.

problem.Pooled = true;

Perform the estimation using the fit function of the object.

pooledFit = fit(problem);

Display the estimated parameter values.

pooledFit.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError

4 Simulation and Analysis

4-196

 ______________ ________ _____________

 {'Central' } 1.6627 0.16569
 {'Peripheral'} 2.6864 1.0644
 {'Q12' } 0.44945 0.19943
 {'Cl_Central'} 0.78497 0.095621

Plot the fitted results.

plot(pooledFit);

Estimate one set of parameters for each individual and see if the parameter estimates improve.

problem.Pooled = false;
unpooledFit = fit(problem);

 Fit PK Parameters Using SimBiology Problem-Based Workflow

4-197

Display the estimated parameter values.

unpooledFit.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.422 0.12334
 {'Peripheral'} 1.5619 0.36355
 {'Q12' } 0.47163 0.15196
 {'Cl_Central'} 0.5291 0.036978

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.8322 0.019672

4 Simulation and Analysis

4-198

 {'Peripheral'} 5.3364 0.65327
 {'Q12' } 0.2764 0.030799
 {'Cl_Central'} 0.86035 0.026257

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.6657 0.038529
 {'Peripheral'} 5.5632 0.37063
 {'Q12' } 0.78361 0.058657
 {'Cl_Central'} 1.0233 0.027311

plot(unpooledFit);

Generate a plot of the residuals over time to compare the pooled and unpooled fit results. The figure
indicates unpooled fit residuals are smaller than those of the pooled fit, as expected. In addition to
comparing residuals, other rigorous criteria can be used to compare the fitted results.

t = [gData.Time;gData.Time];
res_pooled = vertcat(pooledFit.R);
res_pooled = res_pooled(:);
res_unpooled = vertcat(unpooledFit.R);

 Fit PK Parameters Using SimBiology Problem-Based Workflow

4-199

res_unpooled = res_unpooled(:);
figure;
plot(t,res_pooled,"o",MarkerFaceColor="w",markerEdgeColor="b")
hold on
plot(t,res_unpooled,"o",MarkerFaceColor="b",markerEdgeColor="b")
refl = refline(0,0); % A reference line representing a zero residual
title("Residuals versus Time");
xlabel("Time");
ylabel("Residuals");
legend(["Pooled","Unpooled"]);

As illustrated, the unpooled fit accounts for variations due to the specific subjects in the study, and, in
this case, the model fits better to the data. However, the pooled fit returns population-wide
parameters. As an alternative, if you want to estimate population-wide parameters while considering
individual variations, you can perform nonlinear mixed-effects (NLME) estimation by setting
problem.FitFunction to sbiofitmixed.

problem.FitFunction = "sbiofitmixed";

NLMEResults = fit(problem);

4 Simulation and Analysis

4-200

Display the estimated parameter values.

NLMEResults.IndividualParameterEstimates

ans=12×3 table
 Group Name Estimate
 _____ ______________ ________

 1 {'Central' } 1.4623
 1 {'Peripheral'} 1.5306
 1 {'Q12' } 0.4587
 1 {'Cl_Central'} 0.53208
 2 {'Central' } 1.783
 2 {'Peripheral'} 6.6623
 2 {'Q12' } 0.3589
 2 {'Cl_Central'} 0.8039
 3 {'Central' } 1.7135
 3 {'Peripheral'} 4.2844
 3 {'Q12' } 0.54895
 3 {'Cl_Central'} 1.0708

Plot the fitted results.

plot(NLMEResults);

 Fit PK Parameters Using SimBiology Problem-Based Workflow

4-201

Plot the conditional weighted residuals (CWRES) and individual weighted residuals (IWRES) of model
predicted values.

plotResiduals(NLMEResults,'predictions')

4 Simulation and Analysis

4-202

See Also
fitproblem

 Fit PK Parameters Using SimBiology Problem-Based Workflow

4-203

Perform Global Sensitivity Analysis by Computing First- and
Total-Order Sobol Indices

Load the tumor growth model.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

4 Simulation and Analysis

4-204

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth].tumor_weight'}
 SimulationInfo: [1x1 struct]

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

 Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

4-205

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

4 Simulation and Analysis

4-206

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

4-207

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

4 Simulation and Analysis

4-208

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” property of the result object contains various information for computing the
Sobol indices. For instance, the model simulation data (SimData) for each simulation using a set of
parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

 Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

4-209

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

4 Simulation and Analysis

4-210

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

See Also
sbiosobol | sbioelementaryeffects | sbiompgsa

More About
• “Sensitivity Analysis in SimBiology” on page 4-19

 Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

4-211

Perform GSA by Computing Elementary Effects

Load the tumor growth model.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

4 Simulation and Analysis

4-212

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 Perform GSA by Computing Elementary Effects

4-213

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

4 Simulation and Analysis

4-214

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

 Perform GSA by Computing Elementary Effects

4-215

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

4 Simulation and Analysis

4-216

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

 Perform GSA by Computing Elementary Effects

4-217

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

See Also
sbiosobol | sbioelementaryeffects | sbiompgsa

4 Simulation and Analysis

4-218

More About
• “Sensitivity Analysis in SimBiology” on page 4-19

 Perform GSA by Computing Elementary Effects

4-219

Perform Multiparametric Global Sensitivity Analysis (MPGSA)

Load the target-mediated drug disposition (TMDD) model.

sbioloadproject tmdd_with_TO.sbproj

Get the active configset and set the target occupancy (TO) as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Simulate the model and plot the TO profile.

sbioplot(sbiosimulate(m1,cs));

Define an exposure (area under the curve of the TO profile) threshold for the target occupancy.

classifier = 'trapz(time,TO) <= 0.1';

Perform MPGSA to find sensitive parameters with respect to the TO. Vary the parameter values
between predefined bounds to generate 10,000 parameter samples.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
rng(0,'twister'); % For reproducibility
params = {'kel','ksyn','kdeg','km'};

4 Simulation and Analysis

4-220

bounds = [0.1, 1;
 0.1, 1;
 0.1, 1;
 0.1, 1];
mpgsaResults = sbiompgsa(m1,params,classifier,Bounds=bounds,NumberSamples=10000)

mpgsaResults =
 MPGSA with properties:

 Classifiers: {'trapz(time,TO) <= 0.1'}
 KolmogorovSmirnovStatistics: [4x1 table]
 ECDFData: {4x4 cell}
 SignificanceLevel: 0.0500
 PValues: [4x1 table]
 SupportHypothesis: [10000x1 table]
 ParameterSamples: [10000x4 table]
 Observables: {'TO'}
 SimulationInfo: [1x1 struct]

Plot the quantiles of the simulated model response.

plotData(mpgsaResults,ShowMedian=true,ShowMean=false);

Plot the empirical cumulative distribution functions (eCDFs) of the accepted and rejected samples.
Except for km, none of the parameters shows a significant difference in the eCDFs for the accepted
and rejected samples. The km plot shows a large Kolmogorov-Smirnov (K-S) distance between the

 Perform Multiparametric Global Sensitivity Analysis (MPGSA)

4-221

eCDFs of the accepted and rejected samples. The K-S distance is the maximum absolute distance
between two eCDFs curves.

h = plot(mpgsaResults);
% Resize the figure.
pos = h.Position(:);
h.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two
distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples. The results suggest that the classification is
insensitive to the input parameter. To assess the significance of the K-S statistic rejecting the null-
hypothesis, you can examine the p-values.

bar(mpgsaResults)

4 Simulation and Analysis

4-222

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0. You can see the exact p-value
corresponding to each parameter.

[mpgsaResults.ParameterSamples.Properties.VariableNames',mpgsaResults.PValues]

ans=4×2 table
 Var1 trapz(time,TO) <= 0.1
 ________ _____________________

 {'kel' } 0.0021877
 {'ksyn'} 1
 {'kdeg'} 0.99983
 {'km' } 0

The p-values of km and kel are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. In other words,
the classification of the samples is sensitive to km and kel but not to other parameters (kdeg and
ksyn).

You can also plot the histograms of accepted and rejected samples. The historgrams let you see
trends in the accepted and rejected samples. In this example, the histogram of km shows that there
are more accepted samples for larger km values, while the kel histogram shows that there are fewer
rejected samples as kel increases.

 Perform Multiparametric Global Sensitivity Analysis (MPGSA)

4-223

h2 = histogram(mpgsaResults);
% Resize the figure.
pos = h2.Position(:);
h2.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

Restore the warning settings.

warning(warnSettings);

See Also
sbiosobol | sbioelementaryeffects | sbiompgsa

More About
• “Sensitivity Analysis in SimBiology” on page 4-19

4 Simulation and Analysis

4-224

Pharmacokinetic Modeling

• “Pharmacokinetic Modeling Functionality” on page 5-2
• “Supported Files and Data Types” on page 5-5
• “Import Tabular Data from Files” on page 5-11
• “Create Pharmacokinetic Models” on page 5-14

5

Pharmacokinetic Modeling Functionality
In this section...
“Overview” on page 5-2
“How SimBiology Supports Pharmacokinetic Modeling” on page 5-2
“Pharmacokinetic Modeling Examples” on page 5-3
“Acknowledgements: Tobramycin Data Set” on page 5-3

Overview
SimBiology software extends the MATLAB computing environment for analyzing pharmacokinetic
(PK) data using models. The software lets you do the following:

• Create models — Use a model construction wizard. Alternatively, extend any model with
pharmacodynamic (PD) model components, or build higher fidelity models. See “Model” on page
5-2 for more information.

• Fit data — Fit nonlinear, mixed-effects models to data, and estimate the fixed and random effects,
or fit the data using nonlinear least squares. For more information, see “Analyze Data Using
Models” on page 5-2.

• Generate diagnostic plots — For more information, see “Analyze Data Using Models” on page 5-
2.

The software lets you work with different model structures, thus letting you try multiple models to
see which one produces the best results.

How SimBiology Supports Pharmacokinetic Modeling
Import and Work with Data

You can import tabular data into the SimBiology Model Analyzer or the MATLAB Workspace. The
supported file types are .xls, .csv, and .txt. You can specify that the data is in a NONMEM®

formatted file. The import process interprets the columns according to the NONMEM definitions. For
details, see “Import Tabular Data from Files” on page 5-11.

Model

SimBiology provides an extensible modeling environment. You can do any of the following:

• Create a PK model using a model construction wizard to specify the number of compartments, the
route of administration, and the type of elimination.

• Extend any model with pharmacodynamic (PD) model components, or build higher fidelity models.
• Build or load your own SimBiology, or SBML model.

For more information, see “What is a SimBiology Model?” on page 2-2.

Analyze Data Using Models

Perform both individual and population fits to grouped longitudinal data:

5 Pharmacokinetic Modeling

5-2

• Individual fit — Fit data using nonlinear least-squares method, specify parameter transformations,
estimate parameters, and calculate residuals and the estimated coefficient covariance matrix. For
a command line workflow, see “Fitting Workflow” on page 4-41. For an app workflow, see
“Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on
page 1-156.

• Population fit — Fit data, specify parameter transformations, and estimate the fixed effects and
the random sources of variation on parameters using nonlinear mixed-effects models. For a
command line workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 4-31.

• Population fit using a stochastic algorithm — Fit data, specify parameter transformations, and
estimate the fixed effects and the random sources of variation on parameters, using the Stochastic
Approximation Expectation-Maximization (SAEM) algorithm. SAEM is more robust with respect to
starting values. This functionality relaxes assumption of constant error variance. Specify
nlmefitsa as the estimation function name when you run sbiofitmixed.

In addition, you can turn on the ProgressPlot on page 4-46 option to get the live feedback on the
status of parameter estimation.

Pharmacokinetic Modeling Examples
The following examples show how to estimate pharmacokinetic parameters at the command line.

• “Model the Population Pharmacokinetics of Phenobarbital in Neonates” on page 4-154
• “Fit One-Compartment Model to Individual PK Profile” on page 4-53
• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-72
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-59
• “Perform Hybrid Optimization Using sbiofit” on page 4-68

For an app example, see “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology
Model Analyzer” on page 1-156.

Acknowledgements: Tobramycin Data Set
Acknowledgements for data in the tobramycin.txt file can be found in this example on page 5-11.
Data set is provided by Dr. Leon Aarons (laarons@fs1.pa.man.ac.uk).

The data in the tobramycin.txt file were downloaded from the Web site of the Resource Facility for
Population Kinetics http://depts.washington.edu/rfpk/service/datasets/index.html
(no longer active). Funding source: NIH/NIBIB grant P41-EB01975.

The original data set was modified as follows:

• Header comments were removed.
• The file was converted to a tab-delimited format.
• Missing values in the HT column were denoted with "." instead of 100000000.000.

References
[1] Original Publication: Aarons L, Vozeh S, Wenk M, Weiss P, and Follath F. “Population

pharmacokinetics of tobramycin.” Br J Clin Pharmacol. 1989 Sep;28(3):305–14.

 Pharmacokinetic Modeling Functionality

5-3

See Also
sbiofit | sbiofitmixed

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

5 Pharmacokinetic Modeling

5-4

Supported Files and Data Types
In this section...
“Unit Conversion” on page 5-5
“Create Data File with SimBiology Definitions” on page 5-5
“Support for Importing NONMEM Formatted Files” on page 5-7
“Supported Table Column Types in SimBiology Model Analyzer” on page 5-10
“Support for Importing Multidimensional SimData to SimBiology Model Analyzer” on page 5-10

You can import tabular data to the SimBiology Model Analyzer app or to the MATLAB Workspace. The
supported file types are Excel files (.xls, .xlsx), text files (.csv, .txt), and SAS® XPORT files (.xpt). You
can also specify that the data is in a NONMEM formatted file. The import process interprets the
columns according to the NONMEM definitions. For more information see “Support for Importing
NONMEM Formatted Files” on page 5-7.

Note If your data set contains dosing information that is infusion data, the data set must contain the
rate and not an infusion duration.

Unit Conversion
Regardless of whether unit conversion functionality is on or off, dosing in the data file must be
expressed in amounts (or as amount/time for infusion rate). By default Unit Conversion is off, so
you must ensure that units for the data are consistent with each other. If you want to turn on unit
conversion, see “Unit Conversion for Imported Data” on page 5-19.

Create Data File with SimBiology Definitions
If you are creating a file containing time course data that you want to import into SimBiology for
fitting, create the data file with the following columns:

• Group column — Specify text, numeric, or categorical values. For instance, you can use this
column to group multiple individuals into separate groups. You can then use this grouping or
categorical information for hierarchical fits on page 4-59. This column is optional.

• ID column — Specify text, numeric, or categorical values. The rows in the file that have the same
ID column value are for the same individual. This column is optional if the measurement data
comes from just one individual.

• Time column — Specify monotonically increasing positive values within each ID that define the
time of the dose, observation measurements, and covariate measurements.

• Zero or more dosing columns — Create one dosing column for each compartment being dosed. In
each column, specify positive values representing dose amounts that are added to a species. Use
NaN (not a number) to specify that no dose was applied at the specified time. In other words,
specify the dose amount as NaN when an observation was recorded but no dose was applied.

• Zero or more rate columns — Specify positive values, zero, or NaN. Zero specifies an infinite rate
and NaN specifies that no rate applies. The rate column is associated with a dosing column and
defines the rate at which the dose is administered. For example, if you can specify an infusion
dose in the Dose1 column, specify its rate in the Rate1 column.

 Supported Files and Data Types

5-5

• Zero or more observation columns — Specify numeric values or NaN. NaN values define that no
observation was recorded at the specified time. Use NaN for times when a dose was applied but no
observation was recorded. You can specify one observation value at a particular time for each ID.
When you have replicates, specify multiple observation values for the same time point by adding
more rows with the same time value. For an example, see rows 2 and 3 in the screen shot below,
where CentralConc has two measurements at time = 0.

• Zero or more covariate columns — Specify text, numeric, or categorical values, or NaN. Each value
defines the covariate value at the specified time. NaN values indicate that no covariate observation
was recorded at the specified time. SimBiology supports only covariates that are not time varying.
For instance, see the Sex and Age columns in the example below. For an example that shows how
to use categories for fitting, see “Estimate Category-Specific PK Parameters for Multiple
Individuals” on page 4-59. You can also create variants from covariate columns. For details, see
createVariants.

A screen shot of a sample data file follows.

5 Pharmacokinetic Modeling

5-6

You can download the sample Excel file from the following location: matlabroot/examples/
simbio/data/sample_data_simbiology.xlsx. matlabroot is the root directory where you
installed MATLAB. You can also enter matlabroot at the command line to see the file path of the
root directory.

Support for Importing NONMEM Formatted Files
You can specify that the data is in a NONMEM formatted file. The following table highlights the
interpretation of this data in SimBiology software.

Column Header Interpretation
ID Text (character vector), numeric, or categorical values that identify

the record or group. The import process assumes that contiguous
data with the same value contains data from one individual. If the
data contains non-contiguous references to the same value, the
import process assigns the second ID encountered an indexed
valued derived from the group first encountered. For example, if
the ID columns contains [1 1 1 2 2 2 1 1 1], the IDs
assigned are 1, 2, 1_1.

TIME Monotonically increasing positive values within each group,
indicating time of observation or dose or text (character vector).
The data file can specify clock (2:30 as a character vector) or
decimal values (6.25). The import process assigns a value of 0 to
the first TIME value in the data file. The import process assigns
subsequent values relative to the first value.

The following table is an example of how the import process
interprets the clock values as decimal values.

Original Clock Values Imported Values
10:00 0
10:30 0.5
11 1
12:30 2.5

If the data file also contains a DATE column, the import process
uses it with the TIME column in calculating the relative TIME
values. The column cannot contain Inf.

 Supported Files and Data Types

5-7

Column Header Interpretation
DATE, DAT1, DAT2, or DAT3 Defines the day of the observation or the dose. The column can

contain the month as a number (9) or a character vector (Sep).
Specify date in the following formats:

• DATE — The column can specify month/day/year or month-
day-year. If you specify two numbers, the import process
assumes they are month and day. You can use either / or - as a
separator.

• DAT1 — The column can specify day/month/year or day-
month-year. If you specify two numbers, the import process
assumes they are day and month.

• DAT2 — The column can specify year/month/day or year-
month-day. If you specify two numbers, the import process
assumes they are month and day.

• DAT3 — The column can specify year/day/month or year-
day-month. If you specify two numbers, the import process
assumes they are day and month.

Note

• If you specify only one number, the import process assumes it is
the day.

• You can omit the year or specify 1, 2, 3, or 4 digits. If you
specify two-digit years, it is assumed to be in the 1900s.

• If the data has the DAT1, DAT2, or DAT3 column, set the
DateLabel property of a NMFileDef object accordingly using
sbionmfiledef. Then specify the object as the second input
argument when you run sbionmimport.

DV Numeric value of an observation. Column cannot contain Inf or –
Inf.

MDV Defines whether a row describes an observation:

• Row contains 0 — Observation event
• Row contains 1 — Not an observation event

5 Pharmacokinetic Modeling

5-8

Column Header Interpretation
EVID Defines the type of event described for the row in the record:

• 0 — Observation event; row contains an observed value.
• 1 — Dose event; row describes a dose.
• 2 — Other event; row describes some other event such as

measurement of a covariate.

If a column contains values for dose, but EVID is not 1, the import
process ignores the value. You see a warning and the value is
ignored.

If EVID is set to 2, then only those specified row data are imported
as covariate data. However, if you have an EVID column as well as
one or more covariate columns, but do not specify a value of 2
anywhere in the EVID column, then SimBiology imports all the row
data as covariate values.

The import process does not support values 3 and 4. You see a
warning and the value is ignored.

CMT Indicates which compartment is used for observation value or for
dose received. The interpretation also depends on EVID:

• Observation event (EVID = 0) — CMT column indicates which
compartment was used for observation value.

• Dose Event (EVID = 1) — CMT column indicates which
compartment received the dose.

Note SimBiology numbers compartments starting with 1, while
NONMEM numbers them starting with 0. For instance, if a
NONMEM data file contains doses and measurements for CMT =
0, SimBiology generates data columns named Dose1 and
Response1 respectively.

AMT Positive number indicating dose. 0 or NaN specifies no dose
administered. The column cannot contain Inf.

RATE Positive number indicating rate of infusion. 0 specifies an infinite
rate (equivalent to a bolus dose), and NaN specifies no rate. The
column cannot contain Inf.

II Positive number defining the time between doses.
ADDL When the data specifies a number of identical serial doses at

specific intervals (defined by II), ADDL specifies the number of
doses in the series excluding the initial dose. If the data specifies
II but not ADDL, then SimBiology assumes that the dosing occurs
for the duration of that data record.

Unsupported NONMEM Definitions

The import process does not support (and therefore ignores) the rows containing the following values
or definitions:

 Supported Files and Data Types

5-9

• EVID values 3 and 4
• SS column for specifying steady state doses
• PCMT column to define whether to compute a prediction for the row
• CALL column for calling the ERROR or the PK subroutine
• If rate is specified as being less than zero, it is assumed to be zero

Supported Table Column Types in SimBiology Model Analyzer
Yon can import real and nonsparse numeric data into the SimBiology Model Analyzer app, but not
complex or sparse numeric values. When you are importing data from a table into the app, the app
supports the following column data types: double, char, string, cell array of character vectors,
categorical, duration, logical, and datetime. The table that you are importing cannot contain
complex or sparse numeric values.

Support for Importing Multidimensional SimData to SimBiology Model
Analyzer
When you import a multidimensional SimData array to the app, the app flattens the SimData array
and uses a single index (linear indexing) in the corresponding datasheet. For example, if you import a
2x2x2 SimData array A, the app creates a datasheet with 8 groups (one for each SimData object),
indexing from 1 to 8. The app still displays the original size of the SimData array in the Browser.

See Also
SimBiology Model Analyzer | sbiofit | sbiofitmixed

5 Pharmacokinetic Modeling

5-10

Import Tabular Data from Files
In this section...
“Import Data from Text File” on page 5-11
“Importing Data from NONMEM-Formatted Files” on page 5-12
“Other Resources for Importing Data” on page 5-12

Import Data from Text File

Use table to store tabular data that you can use later in fitting and other analyses at the command
line. Use readtable to import data without NONMEM® interpretation of column headers. Remove
any comments that are present at the beginning of the file before importing.

data = readtable("tobramycin.txt");
head(data)

 ID TIME CP EVID DOSE MDV WT HT AGE SEX CLCR
 __ ____ __ ____ ____ ___ ____ ___ ___ ___ ____

 1 0 0 3 100 1 58.4 164 71 1 58
 1 8 0 1 80 1 58.4 164 71 1 58
 1 16 0 1 80 1 58.4 164 71 1 58
 1 24 0 1 80 1 58.4 164 71 1 58
 1 32 0 1 80 1 58.4 164 71 1 58
 1 40 0 1 80 1 58.4 164 71 1 58
 1 48 0 1 80 1 58.4 164 71 1 58
 1 56 0 1 80 1 58.4 164 71 1 58

The readtable function also lets you use name-value arguments in which you can specify options
such as the type of delimiter and whether the first row contains header names.

data2 = readtable("tobramycin.txt",TreatAsMissing=".");

If you want to use the data for fitting using sbiofit or sbiofitmixed, convert the data to a
groupedData format.

gd = groupedData(data2);
head(gd)

ans =

 8x11 groupedData

 ID TIME CP EVID DOSE MDV WT HT AGE SEX CLCR
 __ ____ __ ____ ____ ___ ____ ___ ___ ___ ____

 1 0 0 3 100 1 58.4 164 71 1 58
 1 8 0 1 80 1 58.4 164 71 1 58
 1 16 0 1 80 1 58.4 164 71 1 58
 1 24 0 1 80 1 58.4 164 71 1 58
 1 32 0 1 80 1 58.4 164 71 1 58
 1 40 0 1 80 1 58.4 164 71 1 58
 1 48 0 1 80 1 58.4 164 71 1 58
 1 56 0 1 80 1 58.4 164 71 1 58

 Import Tabular Data from Files

5-11

For details on how to format a data file for fitting, see “Create Data File with SimBiology Definitions”
on page 5-5.

Importing Data from NONMEM-Formatted Files
Use the sbionmimport function to import data from NONMEM formatted files. To import the data
without NONMEM interpretation of column headers, see “Import Data from Text File” on page 5-11.

To prepare the data file for import, remove any comments that are present at the beginning of the file
and select one of the following methods to import your data:

• If the data file contains only the column header values shown in “Support for Importing NONMEM
Formatted Files” on page 5-7, use the following syntax.

filename = 'C:\work\datafiles\dose.xls';
ds = sbionmimport(filename);

• If the data file has column header labels different from the table shown in “Support for Importing
NONMEM Formatted Files” on page 5-7 and you want to apply NONMEM interpretation of
headers:

1 Create a NONMEM file definition object. This object lets you define what the column headers
in the data file mean in SimBiology. In the following example, the column containing response
values is CP, whereas in NONMEM formatted files the column is labelled DV.

For instance, to use the tobramycin data set [1] on page 5-3 (open this example to get the
data on page 5-11), first create a NONMEM file definition object and define the following:

def = sbionmfiledef;
def.DoseLabel = 'DOSE';
def.GroupLabel = 'ID';
def.TimeLabel = 'TIME';
def.DependentVariableLabel = 'CP';
def.MissingDependentVariableLabel = 'MDV';
def.EventIDLabel = 'EVID';
def.ContinuousCovariateLabels = {'WT', 'HT', 'AGE', 'SEX', 'CLCR'};

Your file can contain any name for column headings. See sbionmfiledef for the list of
properties you can configure in the NONMEM file definition object.

2 Use the sbionmimport function to import your data file with the column header definitions
as specified in the NONMEM file definition object).

The sbionmimport function accepts name-value arguments accepted by dataset. For
example, if the data set does not contain column headers, use 'ReadVarNames',false to
specify that sbionmimport should read values from the first row of the file.

data = sbionmimport('tobramycin.txt',def,'TreatAsEmpty','.');

For information about creating a model to fit the data, see “Create a Pharmacokinetic Model Using
the Command Line” on page 5-19.

Other Resources for Importing Data
For detailed information about supported data formats and the functions for importing data into the
MATLAB Workspace, see “Supported File Formats for Import and Export”.

5 Pharmacokinetic Modeling

5-12

You also can import data using the MATLAB Import Wizard to import data as text files (such as .txt
and .dat), MAT-files, and spreadsheet files, (such as .xls).

The MATLAB Import Wizard processes the data source. The wizard recognizes data delimiters, as
well as row or column headers, to facilitate the process of data selection and importation into the
MATLAB Workspace. You can import the data to the SimBiology Model Analyzer app from the
MATLAB Workspace.

See Also
sbionmimport | groupedData | sbionmfiledef | readtable

Related Examples
• “Supported Files and Data Types” on page 5-5
• “Create Data File with SimBiology Definitions” on page 5-5

 Import Tabular Data from Files

5-13

Create Pharmacokinetic Models
In this section...
“Ways to Create or Import Pharmacokinetic Model” on page 5-14
“How SimBiology Models Represent Pharmacokinetic Models” on page 5-14
“Dosing Types” on page 5-15
“Elimination Types” on page 5-17
“Intercompartmental Clearance” on page 5-18
“Unit Conversion for Imported Data” on page 5-19
“Create a Pharmacokinetic Model Using the Command Line” on page 5-19

Ways to Create or Import Pharmacokinetic Model
To start modeling, you can:

• Create a PK model using a model construction wizard that lets you specify the number of
compartments, the route of administration, and the type of elimination.

• Extend any model to build higher fidelity models.
• Build or load your own model. Load a SimBiology project or SBML model.

How SimBiology Models Represent Pharmacokinetic Models
The following figure compares a model as typically represented in pharmacokinetics with the same
model shown in the SimBiology model diagram. For this comparison, assume that you are modeling
administration of a drug using a two-compartment model with any dosing input and linear elimination
kinetics. (The model structure remains the same with any dosing type.)

Note the following:

5 Pharmacokinetic Modeling

5-14

• SimBiology represents the concentration or amount of a drug in a given compartment or volume
by a species object contained within the compartment.

• SimBiology represents the exchange or flow of the drug between compartments and the
elimination of the drug by reactions.

• SimBiology represents intercompartmental clearance by a parameter (Q) which specifies the
clearance between the compartments.

• SimBiology drives the dosing schedule with a combination of species (Drug and/or Dose) and
reactions (Dose -> Drug), depending on whether the administration into the compartment
follows bolus, zero-order, infusion, or first-order dosing kinetics. For more information on the
components added and parameters estimated, see “Dosing Types” on page 5-15.

You can also view this model as a regression function, y = f(k,u), where y is the predicted value,
given values of an input u, and parameter values k. In SimBiology the model represents f, and the
model is used to generate a regression function if y, k, and u are identified in the model.

Dosing Types
When creating models, SimBiology creates the following model components for each compartment in
the model, regardless of the dosing type:

• Two species (Drug_CompartmentName and Dose_CompartmentName) for each compartment.
• A reaction (Dose_CompartmentName -> Drug_CompartmentName) for each compartment,

governed by mass action kinetics.
• A parameter (ka_CompartmentName) for each compartment, representing the absorption rate of

the drug when absorption follows first-order kinetics. This is the forward rate parameter for the
Dose_CompartmentName -> Drug_CompartmentName reaction.

• A parameter (Tk0_CompartmentName) for each compartment, representing the duration of drug
absorption when absorption follows zero-order kinetics.

• A parameter (TLag_CompartmentName) for each compartment, representing the time lag for any
dose that targets that compartment and also that is specified as having a time lag.

For dosing types that have a fixed infusion or absorption duration (infusion and zero-order), you
can use overlapping doses. The doses are additive.

The following table describes the dosing types, the default parameters to estimate, and lists the
model components created and used for dosing.

Dosing Type Description SimBiology Model Components
Used

Default Parameters to
Estimate

''(empty
character vector)

No dose The species
(Drug_CompartmentName) in each
compartment

None

 Create Pharmacokinetic Models

5-15

Dosing Type Description SimBiology Model Components
Used

Default Parameters to
Estimate

SimBiology Model
Builder app —
bolus

Command line —
Bolus

Assumes that the drug
amount is increased instantly
at the dose time.

In the SimBiology model, the
initial concentration of the
drug is based on dose
amount and volume of the
compartment containing the
drug.

The species
(Drug_CompartmentName) in each
compartment

None

SimBiology Model
Builder app —
infusion

Command line —
Infusion

Assumes that the infused
drug amount increases at a
constant known absorption
(or infusion) rate over a
known duration.

The imported data set must
contain the rate and not an
infusion duration.
SimBiology uses this
information to change the
species concentration at the
constant rate over the
duration specified in the data
set.

The species
(Drug_CompartmentName) in each
compartment

None

SimBiology Model
Builder app —
zero-order

Command line —
ZeroOrder

Assumes that the drug is
added at a constant rate over
fixed, but unknown duration.

• The species
Drug_CompartmentName in
each compartment

• The parameter
(Tk0_CompartmentName) in
each compartment that has zero-
order dosing. This parameter
represents the duration of drug
absorption

Tk0_CompartmentNam
e (absorption duration)

5 Pharmacokinetic Modeling

5-16

Dosing Type Description SimBiology Model Components
Used

Default Parameters to
Estimate

SimBiology Model
Builder app —
first-order

Command line —
FirstOrder

Assumes that the rate at
which the drug is absorbed
is not constant.

In the SimBiology model,
absorption rate is assumed
to be governed by mass-
action kinetics.

• A species
(Dose_CompartmentName)
representing the dose amount
before it is absorbed

• A species
(Drug_CompartmentName) for
each compartment

• A parameter
(ka_CompartmentName)
representing the absorption rate
of the drug

• A MassAction reaction
(Dose_CompartmentName —>
Drug_CompartmentName) with
forward rate parameter
(ka_CompartmentName)

ka_CompartmentName
(absorption rate)

Elimination Types
Elimination Type Description SimBiology Model

Components Created
Default Parameters to
Estimate

SimBiology Model
Builder app — Linear
{Elimination Rate,
Volume}

Command line —
'linear'

Assumes simple mass-
action kinetics in the
elimination of the drug.
In the SimBiology
model, elimination is
specified by mass-action
kinetics with the
elimination rate
constant specified by the
forward rate parameter
(ke).

• A parameter representing
the elimination rate
(ke_CompartmentName)

• A MassAction reaction
(drug —> null) with
forward rate parameter
(ke_CompartmentName)
specific to the
compartment

• Compartment volume

(Capacity property)
• Elimination rate

constant
(ke_CompartmentName
)

• Inter-compartmental
clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page 5-
18.

 Create Pharmacokinetic Models

5-17

Elimination Type Description SimBiology Model
Components Created

Default Parameters to
Estimate

SimBiology Model
Builder app — Linear
{Clearance,
Volume}

Command line —
'linear-clearance'

Assumes simple mass-
action kinetics in the
elimination of the drug.
In the SimBiology
model, similar to
Linear
{Elimination Rate,
Volume}. But, in
addition, this option lets
you specify the model in
terms of clearance (Cl)
where, Cl = ke *
volume).

• A parameter representing
the clearance
(Cl_CompartmentName)

• A parameter representing
the elimination rate
constant
(ke_CompartmentName)

• An InitialAssignment
rule that initializes
ke_CompartmentName
based on the initial values
for Cl_CompartmentName
and compartment volume

• A MassAction reaction
(drug —> null) with
forward rate parameter
(ke_CompartmentName)

• Compartment volume

(Capacity property)
• Clearance

(Cl_CompartmentName
)

• Inter-compartmental
clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page 5-
18.

SimBiology Model
Builder app —
Enzymatic
(Michaelis-Menten)

Command line —
'enzymatic'

Assumes that
elimination is governed
by Michaelis-Menten
kinetics.

• Parameter representing
the Michaelis constant,
(Km_CompartmentName)

• A parameter for maximum
velocity
(Vm_CompartmentName

• A reaction with Michaelis-
Menten kinetics (drug ->
null), with kinetic law
parameters
Vm_CompartmentName
and
Km_CompartmentName

• Compartment volume

(Capacity property)
• Parameter

(Km_CompartmentName
)

• Parameter
(Vm_CompartmentName
)

• Inter-compartmental
clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page 5-
18

Intercompartmental Clearance
The compartments created when you generate a SimBiology model form a chain and each pair of
linked compartments are connected by a transport reaction similar to linear elimination. The addition
of two compartments, C1 and C2, generates a reversible mass-action reaction C1.Drug_C1 <->
C2.Drug. The forward rate parameter is the compartmental clearance, Q12, divided by the volume of
C1. The reverse rate parameter is Q12, divided by the volume of C2.

The process of adding each pair of compartments in the chain Cm and Cn generates the following
model components:

5 Pharmacokinetic Modeling

5-18

• A parameter Qmn representing the compartmental clearance between those two compartments.
This parameter is added to the list of parameters to be estimated (Estimated property of
PKModelMap object).

• A parameter (kmn) representing the rate of transfer of the drug from Cm to Cn, where kmn =
Qmn/Vm.

• A parameter (knm) representing the rate of Cn to Cm, where knm = Qmn/Vn.
• A reversible mass-action reaction between the two compartments, Cm.Drug_Cm <->

Cn.Drug_Cn, with forward rate parameter kmn, and reverse rate parameter knm.
• An initial assignment rule that initializes the value of the parameter kmn, based on the initial

values for Cm and Qmn.
• An initial assignment rule that initializes the value of the parameter knm, based on the initial

values for Cn and Qmn.

Unit Conversion for Imported Data
Unit conversion converts the matching physical quantities to one consistent unit system in order to
resolve them. This conversion is in preparation for correct simulation, but SimBiology returns the
physical quantities in the model in units that you specify.

Regardless of whether unit conversion is on or off, you must express dosing data in amount. By
default, Unit Conversion is off, so you must ensure that units for the data and the model are
consistent with one another. If Unit Conversion is on, you must specify units.

Parameters in the model have default units. If unit conversion is on, you can change the units as long
as the dimensions are consistent. These default units, which you might use to specify the values for
the initial guess, are as follows.

Physical Quantity or Model Parameter Unit
Central or peripheral compartment volume
(Central or Peripheral)

liter

First-order elimination rate (ke) 1/second
Michaelis constant (Km) milligram/liter
Maximum reaction-velocity, Michaelis-Menten
kinetics (Vm)

milligram/second

Clearance (Cl) liter/second
Absorption duration (Tk0) second
Absorption rate (ka) 1/second

Use the configuration settings options to turn unit conversion on or off. For details, see “Model
Simulation” on page 4-3.

For details on dimensional analysis for reaction rates, see “How Reaction Rates Are Evaluated” on
page 2-11.

Create a Pharmacokinetic Model Using the Command Line
To create a PK model with the specified number of compartments, dosing type, and method of
elimination:

 Create Pharmacokinetic Models

5-19

1 Create a PKModelDesign object. The PKModelDesign object lets you specify the number of
compartments, route of administration, and method of elimination, which SimBiology uses to
construct the model object with the necessary compartments, species, reactions, and rules.

pkm = PKModelDesign;
2 Add a compartment specifying the compartment name, and optionally, the type of dosing, and the

method of elimination. Also specify whether the data contains a response variable measured in
this compartment and whether the dose(s) have time lags. For example, specify a compartment
named Central, with Bolus for the DosingType property, linear-clearance for the
EliminationType property, and true for the HasResponseVariable property.

pkc1 = addCompartment(pkm, 'Central', 'DosingType', 'Bolus', ...
 'EliminationType', 'linear-clearance', ...
 'HasResponseVariable', true);

For a description of other DosingType and EliminationType property values, see “Dosing
Types” on page 5-15 and “Elimination Types” on page 5-17.

For a description of the HasResponseVariable property, see HasResponseVariable. At least
one compartment in a model must have a response. Although SimBiology supports multiple
responses per compartment, when adding compartments to a PKModelDesign object, you are
limited to one response per compartment.

Note To add a compartment that has a time lag associated with any dose that targets it, set the
HasLag property to true:

pkc_lag = addCompartment(pkm, 'Central', 'DosingType', 'Bolus', ...
 'EliminationType', 'linear-clearance', ...
 'HasResponseVariable', true, 'HasLag', true);

Or after adding a compartment, set its HasLag property to true:

pkc1.HasLag = true;

3 Optionally, add a second compartment named Peripheral, with no dosing, no elimination, and
no time lag. Set the HasResponseVariable property to true. If you are using the tobramycin
data set [1] on page 5-3, skip this step and use only one compartment.

pkc2 = addCompartment(pkm, 'Peripheral', 'HasResponseVariable', true);

The model construction process adds the necessary parameters, including a parameter
representing intercompartmental clearance Q. You can add more compartments by repeating this
step. The addition of each compartment creates a chain of compartments in the order of
compartment addition, with a bidirectional flow of the drug between compartments in the model.

Use the handle to the compartment (pkc1 or pkc2), to change compartment properties.
4 Construct a SimBiology model object.

[modelObj, PKModelMapObj] = pkm.construct

The construct method returns a SimBiology model object (modelObj) and a PKModelMap
object (PKModelMapObj) that contains the mapping of the model components to the elements of
the regression function.

5 Pharmacokinetic Modeling

5-20

Note If you change the PKModelDesign object, you must create a new model object using the
construct method. Changes to the PKModelDesign do not automatically propagate to a
previously constructed model object.

5 Perform parameter fitting using “Nonlinear Regression” or “Nonlinear Mixed-Effects Modeling”.

The model object and the PKModelMap object are input arguments for the sbionlmefit,
sbionlmefitsa and sbionlinfit functions used in parameter fitting.

See Also

Related Examples
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer” on

page 1-156
• “Fit One-Compartment Model to Individual PK Profile” on page 4-53
• “Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-72
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-59
• “Estimate the Bioavailability of a Drug” on page 4-79
• “Model the Population Pharmacokinetics of Phenobarbital in Neonates” on page 4-154

 Create Pharmacokinetic Models

5-21

Creating Reaction Rates

A

Define Reaction Rates with Mass Action Kinetics
Use mass action kinetics to define zero-order, first-order, second-order, and reversible reactions.

Definition of Mass Action Kinetics
Mass action describes the behavior of reactants and products in an elementary chemical reaction.
Mass action kinetics describes this behavior as an equation where the velocity or rate of a chemical
reaction is directly proportional to the concentration of the reactants.

Zero-Order Reactions
With a zero-order reaction, the reaction rate does not depend on the concentration of reactants.
Examples of zero-order reactions are synthesis from a null species, and modeling a source species
that is added to the system at a specified rate.

 reaction: null -> P
reaction rate: k mole/second
 species: P = 0 mole
 parameters: k = 1 mole/second

Note When specifying a null species, the reaction rate must be defined in units of amount per unit
time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following result:

Zero-Order Mass Action Kinetics

Note If the amount of a reactant with zero-order kinetics reaches zero before the end of a
simulation, then the amount of reactant can go below zero regardless of the solver or tolerances you
set.

A Define Reaction Rates with Mass Action Kinetics

A-2

First-Order Reactions
With a first-order reaction, the reaction rate is proportional to the concentration of a single reactant.
An example of a first-order reaction is radioactive decay.

 reaction: R -> P
reaction rate: k*R mole/(liter*second)
 species: R = 10 mole/liter
 P = 0 mole/liter
 parameters: k = 1 1/second

Entering the reaction above into the software and simulating produces the following results:

First-Order Mass Action Kinetics

Second-Order Reactions
A second-order reaction has a reaction rate that is proportional to the square or the concentration of
a single reactant or proportional to two reactants. Notice the space between the reactant coefficient
and the name of the reactant. Without the space, 2R would be considered the name of a species.

 reaction: 2 R -> P
reaction rate: k*R^2 mole/(liter*second)
 species: R = 10 mole/liter
 P = 0 mole/liter
 parameters: k = 1 liter/(mole*second)

Entering the reaction above into the software and simulating produces the following results:

 Define Reaction Rates with Mass Action Kinetics

A-3

Second-Order Kinetics with Single Reactant

With two reactants, the reaction rate depends on the concentration of two of the reactants.

 reaction: R1 + R2 -> P
reaction rate: k*R1*R2 mole/(liter*second)
 species: R1 = 10 mole/liter
 R2 = 8 mole/liter
 P = 0 mole/liter
 parameters: k = 1 liter/(mole*second)

Enter the reaction above into the software and simulating produces the following results. There is a
difference in the final values because the initial amount of one of the reactants is lower than the
other. After the first reactant is used up, the reaction stops.

Second-Order Kinetics with Two Reactants

A Define Reaction Rates with Mass Action Kinetics

A-4

Reversible Mass Action
You can model reversible reactions with two separate reactions or with one reaction. With a single
reversible reaction, the reaction rates for the forward and reverse reactions are combined into one
expression. Notice the angle brackets before and after the hyphen to represent a reversible reaction.

 reaction: R <-> P
reaction rate: kf*R - kr*P mole/(liter*second)
 species: R = 10 mole/liter
 P = 0 mole/liter
 parameters: kf = 1 1/second
 kr = 0.2 1/second

Entering the reaction above into the software and simulating produces the following results. At
equilibrium when the rate of the forward reaction equals the reverse reaction, v = kf*R - kr*P =
0 and P/R = kf/kr.

 Define Reaction Rates with Mass Action Kinetics

A-5

Define Reaction Rates with Enzyme Kinetics
Use differential equations, mass action kinetics, or Michaelis-Menten kinetics to define enzyme
reactions.

Simple Model for Single Substrate Catalyzed Reactions
A simple model for enzyme-catalyzed reactions starts a substrate S reversibly binding with an enzyme
E. Some of the substrate in the substrate/enzyme complex is converted to product P with the release
of the enzyme.

S + E
k1r

k1
 ES

k2
 E + P

v1 = k1[S][E], v1r = k1r[ES], v2 = k2[ES]

This simple model can be defined with

• Differential rate equations. See “Enzyme Reactions with Differential Rate Equations” on page A-
6.

• Reactions with mass action kinetics. See “Enzyme Reactions with Mass Action Kinetics” on page
A-7.

• Reactions with Henri-Michaelis-Menten kinetics. See “Enzyme Reactions with Irreversible Henri-
Michaelis-Menten Kinetics” on page A-8.

Enzyme Reactions with Differential Rate Equations
The reactions for a single-substrate enzyme reaction mechanism (see “Simple Model for Single
Substrate Catalyzed Reactions” on page A-6) can be described with differential rate equations. You
can enter the differential rate equations into the software as rate rules.

 reactions: none
 reaction rate: none
 rate rules: dS/dt = k1r*ES - k1*S*E
 dE/dt = k1r*ES + k2*ES - k1*S*E
 dES/dt = k1*S*E - k1r*ES - k2*ES
 dP/dt = k2*ES
 species: S = 8 mole
 E = 4 mole
 ES = 0 mole
 P = 0 mole
 parameters: k1 = 2 1/(mole*second)
 k1r = 1 1/second
 k2 = 1.5 1/second

Remember that the rate rule dS/dt = f(x) is written in a SimBiology rate rule expression as S =
f(x). For more information about rate rules see “Rate Rules” on page 2-14.

A Define Reaction Rates with Enzyme Kinetics

A-6

Alternatively, you could remove the rate rule for ES, add a new species Etotal for the total amount
of enzyme, and add an algebraic rule 0 = Etotal - E - ES, where the initial amounts for Etotal
and E are equal.

 reactions: none
 reaction rate: none
 rate rules: dS/dt = k1r*ES - k1*S*E
 dE/dt = k1r*ES + k2*ES - k1*S*E
 dP/dt = k2*ES
 algebraic rule: 0 = Etotal - E - ES
 species: S = 8 mole
 E = 4 mole
 ES = 0 mole
 P = 0 mole
 Etotal = 4 mole
 parameters: k1 = 2 1/(mole*second)
 k1r = 1 1/second
 k2 = 1.5 1/second

Enzyme Reactions with Mass Action Kinetics
Determining the differential rate equations for the reactions in a model is a time-consuming process.
A better way is to enter the reactions for a single substrate enzyme reaction mechanism directly into
the software. The following example using models an enzyme catalyzed reaction with mass action
kinetics. For a description of the reaction model, see “Simple Model for Single Substrate Catalyzed
Reactions” on page A-6.

 reaction: S + E -> ES
reaction rate: k1*S*E (binding)

 reaction: ES -> S + E
reaction rate: k1r*ES (unbinding)

 reaction: ES -> E + P
reaction rate: k2*ES (transformation)

 Define Reaction Rates with Enzyme Kinetics

A-7

 species: S = 8 mole
 E = 4 mole
 ES = 0 mole
 P = 0 mole
 parameters: k1 = 2 1/(mole*second)
 k1r = 1 1/second
 k2 = 1.5 1/second

The results for a simulation using reactions are identical to the results from using differential rate
equations.

Enzyme Reactions with Irreversible Henri-Michaelis-Menten Kinetics
Representing an enzyme-catalyzed reaction with mass action kinetics requires you to know the rate
constants k1, k1r, and k2. However, these rate constants are rarely reported in the literature. It is
more common to give the rate constants for Henri-Michaelis-Menten kinetics with the maximum
velocity Vm=k2*E and the constant Km = (k1r + k2)/k1. The reaction rate for a single substrate
enzyme reaction using Henri-Michaelis-Menten kinetics is given below. For information about the
model, see “Simple Model for Single Substrate Catalyzed Reactions” on page A-6.

v = Vmax[S]
Km + [S]

The following example models an enzyme catalyzed reaction using Henri-Michaelis-Menten kinetics
with a single reaction and reaction rate equation. Enter the reaction defined below into the software
and simulate.

 reaction: S -> P
reaction rate: Vmax*S/(Km + S)
 species: S = 8 mole
 P = 0 mole
 parameters: Vmax = 6 mole/second
 Km = 1.25 mole

A Define Reaction Rates with Enzyme Kinetics

A-8

The results show a plot slightly different from the plot using mass action kinetics. The differences are
due to assumptions made when deriving the Michaelis-Menten rate equation.

 Define Reaction Rates with Enzyme Kinetics

A-9

Models Used in Examples

B

Minimal Cascade Model for a Mitotic Oscillator
Albert Goldbeter modified a model with enzyme cascades [Goldbeter and Koshland 1981 on page B-
13] to fit cell cycle data from studies with embryonic cells [Goldbeter 1991 on page B-13]. He used
this model to demonstrate thresholds with enzyme cascades and periodic behavior caused by
negative feedback.

There are two SimBiology model variations using Goldbeter's model. The first model uses the
differential rate equations directly from Goldbeter's paper. The second model is built with reactions
using Henri-Michaelis-Menten kinetics.

In this section...
“Goldbeter Model” on page B-2
“SimBiology Model with Rate Rules” on page B-4
“SimBiology Model with Reactions” on page B-6
“References” on page B-13

Goldbeter Model
• “About the Goldbeter Model” on page B-2
• “Reaction Descriptions and Model Assumptions” on page B-3
• “Mathematical Model” on page B-3

About the Goldbeter Model

Albert Goldbeter created a simple cell division model from studies with embryonic cells [Goldbeter
1991 on page B-13]. This model demonstrates thresholds with enzyme cascades and periodic
behavior caused by negative feedback.

There are six species in Goldbeter's minimal mitotic oscillator model [Goldbeter 1991 on page B-13].

• C — Cyclin. The periodic behavior of cyclin activates and deactivates an enzyme cascade.
• M+, M — Inactive (phosphorylated) and active forms of cdc2 kinase. Kinases catalyze the addition

of phosphate groups onto amino acid residues.
• X+, X — Inactive and active (phosphorylated) forms of a cyclin protease. Proteases degrade

proteins by breaking peptide bonds.

The reactions are labeled r1 to r7 on the following diagram.

B Minimal Cascade Model for a Mitotic Oscillator

B-2

This model shows:

• How thresholds with cdc2 kinase activation (M+ -> M) and protease activation (X+ -> X) can
occur as the result of covalent modification (for example, phosphorylation or dephosphorylation),
but without the need for positive feedback.

• How periodic behavior with cdc2 kinase activation can occur with negative feedback and the time
delay associated with activation/deactivation enzyme cascades.

Reaction Descriptions and Model Assumptions

The following list describes each of the reactions in Goldbeter's minimal mitotic oscillator with some
of the simplifying assumptions. For a more detailed explanation of the model, see [Goldbeter 1991 on
page B-13].

• Cyclin (C) is synthesized at a constant rate (r1) and degraded at a constant rate (r2).
• Cyclin (C) does not complex with cdc2 kinase (M).
• Cyclin (C) activates cdc2 kinase (M+ -> M) by increasing the velocity of the phosphatase that

activates the kinase. Inactive cdc2 kinase (M+) is activated by removing inhibiting phosphate
groups (r4).

• The amount of deactivating kinase (not modeled) for the cdc2 kinase (M) is constant. Active cdc2
kinase (M) is deactivated by adding inhibiting phosphate group (r5).

• The activation of cyclin protease (X+ -> X) by the active cdc2 kinase (M) is direct without other
intervening cascades. Cyclin protease (X) is activated by adding phosphate groups (r6).

• The amount of deactivating phosphatase (not modeled) for the cyclin protease (X) is constant.
Active cyclin protease (X) is deactivated by removing the activating phosphate groups (r7).

• The three species of interest are cyclin (C), active dephosphorylated cdc2 kinase (M), and active
phosphorylated protease (X). The total amounts of (M + M+) and (X + X+) are constant.

Mathematical Model

Goldbeter's minimal mitotic oscillator model is defined with three differential rate equations and two
algebraic equations that define changing parameters in the rate equations.
Differential Rate Equation 1, Cyclin (C)

The following differential rate equation is from [Goldbeter 1991 on page B-13] for cyclin (C).

 Minimal Cascade Model for a Mitotic Oscillator

B-3

dC
dt = vi− vdX C

Kd + C − kdC

Differential Rate Equation 2, Kinase (M)

The following differential rate equation is for cdc2 kinase (M). Notice that (1 - M) is the amount of
inactive (phosphorylated) cdc2 kinase (M+).

dM
dt = V1

(1−M)
K1 + (1−M) − V2

M
K2 + M

V1 =
VM1[C]
Kc + [C]

Differential Rate Equation 3, Protease (X)

Differential rate equations for cyclin protease (X). Notice that (1 - X) is the amount of inactive
(unphosphorylated) cyclin protease (X+).

dX
dt = V3

(1− X)
K3 + (1− X) − V4

X
K4 + X

V3 = VM3[M]

SimBiology Model with Rate Rules
• “Load Goldbeter Model with Rules” on page B-4
• “SimBiology Model with Rules” on page B-4
• “SimBiology Simulation with Rules” on page B-5

Load Goldbeter Model with Rules

Enter the following command to open the rule-based minimal cascade model for a mitotic oscillator
(Goldbeter model).

openExample('simbio/GoldbeterWithRulesSimBiologyExample')

SimBiology Model with Rules

In the literature, many biological models are defined using differential rate and algebraic equations.
With SimBiology software, you can enter the equations directly as SBML rules. The example in this
section uses Goldbeter's mitotic oscillator to illustrate this point.

Writing differential rate equations in an unambiguous format that a software program can understand
is a fairly simple process.

• Use an asterisk to indicate multiplication. For example, k[a] is written k*a.
• Remove square brackets that indicate concentration from around species. The units associated

with the species will indicate concentration (moles/liter) or amount (moles, molecules).

SimBiology software uses square brackets around species and parameter name to allow names
that are not valid MATLAB variable names. For example, you could have a species named

B Minimal Cascade Model for a Mitotic Oscillator

B-4

glucose-6-phosphate dehydrogenase but you need to add brackets around the name in
reaction rate and rule equations.

• Use parentheses to clarify the order of evaluation for mathematical operations. For example, do
not write a Henri-Michaelis-Menten rate as Vm*C/Kd + C, because Vm*C is divided by Kd before
adding C, and then C is added to the result.

The following equation is the rate rule for “Differential Rate Equation 1, Cyclin (C)” on page B-3:

dC/dt = vi - (vd*X*C)/(Kd + C) - kd*C

The following equations are the rate and repeatedAssignment rules for “Differential Rate Equation
2, Kinase (M)” on page B-4:

dM/dt = (V1*Mplus)/(K1 + Mplus) - (V2*M)/(K2 + M)
V1 = (VM1*C)/(Kc + C)
Mplus = Mt - M

The following equations are the rate and repeatedAssignment rules for “Differential Rate Equation
3, Protease (X)” on page B-4:

dX/dt = (V3*Xplus)/(K3 + Xplus) - (V4*X)/(K4 + X)
V3 = VM3*M
Xplus = Xt - X

Rules

The active (M) and inactive (Mplus) forms of the kinase are assumed to be part of a conserved cycle
with the total concentration (Mt) remaining constant during the simulation. You need only one
differential rate equation with a mass balance equation to define the amounts of both species.
Similarly, the active (X) and inactive (Xplus) forms of the protease are part of a second conserved
cycle.

SimBiology Simulation with Rules

This is a simulation of Goldbeter's minimal mitotic oscillator using differential rate and algebraic
equations. Simulate with the sundials solver and plot species C, M, and X. For a description of the
model, see “SimBiology Model with Rules” on page B-4.

 Minimal Cascade Model for a Mitotic Oscillator

B-5

SimBiology Model with Reactions
• “Load Goldbeter Model with Reactions” on page B-6
• “Converting Differential Rate Equations to Reactions” on page B-6
• “Calculating Initial Values for Reactions” on page B-7
• “SimBiology Simulation with Reactions” on page B-13

Load Goldbeter Model with Reactions

Enter the following command to open the reaction-based minimal cascade model for a mitotic
oscillator (Goldbeter model).

openExample('simbio/GoldbeterWithReactionsSimBiologyExample')

Converting Differential Rate Equations to Reactions

In the literature, many models are defined with differential rate equations. With SimBiology software,
creating the differential equations from reactions is unnecessary; you can enter the reactions and let
the software calculate the equations.

Some models are defined with differential rate equations, and you might need the reactions to be
compatible with your model. Two rules you can use to convert differential rate equations to reactions
are:

• For a positive term — The species described by the equation is placed on the right as a product,
and the species in the term are placed on the left as reactants.

• For a negative term — The species described by the equation is placed on the left as a product,
and the species in the term are also placed on the left as reactants.

You need to determine the products using additional information, for example, a reaction diagram,
a description of the model, or an understanding of a reaction. If a reaction is catalyzed by a
kinase, then you can conclude that the product has one or more additional phosphate groups.

A simple first-order reaction has differential rate equation dR/dt = +kr[P] - kf[R]. The negative
term implies that the reaction is R -> ? with an unknown product. The positive term identifies the
product and completes the reaction, R <-> P.
Reactions R1 to R3 from Equation E1

The differential rate equation 1 is repeated here for comparison with the reactions. See “Differential
Rate Equation 1, Cyclin (C)” on page B-3.

dC
dt = vi− vdX C

Kd + C − kdC

The reaction and reaction rate equations from the differential rate equation E1 are given below:

r1 reaction: null -> C
 reaction rate: vi

r2 reaction: C -> null
 reaction rate: kd*C

B Minimal Cascade Model for a Mitotic Oscillator

B-6

r3 reaction: C -> null
 reaction rate: (vd*X*C)/(Kd + C)

Reactions R4 and R5 from Equation E2

The differential rate equation 2 and algebraic equation 2 are repeated here for comparison with the
reactions. See “Differential Rate Equation 2, Kinase (M)” on page B-4.

dM
dt = V1

(1−M)
K1 + (1−M) − V2

M
K2 + M

V1 =
VM1[C]
Kc + [C]

The reaction and reaction rate equations from the differential rate equation E2 are given below:

r4 reaction: Mplus -> M
 reaction rate: V1*Mplus/(K1 + Mplus)
 repeatedAssignment rule: V1 = VM1*C/(Kc + C)

r5 reaction: M -> Mplus
 reaction rate: V2*M/(K2 + M)

Reactions R6 and R7 from Equation E3

The differential rate equation for equation 3 and algebraic equation 3 is repeated here for
comparison with the reactions.

dX
dt = V3

(1− X)
K3 + (1− X) − V4

X
K4 + X

V3 = VM3*[M]

The reaction and reaction rate equations from the differential rate equation E3 are given below:

r6 reaction: Xplus -> X
 reaction rate: V3*Xplus]/(K3 + Xplus)
 repeatedAssignment rule: V3 = VM3*M

r7 reaction: X -> Xplus
 reaction rate: V4*X/(K4 + X)

Calculating Initial Values for Reactions

After you converted the differential rate equations to the reactions and reaction rate equations, you
can start to fill in initial values for the species (reactants and products) and parameters.

The initial values for parameters and amounts for species are listed with four different units in the
same dimension:

• A — Original units in the Goldbeter 1991 paper.
• B — Units of concentration with time converted to second. When converting a to b, use 1 minute

= 60 second for parameters.

X uM
minute x 1e‐6 mole/liter

1 uM x 1 minute
60 second = Y mole

liter*second

 Minimal Cascade Model for a Mitotic Oscillator

B-7

• C — Units of amount as moles. When converting concentration to moles, use a cell volume of
1e-12 liter and assume that volume does not change.

Y mole
liter*second x 1e‐12 liter = Z mole

second
• D — Units of amount as molecules. When converting amount as moles to molecules, use

6.022e23 molecules = 1 mole.

Z mole
second x 6.022e23 molecule

1 mole = N molecules
second

With dimensional analysis on and unit conversion off, select all of the units for one letter. For
example, select all of the As. If dimensional analysis and unit conversion are on, you can mix and
match letters and get the same answer.

Reaction 1 Cyclin Synthesis

R1 Value Units
reaction null -> C ---- ----
reaction rate vi ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameters vi 0.025 A. uM/minute
 4.167e-10 B. mole/(liter*second)
 4.167e-22 C. mole/second
 205 D. molecule/second
species C 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 2 Cyclin Undifferentiated Degradation

R2 Value Units
reaction C -> null ---- ----
reaction rate kd*C ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameters kd 0.010 A. 1/minute
 1.6667e-4 B, C, D. 1/second
species C 0.01 A. uM
 1e-8 B. mole/liter

B Minimal Cascade Model for a Mitotic Oscillator

B-8

R2 Value Units
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 3 Cyclin Protease Degradation

R3 Value Units
reaction C -> null ---- ----
reaction rate (vd*X*C)/(Kd + C) ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameter vd 0.25 A. 1/minute
 0.0042 B, C, D. 1/second
parameter Kd 0.02 A. uM
 2.0e-8 B. mole/liter
 2.0e-020 C. mole
 12044 D. molecule
species C (substrate) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species X (enzyme) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 4 Cdc2 Kinase Activation

R4 Value Units
reaction Mplus -> M ---- ----
reaction rate (V1*Mplus)/(K1 + Mplus) ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
repeatedAssignmen
t rule

V1 = (VM1*C)/(Kc + C) ----

 Minimal Cascade Model for a Mitotic Oscillator

B-9

R4 Value Units
parameter V1 (variable by rule) 0.00 A. uM/minute

B. mole/(liter*second)

C. mole/second

D. molecule/second
parameter VM1 3.0 A. uM/minute
 5.0e-8 B. mole/(liter*second)
 5.0000e-020 C. mole/second
 30110 D. molecule/second
parameter Kc 0.5 A. uM
 5.0000e-7 B. mole/liter
 5.0e-19 C. mole
 3.011e+5 D. molecule
parameter K1 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3.011e+3 D. molecule
species Mplus (inactive substrate) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species M (active product) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species C 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 5 Cdc2 Kinase Deactivation

R5 Value Units
reaction M -> M_plus ---- ----
reaction rate (V2*M)/(K2 + M) ---- A. uM/minute
 ---- B. (mole/liter-second)
 ---- C. mole/second
 ---- D. molecule/second

B Minimal Cascade Model for a Mitotic Oscillator

B-10

R5 Value Units
parameter V2 1.5 A. uM/minute
 2.5000e-008 B. mole/liter-second
 2.5000e-020 C. mole/second
 15055 D. molecule/second
parameter K2 0.005 A. uM
 5.0000e-009 B. mole/liter
 5.0000e-021 C. mole
 3011 D. molecule
 1.0e-20 C. mole
species Mplus (inactive) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species M (active) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 6 Protease Activation

R6 Value Units
reaction Xplus -> X ---- ----
reaction rate (V3*Xplus)/(K3 + Xplus) ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
repeatedAssignme
nt rule

V3 = VM3*M ----

parameter V3 (variable by rule) A. uM/minute

B. mole/liter-second

C. mole/second

D. molecule/second
parameter VM3 1.0 A. 1/minute
 0.0167 B, C, D. 1/second
parameter K3 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole

 Minimal Cascade Model for a Mitotic Oscillator

B-11

R6 Value Units
 3.011e+3 D. molecule
species Xplus (inactive substrate) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species X (active product) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species M (enzyme) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 7 Protease Deactivation

R7 Value Units
reaction X -> X_plus ---- ----
reaction rate (V4*X)/(K4 + X) ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameter V4 0.5 A. uM/minute
 8.3333e-009 B. mole/(liter*second)
 8.3333e-021 C. mole/second
 5.0183e+003 D. molecule/second
parameter K4 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3011 D. molecule
species Xplus (inactive) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species X (active) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

B Minimal Cascade Model for a Mitotic Oscillator

B-12

SimBiology Simulation with Reactions

This is a simulation of Goldbeter's minimal mitotic oscillator with rate and algebraic equations.
Simulate with the sundials solver and plot species C, M, and X. For a description of the model, see
“SimBiology Model with Reactions” on page B-6.

References

[1] Goldbeter A. (1991), “A minimal cascade model for the mitotic oscillator involving cyclin and cdc2
kinase,” Proceedings of the National Academy of Sciences USA, 88:9107-9111.

[2] Goldbeter A., Koshland D. (1981), “An amplified sensitivity arising from covalent modification in
biological systems,” Proceedings of the National Academy of Sciences USA, 78:6840-6844.

[3] Goldbeter A., Koshland D. (1984), “Ultrasensitivity in biochemical systems controlled by covalent
modification,” The Journal of Biological Chemistry, 259:14441-14447.

[4] Goldbeter A., home page on the Web, http://www.ulb.ac.be/sciences/utc/GOLDBETER/
agoldbet.html.

[5] Murray A.W., Kirschner M.W. (1989), “Cyclin synthesis drives the early embryonic cell cycle,”
Nature, 339:275-280.

 Minimal Cascade Model for a Mitotic Oscillator

B-13

Model of the Yeast Heterotrimeric G Protein Cycle

In this section...
“Background on G Protein Cycles” on page B-14
“Modeling a G Protein Cycle” on page B-15
“References” on page B-17

Background on G Protein Cycles
• “G Proteins” on page B-14
• “G Proteins and Pheromone Response” on page B-14

G Proteins

Cells rely on signal transduction systems to communicate with each other and to regulate cellular
processes. G proteins are GTP-binding proteins that are involved in the regulation of many cellular
processes. There are two known classes of G proteins: the monomeric G proteins (one GTPase), and
the heterotrimeric G proteins (three different monomers). The G proteins usually facilitate a step
requiring energy. This energy is supplied by the hydrolysis of GTP by a GTPase activating protein
(GAP). The exchange of GDP for GTP is catalyzed by a guanine nucleotide releasing protein (GNRP)
[Alberts et al. 1994 on page B-17].

Gprotein + GTP
GNRP

GAP
Gprotein + GDP

G protein-coupled receptors (GPCRs) are the targets of many pharmaceutical agents. Some estimates
suggest that 40 to 50% of currently marketed drugs target GPCRs and that 40% of current drug
discovery focus is on GPCR targets. Some examples include those for reducing stomach acid
(ranitidine which targets histamine H2 receptor), migraine (sumatriptan, which targets a serotonin
receptor subtype), schizophrenia (olanzapine, which targets serotonin and dopamine receptors),
allergies (desloratadine, which targets histamine receptors). One approach in pharmaceutical
research is to model signaling pathways to analyze and predict both downstream effects and effects
in related pathways. This tutorial examines model building and analysis of the G protein cycle in the
yeast pheromone response pathway using the SimBiology desktop.

G Proteins and Pheromone Response

In the yeast Saccharomyces cerevisiae, G protein signaling in pheromone response is a well
characterized signal transduction pathway. The pheromone secreted by alpha cells activates the G
protein-coupled α-factor receptor (Ste2p) in a cells which results in a variety of cell responses
including cell-cycle arrest and synthesis of new proteins. The authors of the study performed a
quantitative analysis of this cycle, compared the regulation of G protein activation in wild-type yeast
haploid a cells with cells containing mutations that confer supersensitivity to α-factor. They analyzed
the data in the context of cell-cycle arrest and pheromone-induced transcriptional activation and
developed a mathematical model of the G protein cycle that they used to estimate rates of activation
and deactivation of active G protein in the cell.

B Model of the Yeast Heterotrimeric G Protein Cycle

B-14

Modeling a G Protein Cycle
• “Reactions Overview” on page B-15
• “Assumptions, Experimental Data, and Units in the G Protein Model” on page B-16

Reactions Overview

Systems biologists represent biological pathways and processes as reactions with reaction rates, and
treat the components of these pathways as individual species.

The G protein cycle in the yeast pheromone-response pathway can be condensed into a set of
biochemical reactions. These reactions are complex formation, transformation, or disassociation
reactions that Yi and colleagues [Yi et al. 2003 on page B-17] use to simplify and describe the
system. In this example, α-factor, α-factor receptor, and the G protein subunits are all treated as
species participating in reactions. The system can be graphically represented as follows.

The following table shows you the reactions used to model the G protein cycle and the corresponding
rate constants (rate parameters) for each reaction. For reversible reactions, the forward rate
parameter is listed first.

No. Name Reaction Rate
Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

 Model of the Yeast Heterotrimeric G Protein Cycle

B-15

No. Name Reaction Rate
Parameters

3 G protein activation RL + G -> Ga + Gbg + RL kGa
4 Receptor synthesis and

degradation
R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1
6 G protein inactivation Ga -> Gd kGd

Note that in reaction 3 (G protein activation), RL appears on both sides of the reaction. This is
because RL is treated as a modifier or catalyst, and the model assumes that there is no synthesis or
consumption of RL in this reaction.

The authors use a set of ordinary differential equations (ODEs) to describe the system. In the
software, you can represent the biological pathway as a system of biochemical reactions and the
software creates the ODEs for you. Alternatively, if you have a set of ODEs that describe your system
you can enter these as rate rules. For an example of modeling using rate rules, see “SimBiology
Model with Rate Rules” on page B-4.

Assumptions, Experimental Data, and Units in the G Protein Model

The authors have obtained experimental data either through their own measurements or through
published literature. As with any other model, the G protein cycle model simplifies the biological
process while also trying to reconcile the experimental data. Consider these points:

• Reaction 2 — Binding and formation of the heterotrimeric G protein complex is treated as a single-
step reaction.

• Reaction 3 — Activation of G protein is modeled as a single-step. Guanine nucleotide exchange
factors (GEFs) are not modeled.

• Reactions 3 and 6 — The parameters for the rate of G protein activation and deactivation (kGa and
kGd) have been estimated based on the dose response curves in the reference paper. The
SimBiology model being built in this tutorial directly uses those values.

• Reactions 4 and 5 — Receptor synthesis and degradation are handled purely as two simple
reaction steps.

• Reaction 6 — Deactivation of G protein by the regulator of G protein signaling (RGS) protein Sst2p
is modeled as a single step. Sst2p is not modeled.

The reaction is modeled with an estimated reaction rate of 0.11 s-1) in the Sst2p containing wild-
type strain. The uncatalyzed reaction rate is estimated to be 0.004 s-1 in a strain with a deletion
of SST2 (sst2Δ, mutant strain).

• Free GDP, GTP, and Pi are not included in the model.

This tutorial shows you how to plot the experimental data over the simulation plot of the active G
protein fraction. You can estimate the values of the experimental data of interest for this example
from the coordinates of the plots found in Figure 5 of the reference paper [Yi et al. 2003 on page B-
17]. The following values were obtained by comparing the coordinates of the standards with those of
the unknowns in the figure.

Time Fraction of Active Ga (Experimental)
0 0.00

B Model of the Yeast Heterotrimeric G Protein Cycle

B-16

Time Fraction of Active Ga (Experimental)
10 0.35
30 0.40
60 0.36
110 0.39
210 0.33
300 0.24
450 0.17
600 0.20

Note The SimBiology Dimensional Analysis feature is not used in this tutorial. For this tutorial, the
values of all species are converted to have the unit molecule, and all rate parameters are converted
to have either the unit 1/second or the units 1/(molecule*second), depending on whether the
reaction is first or second order. You should leave the InitialAmountUnits box for species and the
ValueUnits box for rate parameters empty for the models in this tutorial.

References

[1] Tau-Mu Yi, Hiroaki Kitano, and Melvin I. Simon. A quantitative characterization of the yeast
heterotrimeric G protein cycle. PNAS (2003) vol. 100, 10764-10769.

[2] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. Molecular Biology of the Cell,
3rd edition, Garland Publishing, 1994.

See Also

Related Examples
• “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast

Heterotrimeric G Protein Cycle” on page 4-128

 Model of the Yeast Heterotrimeric G Protein Cycle

B-17

Model of M-Phase Control in Xenopus Oocyte Extracts
John Tyson's Computational Cell Biology Lab created a mathematical model for M-phase control in
Xenopus oocyte (frog egg) extracts [Marlovits et al. 1998 on page B-41]. The M-phase control model
shows principles by which you can apply phosphorylation and regulatory loops in your own models.
Publications typically list systems of ordinary differential equations (ODEs) that represent a model
system. This example shows you how to interpret these ODEs in the form of reaction pathways that
are easier to represent and visualize in SimBiology software.

The model is centered around M-phase promoting factor (MPF). There are two positive feedback
loops where MPF increases its synthesis and a negative feedback loop where MPF decreases its
amount by increasing its degradation.

In this section...
“M-Phase Control Model” on page B-18
“M-Phase Control Equations” on page B-19
“SimBiology Model with Rate and Algebraic Rules” on page B-25
“SimBiology Model with Reactions and Algebraic Rules” on page B-29
“References” on page B-41

M-Phase Control Model
• “Synthesis Reactions” on page B-18
• “Regulation Reactions with Active MPF” on page B-18

Synthesis Reactions

Cyclin B (CycB) dimerizes with Cdc2 kinase (Cdc2) to form M-phase promoting factor (MPF).

Regulation Reactions with Active MPF

Positive feedback loops with M-phase promoting factor (MPF) activate the Cdc25 phosphatase and
deactivate the Wee1 kinase. A negative feedback loop with MPF activates anaphase-promoting
complex (APC) that regulates the degradation of the Cyclin B subunit.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-18

M-Phase Control Equations
• “About the Rate Equations in This Example” on page B-19
• “Converting Differential Equations to Reactions” on page B-20
• “Equation 1, Cyclin B” on page B-20
• “Equation 2, M-Phase Promoting Factor” on page B-21
• “Equation 3, Inhibited M-Phase Promoting Factor” on page B-21
• “Equation 4, Inhibited and Activated M-Phase Promoting Factor” on page B-22
• “Equation 5, Activated M-Phase Promoting Factor” on page B-22
• “Equation 11, Cell Division Control 25” on page B-23
• “Equation 12, Wee1 Activation/Deactivation” on page B-23
• “Equation 13, Intermediate Enzyme Activation/Deactivation” on page B-23
• “Equation 14, APC Activation/Deactivation” on page B-24
• “Equation 17, Rate Parameter K2” on page B-24
• “Equation 18, Rate Parameter Kcdc25” on page B-24
• “Equation 19, Rate Parameter Kwee1” on page B-25

About the Rate Equations in This Example

Models in systems biology are commonly described in the literature with differential rate equations.
However, SimBiology software defines a model using reactions. This section shows you how to

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-19

convert models published in the literature to a SimBiology format. The equation numbers match the
published paper for this model [Marlovits et al. 1998 on page B-41]. Equations that are missing in
the sequence involve the Cdk inhibitor (CKI) protein, which is not currently modeled in the
SimBiology version.

Converting Differential Equations to Reactions

The rules for writing reaction and reaction rate equations from differential rate equations include not
only the equations but also an understanding of the reactions. dx/dt refers to the species the
differential rate equation is defining. kinetics refers to the species in the reaction rate.

• Positive terms: Rate species are placed on right side of the reactions; reaction rate equation
species are placed on the left.

kinetics dx
dt

• Negative terms: Rate species are placed on the left side of the reaction because the species are
being used up in some way; reaction rate equation species are also placed on left. You need to
deduce the products from additional information about the model.

kinetics or (dx
dt) products?

The following table will help you deduce the products for a reaction. In this example, by convention,
phosphate groups on the right side of a species name are activating while phosphate groups on left
are inhibiting.

Enzyme Description Reaction
wee1 Kinase, add inhibiting phosphate group MPF —> P-MPF
cdc25 Phosphatase, remove inhibiting phosphate

group
P-MPF —> MPF + P

kcak Kinase, add activating phosphate group MPF —> MPFp
kpp Phosphatase, remove activating phosphate

group
MPF-P —> MPF + P

MPF Kinase, add activating or inhibiting
phosphate group

Wee1/Cdc25/IE —> X-P or P-X

ki Add inhibiting Cki Cki + MPF —> Cki:MPF
kir Remove inhibiting Cki Cki:MPF —> Cki + MPF

Equation 1, Cyclin B

Differential rate equation for cyclin B [Marlovits et al. 1998 on page B-41].

d[CycB]
dt = + k1 ‐k2[CycB] ‐k3[Cdc2][CycB]

Rate rule using SimBiology format for the differential rate equation 1. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Rule 1 on page B-25 [CycB] = k1 - K2*[CycB] - k3*[Cdc2]*[CycB]

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-20

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

Reaction 1 on page B-30 AA -> CycB v = k1
Reaction 2 on page B-30 CycB -> AA v = K2*[CycB]
Reaction 3 on page B-31 Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]

Equation 2, M-Phase Promoting Factor

Differential rate equation for M-phase promoting factor (MPF) [Marlovits 1998 on page B-41]. Note
that the parameter name kcakr [Marlovits et al. 1998 on page B-41] is changed to kpp [Borisuk
1998 on page B-41] in the following reaction equations. MPF is a heterodimer of cdc2 kinase and
cyclin B.

d[MPF]
dt = +k3[Cdc2][CycB] ‐K2[MPF]

 +kpp[MPFp] ‐kcak[MPF]
 +Kcdc25[pMPF] ‐Kwee1[MPF]
 +kir[Cki:MPF] ‐ki[MPF][Cki]

Rate rule using SimBiology format for the differential rate equation 1. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Rule 2 on page B-26 MPF = kpp*MPFp - (Kwee1 + kcak + K2)*MPF + Kcdc25*pMPF + k3*Cdc2*CycB

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29. A
reaction name in parentheses denotes a reaction repeated in another differential rate equation.

(Reaction 3 on page B-31) Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]
Reaction 4 on page B-32 MPF -> Cdc2 + AA v = K2*[MPF]
Reaction 5 on page B-33 MPFp -> MPF v = kpp*[MPFp]
Reaction 6 on page B-34 MPF -> MPFp v = kcak*[MPF]
Reaction 7 on page B-34 pMPF -> MPF v = Kcdc25*[pMPF]
Reaction 8 on page B-35 MPF -> pMPF v = Kwee1*[MPF]

Equation 3, Inhibited M-Phase Promoting Factor

Differential rate equation for inhibited M-phase promoting factor (pMPF) [Marlovits 1998 on page B-
41].

d[pMPF]
dt = − K2[pMPF]

 +kpp[pMPFp] ‐kcak[pMPF]
 +Kwee1[MPF] ‐Kcdc25[pMPF]
 +kd[Cki:pMPF]

Rate rule using SimBiology format for the differential rate equation 3. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Rule 3 on page B-26 pMPF = Kwee1*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

Reaction 11 on page B-36 pMPF -> Cdc2 + AA v = K2*[pMPF]
Reaction 12 on page B-36 pMPFp -> pMPF v = kpp*[pMPFp]

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-21

Reaction 13 on page B-36 pMPF -> pMPFp v = kcak*[pMPF]
(Reaction 8 on page B-35) MPF -> pMPF v = Kwee1*[MPF]
(Reaction 7 on page B-34) pMPF -> MPF v = Kcdc25*[pMPF]

Equation 4, Inhibited and Activated M-Phase Promoting Factor

Differential rate equation for inhibited and activated M-phase promoting factor (pMPFp) [Marlovits
1998 on page B-41].

d[pMPFp]
dt = ‐K2[pMPFp]

 +kcak[pMPF] ‐kpp[pMPFp]
 +Kwee1[MPFp] ‐Kcdc25[pMPFp]
 +kd[Cki:pMPFp]

Rate rule using SimBiology format for the differential rate equation. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Rule 4 on page B-28 pMPFp = Kwee1*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

Reaction 15 on page B-37 pMPFp -> Cdc2 + AA v = K2*[pMPFp]
(Reaction 13 on page B-36) pMPF -> pMPFp v = kcak*[pMPF]
(Reaction 12 on page B-36) pMPFp -> pMPF v = kpp*[pMPFp]
Reaction 16 on page B-37 MPFp -> pMPFp v = Kwee1*[MPFp]
Reaction 17 on page B-37 pMPFp -> MPFp v = Kcdc25*[pMPFp]

Equation 5, Activated M-Phase Promoting Factor

Differential rate equation for activated M-phase promoting factor (MPFp) [Marlovits 1998 on page B-
41].

d[MPFp]
dt = ‐K2[MPFp]

 +kcak[MPF] ‐kpp[MPFp]
 +Kcdc25[pMPFp] ‐Kwee1[MPFp]
 +kir[CKI:MPFp] ‐ki[CKI][MPFp]

Rate rule using SimBiology format for the differential rate equation 1. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Rule 5 on page B-28 MPFp = kcak*MPF - (kpp + Kwee1 + K2)*MPFp + Kcdc25*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

Reaction 19 on page B-38 MPFp -> MPF + AA v = K2*[MPFp]
(Reaction 6 on page B-34) MPF -> MPFp v = kcak*[MPF]
(Reaction 5 on page B-33) MPFp -> MPF v = kpp*[MPFp]
(Reaction 17 on page B-37) pMPFp -> MPFp v = Kcdc25*[pMPFp]
(Reaction 16 on page B-37) MPFp -> pMPFp v = Kwee1*[MPFp]

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-22

Equation 11, Cell Division Control 25

Differential rate equation for activating and deactivating Cdc25 [Marlovits 1998 on page B-41].

d[Cdc25p]
dt = +k25[MPFp][Cdc25]

Km25+[Cdc25] ‐ k25r[Cdc25p]
Km25r+[Cdc25p]

Rate rule in SimBiology format for the differential rate equation 1. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25. Note that since there isn't a rate
rule for Cdc25, its amount is written as (TotalCdc25 - Cdc25p).

Rule 11 on page B-28 Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p)) - (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

Reaction 36 Cdc25 -> Cdc25p, v = k25*[MPFp]*[Cdc25]/(Km25 + [Cdc25])
Reaction 37 Cdc25p -> Cdc25, v = k25r*[Cdc25p]/(Km25r + [Cdc25p])

Equation 12, Wee1 Activation/Deactivation

Differential rate equation for activating and deactivating Wee1 kinase [Marlovits 1998 on page B-
41]. The kinase (MPFp) phosphorylates active Wee1 (Wee1) to its inactive form (Wee1p). The
dephosphorylation of inactive Wee1 (Wee1p) is by an unknown phosphatase.

d[Wee1]
dt = − kw[MPFp][Wee1]

Kmw + [Wee1] + kwr[Wee1P]
Kmwr + [Wee1P]

Rate rule in SimBiology format for the differential rate equation 1. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.
Rule 12 Wee1p = (kw*MPFp*(TotalWee1 - Wee1p))/(Kmw + (TotalWee1 - Wee1p))
 - (kwr*Wee1p)/(Kmwr + Wee1p)

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

reaction 38 Wee1 -> Wee1p, v = (kw*[MPFp]*[Wee1])/(Kmw + [Wee1])
reaction 39 Wee1p -> Wee1, v = (kwr*[Wee1p])/(Kmwr + [Wee1p])

Equation 13, Intermediate Enzyme Activation/Deactivation

Differential rate equation for activating and deactivating the intermediate enzyme (IE) [Marlovits
1998 on page B-41]. The active kinase (MPFp) phosphorylates the inactive intermediate enzyme (IE)
to its active form (IEp).

d[IEp]
dt = + kie[MPFp][IE]

Kmie + [IE] − kier[IEp]
Kmier + [IEp]

Rate rule in SimBiology format for the differential rate equation 1. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.
Rule 13 IEp = (kie*MPFp*(TotalIE - IEp))/(Kmie + (TotalIE - IEp))
 - (kier*IEp)/(Kmier + IEp)

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-23

reaction 40 IE -> IEp, v = (kie*[MPFp]*[IE])/(Kmie + [IE])
reaction 41 IEp -> IE, v = (kier*[IEp])/(Kmier + [IEp])

Equation 14, APC Activation/Deactivation

Differential rate equation for [Marlovits 1998 on page B-41].

d[APCa]
dt = + kap[IEP][APCi]

Kmap + [APCi] −
kapr[APCa]

Kmapr + [APCa]

Rate rule in SimBiology format for the differential rate equation 1. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.
Rule 14 APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
 - (kapr*APCa)/(Kmapr + APCa)

Reaction and reaction rate equations derived from the differential rate equation. For a model using
these reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

Reaction 42 APCi -> APCa, v = (kap*[IEp]*[APCi])/(Kmap + [APCi])
Reaction 43 APCa -> APCi, v = (kapr*[APCa])/(Kmapr + [APCa])

Equation 17, Rate Parameter K2

Algebraic equation to define the rate parameter K2 [Marlovits 1998 on page B-41]. Inactive APC
(APCi) is catalyzed by IE (intermediate enzyme) to active APC (APCa).

k2 = V2'[APC] + V2''[APC']

Algebraic rule in SimBiology format for the algebraic equation 17. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Algebraic Rule 17 V2i*(TotalAPC - APCa) + V2a*APCa - K2

Algebraic rule when simulating with reactions. For a model using this rule with reactions, see
“SimBiology Model with Reactions and Algebraic Rules” on page B-29. V2' is renamed to V2i and
V2"is renamed to V2a. APCi (APC) is the inactive form of the enzyme while APCa (APC') is the active
form. K2 is the independent variable.

Algebraic Rule 1 (V2i*APCi) + (V2a*APCa) - K2

Equation 18, Rate Parameter Kcdc25

Algebraic equation to define the rate parameter Kcdc25 [Marlovits 1998 on page B-41]. Inactive
Cdc25 (Cdc25) is phosphorylated by MPF to active Cdc25 (Cdc25p).

kcdc25 = V25'[Cdc25] + V25''[Cdc25p]

Algebraic rule in SimBiology format for the algebraic equation 18. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Algebraic Rule 18 V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic rule when simulating with reactions. Kcdc25 is the independent variable. For a model
using this rule with reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-
29.

Algebraic Rule 2 (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-24

Equation 19, Rate Parameter Kwee1

Algebraic equation to define the rate parameter [Marlovits 1998 on page B-41]. Active Wee1 (Wee1)
is phosphorylated by MPF to inactive Wee1 (Wee1p).

kwee1 = Vwee1'[Wee1p] + Vwee1''[Wee1]

Algebraic rule in SimBiology format for rate parameter equation 19. For a model using this rule, see
“SimBiology Model with Rate and Algebraic Rules” on page B-25.

Algebraic Rule 19 Vwee1i*Wee1p + Vwee1a*(TotalWee1 - Wee1p) - Kwee1

Algebraic rule when simulating with reactions. Kwee1 is the independent variable. For a model using
this rule with reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page B-29.

Algebraic Rule 3 (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

SimBiology Model with Rate and Algebraic Rules
• “Overview” on page B-25
• “Writing Differential Rate Equations as Rate Rules” on page B-25
• “Species” on page B-26
• “Parameters” on page B-26
• “Rate Rule 1, Cyclin B (CycB)” on page B-27
• “Rate Rule 2, M-Phase Promoting Factor (MPF)” on page B-27
• “Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)” on page B-28
• “Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)” on page B-28
• “Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)” on page B-28
• “Rate Rule 11, Activated Cdc25 (Cdc25p)” on page B-28
• “Rate Rule 12, Inhibited Wee1 (Wee1p)” on page B-28
• “Rate Rule 13, Activated Intermediate Enzyme (IEp)” on page B-28
• “Rate Rule 14, Activated APC (APCa)” on page B-28
• “Algebraic Rule 17, Rate Parameter K2” on page B-29
• “Algebraic Rule 18, Rate Parameter Kcdc25” on page B-29
• “Algebraic Rule 19, Rate Parameter Kwee1” on page B-29

Overview

There is one rate rule for each equation defining a species and one algebraic rule for each variable
parameter in the M-phase control model [Marlovits 1998 on page B-41]. For a list and description of
the equations, see “M-Phase Control Equations” on page B-19.

A basic model includes rate rules 1 to 5 and 11 to 14 with algebraic rules 17, 18, and 19.

Writing Differential Rate Equations as Rate Rules

Writing differential rate equations in an unambiguous format that a software program can understand
is a simple process when you follow the syntax rules for programming languages.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-25

• Use an asterisk to indicate multiplication. For example, k[A] is written k*A or k*[A]. The
brackets around the species A do not indicate concentration.

• SimBiology uses square brackets around species and parameter name to allow names that are not
valid MATLAB variable names. For example, you could have a species named glucose-6-
phosphate dehydrogenase but you need to add brackets around the name in reaction rate and
rule equations.

[glucose-6-phosphate dehydrogenase]
• Use parentheses to clarify the order of evaluation for mathematical operations. For example, do

not write Henri-Michaelis-Menten reaction rates as Vm*C/Kd + C, because Vm*C is divided by Kd
before adding C to the result. Instead, write this reaction rate as (Vm*C)/(Kd + C).

Species

The following table lists species in the model with their initial amounts. There are three variable
parameters modeled as species (K2, Kcdc25, and KWee1). You could also model the variable
parameters as parameters with the property ConstantAmount cleared.

Parameters

The following table lists parameters in the model with their initial values. The property
ConstantValue is selected for all of the parameters.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-26

Rate Rule 1, Cyclin B (CycB)

The rate rule is from “Equation 1, Cyclin B” on page B-20.

 rate rule: CycB = k1 - K2*CycB - k3*Cdc2*CycB
 species: CycB = 0 nM
 Cdc2 = 100 nM, [x]constant
parameters: k1 = 1 nM/minute
 K2 = 0 1/minute, []constant
 k3 = 0.005 1/(nM*minute)

K2 is a variable rate parameter whose value is defined by an algebraic rule. See “Algebraic Rule 17,
Rate Parameter K2” on page B-29. Its value varies from 0.005 to 0.25 1/minute.

Rate Rule 2, M-Phase Promoting Factor (MPF)

The rate rule is from “Equation 2, M-Phase Promoting Factor” on page B-21.
 rate rule: MPF = kpp*MPFp - (Kwee1 + kcak + K2)*MPF + Kcdc25*pMPF
 + k3*Cdc2*CycB

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-27

 species: MPF = 0 nM
 MPFp = 0 nM
 pMPF = 0 nM
parameters: kpp = 0.004 1/minute
 kcak = 0.64 1/minute
 k3 = 0.005 1/(nM*minute)
 K2 = 0 1/minute
 Kcdc25 = 0 1/minute
 Kwee1 = 0 1/minute

K2, Kcdc25, and Kwee1 are variable rate parameters whose values are defined by algebraic rules.
See “Algebraic Rule 17, Rate Parameter K2” on page B-29, “Algebraic Rule 18, Rate Parameter
Kcdc25” on page B-29, and “Algebraic Rule 19, Rate Parameter Kwee1” on page B-29.

Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)

The rate rule is from “Equation 3, Inhibited M-Phase Promoting Factor” on page B-21.

rate rule: pMPF = Kwee1*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp

Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)

The rate rule is from “Equation 4, Inhibited and Activated M-Phase Promoting Factor” on page B-22.

rate rule: pMPFp = Kwee1*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)

The rate rule is from “Equation 5, Activated M-Phase Promoting Factor” on page B-22.

rate rule: MPFp = kcak*MPF - (kpp + Kwee1 + K2)*MPFp + Kcdc25*pMPFp

Rate Rule 11, Activated Cdc25 (Cdc25p)

The rate rule is from “Equation 11, Cell Division Control 25” on page B-23.
rate rule: Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p))
 - (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Rate Rule 12, Inhibited Wee1 (Wee1p)

The rate rule is from “Equation 12, Wee1 Activation/Deactivation” on page B-23.
rate rule: Wee1p = (kw*MPFp*(TotalWee1 - Wee1p))/(Kmw + (TotalWee1 - Wee1p))
 - (kwr*PPase*Wee1p)/(Kmwr + Wee1p)

Rate Rule 13, Activated Intermediate Enzyme (IEp)

The rate rule is from “Equation 13, Intermediate Enzyme Activation/Deactivation” on page B-23.
rate rule: IEp = (kie*MPFp*(TotalIE - IEp))/(Kmie + (TotalIE - IEp))
 - (kier*PPase*IEp)/(Kmier + IEp)

Rate Rule 14, Activated APC (APCa)

The rate rule is from “Equation 14, APC Activation/Deactivation” on page B-24.
rate rule: APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
 - (kapr*AntiAPC*APCa)/(Kmapr + APCa)

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-28

Algebraic Rule 17, Rate Parameter K2

K2 is a variable rate parameter whose value is determined by the amount of active and inactive APC.
The algebraic rule is from “Equation 17, Rate Parameter K2” on page B-24.

algebraic rule: V2i*(TotalAPC - APCa) + V2a*APCa - K2
 species: APCi = 1 nM
 APCa = 0 nM
 TotalAPC = 1 nM [x]constant
 parameters: K2 = 0 or 0.25 1/minute, []constant
 V2i = 0.005 1/(nM*minute)
 V2a = 0.25 1/(nM*minute)

Algebraic Rule 18, Rate Parameter Kcdc25

Kcdc25 is a variable rate parameter whose value is determined by the amount of active and inactive
Cdc25. The algebraic rule is from “Algebraic Rule 18, Rate Parameter Kcdc25” on page B-29.

algebraic rule: V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic Rule 19, Rate Parameter Kwee1

Kwee1 is a variable rate parameter whose value is determined by the amount of active and inactive
Wee1. The algebraic rule is from “Equation 19, Rate Parameter Kwee1” on page B-25.

algebraic rule: Vweei*Wee1p + Vweea*(TotalWee1 - Wee1p) - Kwee1

SimBiology Model with Reactions and Algebraic Rules
• “Overview” on page B-30
• “Reaction 1, Synthesis of Cyclin B” on page B-30
• “Reaction 2, Degradation of Cyclin B” on page B-30
• “Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase” on page B-31
• “Reaction 4, Degradation of Cyclin B on MPF” on page B-32
• “Reaction 5, Deactivation of Active MPF” on page B-33
• “Reaction 6, Activation of MPF” on page B-34
• “Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF” on page B-34
• “Reaction 8, Inhibition of MPF by Phosphorylation” on page B-35
• “Reaction 11, Degradation of Cyclin B on Inhibited MPF” on page B-36
• “Reaction 12, Deactivation of MPF to Inhibited MPF” on page B-36
• “Reaction 13, Activation of Inhibited MPF” on page B-36
• “Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF” on page B-37
• “Reaction 16, Inhibit MPF by Phosphorylation” on page B-37
• “Reaction 17, Remove Inhibiting Phosphate from Activated MPF” on page B-37
• “Reaction 19, Degradation of Cyclin B on Activated MPF” on page B-38
• “Reaction 36, Activation of Cdc25 by Activated MPF” on page B-38
• “Reaction 37, Deactivation of Cdc25” on page B-38
• “Reaction 38, Deactivation of Wee1 by Active MPF” on page B-38

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-29

• “Reaction 39, Activation of Wee1” on page B-38
• “Reaction 40, Activation of Intermediate Enzyme by Active MPF” on page B-39
• “Reaction 41, Deactivation of IE” on page B-39
• “Reaction 42, APC Activation by IEp” on page B-39
• “Reaction 43, APC Deactivation” on page B-39
• “Block Diagram of the M-Phase Control Model with Reactions” on page B-39

Overview

There can be one or more reactions for an equation defining a species and one algebraic rule for each
variable parameter in the M-phase control model [Marlovits 1998 on page B-41]. For a list and
description of the equations, see “M-Phase Control Equations” on page B-19.

A basic model includes reactions 1 to 8, 11 to 13, 15 to 17, 19, and 36 to 43 with algebraic rules from
equations 17, 18, and 19.

Reaction 1, Synthesis of Cyclin B

Cyclin B is synthesized at a constant rate.

 reaction: AA -> CycB
reaction rate: k1 nM/minute
 parameter: k1 = 1 nM/minute
 species: CycB = 0 nM
 AA = 100 nM [x]constant [x]boundary

Simulate reaction 1 with the sundials solver.

Reaction 2, Degradation of Cyclin B

Cyclin B is degraded at the end of the M-phase.

 reaction: CycB -> AA
 reaction rate: K2*CycB nM/minute

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-30

 parameters: K2 = 0 1/minute, []constant, variable by rule
 V2i = 0.005 1/nM*minute
 V2a = 0.25 1/nM*minute
 species: CycB = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Initially, Cyclin B degradation is low. This implies the amount of active APC (APCa) = 0 and inactive
APC (APCi) = APCtotal = 1 nM.

Test the algebraic rule by simulating reactions 1 and 2 with APCi = 0 and APCa = 1.

Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase

Cyclin B dimerizes with Cdc2 kinase to form M-phase promoting factor (MPF).

 reaction: Cdc2 + CycB -> MPF
reaction rate: k3*Cdc2*CycB nM/minute
 parameters: k3 = 0.005 1/(nM*minute)
 species: Cdc2 = 100 nM
 CycB = 0 nM
 MPF = 0 nM

Test the model by simulating with K2 = 0.25.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-31

Reaction 4, Degradation of Cyclin B on MPF

Cyclin B is tagged with ubiquitin groups and degrades while bound to Cdc2.

 reaction: MPF -> Cdc2 + AA
 reaction rate: K2*[MPF]
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 v2i = 0.005 1/(nM*minute)
 v2a = 0.25 1/(nM*minute)
 species: MPF = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
algebraic rule: (v2i*APCi) + (v2a*APCa) - K2

Test the simulation with APCa = 1 and APCi = 0. Because the amount of APCa (active) is high, K2
increases and the degradation starts to balance the synthesis of MPF.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-32

Reaction 5, Deactivation of Active MPF

Active MPF (MPFp) is dephosphorylated on Thr-161 by an unknown phosphatase (PP) to inactive MPF
(MPF).

 reaction: MPFp -> MPF
reaction rate: kpp*[MPFp]
 parameters: kpp = 0.004 1/minute
 species: MPFp = 0 nM
 MPF = 0 nM

kcakr = 0.004 1/minute [Marlovits 1998, p. 175], but is renamed to kpp [Borisuk 1998].

Test simulation with APCa = 1 and APCi = 0. MPF increases without reaching steady state.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-33

Reaction 6, Activation of MPF

Inactive MPF (MPF) is phosphorylated on Thr-161 by an unknown cyclin activating kinase (CAK).

 reaction: MPF -> MPFp
reaction rate: kcak*[MPF]
 parameters: kcak = 0.64 1/minute
 species: MPF = 0 nM
 MPFp = 0 nM

The kinase reaction that phosphorylates MPF to the active form is 160 times faster than the
phosphatase reaction that dephosphorylates active MPF.

Simulate the model with reactions 1 to 6. Notice that after adding reaction 6, most of the product
goes to active MPF (MPFp).

Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF

Cdc25 phosphatase removes the inhibiting phosphate groups at the threonine 14 and tyrosine 15
residues on Cdc2 kinase.

 reaction: pMPF -> MPF
reaction rate: Kcdc25*[pMPF]
 parameters: Kcdc25 = 0.0 1/minute or 0.017 1/minute, variable by
 algebraic rule
 V25i = 0.017 1/(mM*minute)
 V25a = 0.17 1/mM*minute
 species: pMPF = 0 nM
 MPF = 0 nM
 Cdc25 = 1 nM (inactive)
 Cdc25p = 0 nM (active)
algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Initially, all of the Cdc25 phosphatase is in the inactive form (Cdc25).

Enter the initial value for Kcdc25 as 0.0 and let the first time step calculate the value from the rule,
or enter an initial value using the rule.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-34

Initially, set ConstantAmount for Cdc25 and Cdc25p to test reactions 1 through 7. Then after you
can add the reactions to regulate the Cdc25 phosphatase by clearing the ConstantAmount property.

Reaction 8, Inhibition of MPF by Phosphorylation

Addition of inhibiting phosphate groups by Wee1 kinase to inhibit active M-phase promoting factor
(MPF). Myt1 kinase is also involved with the phosphorylation, but its contribution is grouped with
Wee1.

 reaction: MPF -> pMPF
reaction rate: Kwee1*[MPF]
 parameters: Kwee1 = 0.0 1/minute or 0.01 1/minute, variable by
 algebraic rule
 Vwee1i = 0.01 1/(nM*minute)
 Vwee1a = 1.0 1/(nM*minute)
 species: MPF = 0 nM
 pMPF = 0 nM
 Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)
algebraic rule: (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

The initial capitalization for the parameter Kwee1 is a convention to indicate that this value changes
during the simulation.

Test the simulation for reactions 1 through 8 with Wee1p (inactive) = 1 and Wee1 (active) = 0.

Test the simulation with Wee1p (inactive) = 0 and Wee1 (active) = 1.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-35

Reaction 11, Degradation of Cyclin B on Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with ubiquitin groups and
degrades while bound to Cdc2.

 reaction: pMPF -> Cdc2 + AA
 reaction rate: K2*[pMPF] nM/minute
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 V2i = 0.005 1/nM*minute
 V2a = 0.25 1/nM*minute
 species: MPF = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
 Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Test the simulation with Wee1 active (Wee1 = 1) and APC active (APCi = 1).

Reaction 12, Deactivation of MPF to Inhibited MPF

Inhibited/active MPF (pMPFp) is dephosphorylated on Thr-161 by an unknown phosphatase (PP) to
inhibited MPF (pMPF). Compare reaction 12 with reaction 5 on page B-33.

 reaction: pMPFp -> pMPF
reaction rate: kpp*[pMPFp]
 parameters: kpp = 0.004 1/minute
 species: pMPFp = 0 nM
 pMPF = 0 nM

Reaction 13, Activation of Inhibited MPF

Inhibited MPF (pMPF) is phosphorylated on Thr-161 by an unknown cyclin-activating kinase (CAK).
Compare reaction 13 with reaction 6 on page B-34.

 reaction: pMPF -> pMPFp
reaction rate: kcak*[pMPF] nM/minute

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-36

 parameters: kcak = 0.64 1/minute
 species: pMPF = 0 nM
 pMPFp = 0 nM

Test the simulation with Wee1p = 1 (inactive)/ Wee1 = 0 and then test with Wee1p = 0 (inactive)/
Wee1 = 1.

Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with ubiquitin groups and
degrades while bound to cdc2 kinase.

 reaction: pMPFp -> Cdc2 + AA
 reaction rate: K2*[pMPFp] nM/minute
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 v2i = 0.005 1/nM*minute
 v2a = 0.25 1/nM*minute
 species: MPF = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
 Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 16, Inhibit MPF by Phosphorylation

Addition of inhibiting phosphate groups by Wee1 kinase to inhibit active M-phase promoting factor
(MPF). Myt1 kinase is also involved with the phosphorylation, but its contribution is grouped with
Wee1.

 reaction: MPFp -> pMPFp
 reaction rate: Kwee1*[MPFp] nM/minute
 parameters: Kwee1 = 1/minute []constant, variable by rule
 Vweei = 0.01 1/nM*minute
 Vweea = 1 1/nM*minute
 species: MPFp = 0 nM
 pMPFp = 0 nM
 Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)
algebraic rule: (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

Reaction 17, Remove Inhibiting Phosphate from Activated MPF

Remove the inhibiting phosphate group from pMPFp with cdc25 phosphatase.

 reaction: pMPFp -> MPFp
reaction rate: Kcdc25*[pMPFp]
 parameters: Kcdc25 = 0 1/minue, []constant, variable by rule
 V25i = 0.017 1/nM*minute
 V25a = 0.17 1/nM*minute
 species: pMPFp = 0 nM
 MPFp = 0 nM
algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-37

Reaction 19, Degradation of Cyclin B on Activated MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with ubiquitin groups and
degrades while bound to cdc2 kinase.

 reaction: MPFp -> MPF + AA
 reaction rate: K2*[MPFp] nM/minute
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 V2i = 0.005 1/nM*minute
 V2a = 0.25 1/nM*minute
 species: MPF = 0 nM
 MPFp = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
 Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 36, Activation of Cdc25 by Activated MPF

Activation of cdc25 phosphatase by phosphorylation with active M-phase promoting factor (MPFp).

 reaction: Cdc25 + (MPFp) -> Cdc25p + (MPFp)
reaction rate: (k25*[MPFp]*[Cdc25])/(Km25 + [Cdc25])
 parameters: k25 = 0.02 1/minute
 Km25 = 0.1 nM
 species: Cdc25 = 1 nM (inactive)
 Cdc25p = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF*).

Reaction 37, Deactivation of Cdc25

Deactivation of cdc25 phosphatase by dephosphorylation with an unknown phosphatase.

 reaction: Cdc25p -> Cdc25
reaction rate: (k25r*[Cdc25p])/(Km25r + [Cdc25p])
 parameters: k25r = 0.1 nM/minute
 Km25r = 1 nM
 species: Cdc25 = 1 nM (inactive)
 Cdc25p = 0 nM (active)

Reaction 38, Deactivation of Wee1 by Active MPF

Deactivation of Wee1 kinase by phosphorylation with active M-phase promoting factor (MPFp).

 reaction: Wee1 + (MPFp) -> Wee1p + (MPFp)
reaction rate: (kw*[MPFp]*[Wee1])/(Kmw + [Wee1]) nM/minute
 parameters: kw = 0.02 1/minute
 Kmw = 0.1 nM
 species: Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF*).

Reaction 39, Activation of Wee1

Activation of Wee1 kinase by dephosphorylation with an unknown kinase.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-38

 reaction: Wee1p -> Wee1
reaction rate: (kwr*[Wee1p])/(Kmwr + [Wee1p]) nM/minute
 parameters: kwr = 0.1 nM/minute
 Kmwr = 1 nM
 species: Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)

Reaction 40, Activation of Intermediate Enzyme by Active MPF

The inactive intermediate enzyme (IE) is activated by phosphorylation with active M-phase promoting
factor (MPFp).

 reaction: IE + (MPFp) -> IEp + (MPFp)
reaction rate: (kie*[MPFp]*[IE])/(Kmie + [IE])
 parameters: kie = 0.02 1/minute
 Kmie = 0.01nM
 species: IE = 1 nM (inactive)
 IEp = 0 nM (active)

Reaction 41, Deactivation of IE

The active intermediate enzyme (IE) is deactivated by dephosphorylation.

 reaction: IEp -> IE
reaction rate: (kier*[IEp])/(Kmier + [IEp])
 parameters: kier = 0.15 nM/minute
 Kmier = 0.01 nM
 species: IE = 1 nM (inactive)
 IEp = 0 nM (active)

Reaction 42, APC Activation by IEp

Anaphase-promoting complex (APC) is activated by an active intermediate enzyme (IEp).

 reaction: APCi + IEp -> APCa + IEp
reaction rate: (kap*[IEp]*[APCi])/(Kmap + [APCi])
 parameters: kap = 0.13 1/minute
 Kmap = 0.01 nM
 species : APCi = 1 nM
 APCa = 0 nM

Reaction 43, APC Deactivation

Anaphase-promoting complex (APC) is deactivated.

 reaction: APCa -> APCi
reaction rate: (kapr*[APCa])/(Kmapr + [APCa])
 parameters: kapr = 0.13 nM/minute
 Kmapr = 1 nM
 species : APCi = 1 nM
 APCa = 0 nM

Block Diagram of the M-Phase Control Model with Reactions

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-39

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-40

References

[1] Borisuk M, Tyson J (1998), “Bifurcation analysis of a model of mitotic control in frog eggs,”
Journal of Theoretical Biology, 195(1):69–85, PubMed 9802951.

[2] Marlovits G, Tyson C, Novak B, Tyson J (1998), “Modeling M-phase control in Xenopus oocyte
extracts: the surveillance mechanism for unreplicated DNA,” Biophysical Chemistry,
72(1-2):169–184, PubMed 9652093.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-41

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9802951&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9652093&dopt=Abstract

[3] Novák B, Tyson J (1993), “Numerical analysis of a comprehensive model of M-phase control in
Xenopus oocyte extracts and intact embryos,” Journal of Cell Science, 106(4):1153–1168,
PubMed 8126097.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-42

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8126097&dopt=Abstract

	SimBiology Apps
	Keyboard Shortcuts for SimBiology Model Builder
	Shortcuts for Diagram
	Shortcuts for Browser Tables

	Keyboard Shortcuts for SimBiology Model Analyzer
	Shortcuts for Datasheets and Tables
	Shortcuts for Running Programs
	Shortcuts for Help and Working with Project

	Message Indicator Icons in SimBiology Model Builder
	Copy SimBiology Blocks
	Compartment Blocks
	Species Blocks
	Reaction Blocks
	Parameter Blocks
	Rule Blocks

	SimBiology Model Component Libraries
	Create Model of Receptor-Ligand Kinetics
	Open Model Builder App
	Build Model
	Simulate Model

	Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology Model Builder
	Glucose-Insulin Model
	Sodium-Glucose Cotransporter-2 (SGLT2) Inhibition
	Incorporate Inhibitor PK by Adding and Configuring Reactions
	Incorporate Inhibitor PD Using Mathematical Equation
	Update Renal Excretion Reaction to Incorporate Presence of Inhibitor Compound
	Incorporate Sudden Changes in Model Behavior Using Event
	Add Doses
	Represent Biological Variability Using Variants
	Show Model Equations and Initial Conditions
	Define Observable Expressions
	Visualize Model Behavior Using Model Simulation Tool
	Export Model

	Explore Biological Variability with Virtual Patients Using SimBiology Model Analyzer
	Scan Dosing Regimens Using SimBiology Model Analyzer App
	Undo and Redo Model Changes in SimBiology
	Model Changes in Model Analyzer App
	Undo Deletion of Model Components
	Actions Not Supported for Undoing or Redoing

	Generate SimBiology Model Report
	Generate Report for SimBiology Program Results
	Check Saved Models and Data of Project

	Percentile Plot
	Display Options
	Percentiles Options
	Mean Options
	Data Options
	Interpolation Method
	Time Point Binning Method

	View and Run Program Code Generated by SimBiology Model Analyzer
	Simulate Groups Using Doses and Variants from Data Set
	Find Important Parameters for Receptor Occupancy with Global Sensitivity Analysis Using SimBiology Model Analyzer
	View and Run Generated Code by SimBiology Model Builder
	Import and Export Variants and Doses from Excel to SimBiology Model Builder
	Import Variants from Excel
	Export Variants to Excel
	Create Excel File for Variants
	Import Doses from Excel
	Export Doses to Excel
	Create Excel File for Doses

	Find Important Tumor Growth Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer
	Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

	Modeling
	What is a SimBiology Model?
	Model Definition
	Expressions
	Quantities
	Model Hierarchy
	Representing a Model

	Species Object
	How Species Amounts Change During Simulations
	Keeping a Species Amount Unchanged
	Changing a Species Amount with a Reaction or Rule
	Changing a Species Amount with a Rule When Species is Part of a Reaction
	Keeping a Species Amount Unchanged When Species is Part of a Reaction that Adds or Removes Mass

	Definitions and Evaluations of Reactions in SimBiology Models
	Writing Reaction Expressions
	Writing Reaction Rate Expressions Explicitly
	Creating Reaction Rate Expressions Using Kinetic Law Objects
	Examples of Creating Reaction Rates
	How Reaction Rates Are Evaluated
	Viewing Equations for Reactions

	Definitions and Evaluations of Rules in SimBiology Models
	Overview
	Initial Assignment
	Repeated Assignment
	Algebraic Rules
	Repeated Assignment vs. Algebraic Rules
	Rate Rules
	Evaluation Order of Rules
	Conservation of Amounts During Simulation
	Writing Rule Expressions
	Considerations When Imposing Constraints
	Rate Rule Examples

	Events in SimBiology Models
	Overview
	Event Triggers
	Event Functions
	Specifying Event Triggers
	Specifying Event Functions
	Simulation Solvers for Models Containing Events
	How Events Are Evaluated
	Evaluation of Simultaneous Events
	Evaluation of Multiple Event Functions
	When One Event Triggers Another Event
	Cyclical Events
	Using Events to Address Discontinuities in Rule and Reaction Rate Expressions

	Variants in SimBiology Models
	Creating Variants Programmatically
	Creating Variants Graphically

	Doses in SimBiology Models
	Representing Doses
	Creating Doses Programmatically
	Creating Doses Graphically
	Parameterized and Adaptive Doses
	Simulation Solvers for Models Containing Doses

	Simulate Biological Variability of the Yeast G Protein Cycle Using Wild-Type and Mutant Strains
	Create and Simulate a Model with a Custom Function
	Overview
	Create a Custom Function
	Load the Example Model
	Add the Custom Function to the Example Model
	Define a Rule to Change Parameter Value
	Add an Event to Reset the Solver at a Discontinuity and Simulate the Model

	Component Usage
	Species Usage
	Parameter Usage
	Compartment Usage
	Observable Usage
	Unit and UnitPrefix Usage
	Abstract Kinetic Law Usage

	Evaluation of Model Component Names in Expressions
	Guidelines for Naming Model Components
	Guidelines for Referencing Names in Expressions
	Precedence Rules for Evaluating Quantity Names

	SimBiology Model Matching Policy
	Model Quantities
	Model Expressions
	Doses and Variants
	Determine Differences in Component Properties

	Compare SimBiology Models
	Compare Models Programmatically
	Compare Models in Comparison Tool
	Git Integration

	Structural Analysis
	Model Verification
	What is Model Verification?
	When to Verify a Model
	Verifying That a Model Has No Warnings or Errors
	Model Verification Example
	View Model Equations

	Conserved Moiety Determination
	Introduction to Moiety Conservation
	Algorithms for Conserved Cycle Calculations
	More About

	Determine Conserved Moieties in SimBiology
	Determining the Adjacency Matrix for a Model
	What Is an Adjacency Matrix?
	Get Adjacency Matrix of SimBiology Model

	Determining the Stoichiometry Matrix for a Model
	What Is a Stoichiometry Matrix?
	Get Stoichiometry Matrix of SimBiology Model

	Selecting Absolute Tolerance and Relative Tolerance for Simulation
	Algorithm
	Absolute Tolerance Scaling

	Troubleshooting Simulation Problems
	Tips for Solving Simulation Problems
	How to Change Solver Options and Simulation Options

	Simulate Model of Glucose-Insulin Response with Different Initial Conditions
	Combine Simulation Scenarios in SimBiology
	Cartesian Combination
	Elementwise Combination

	Simulation and Analysis
	Model Simulation
	Derive ODEs from SimBiology Reactions
	Choosing a Simulation Solver
	SUNDIALS Solvers
	Stochastic Solvers
	When to Use Stochastic Solvers
	Model Prerequisites for Simulating with a Stochastic Solver
	What Happens During a Stochastic Simulation?
	Stochastic Simulation Algorithm (SSA)
	Explicit Tau-Leaping Algorithm
	Implicit Tau-Leaping Algorithm
	References

	Ensemble Runs of Stochastic Simulations
	Running Ensemble Simulations

	Configuring Simulation Settings
	Simulate the Yeast Heterotrimeric G Protein Cycle
	Sensitivity Analysis in SimBiology
	Sensitivity Analysis
	Global Sensitivity Analysis (GSA)
	Comparison of GSA Functions
	Local Sensitivity Analysis (LSA)

	Calculate Sensitivities Using sbiosimulate
	Perform a Parameter Scan
	Nonlinear Mixed-Effects Modeling
	What Is a Nonlinear Mixed-Effects Model?
	Nonlinear Mixed-Effects Modeling Workflow
	Specify a Covariate Model
	Specify an Error Model
	Maximum Likelihood Estimation
	Obtain the Fitting Status

	Nonlinear Regression
	What is Nonlinear Regression?
	Fitting Options in SimBiology
	Parameter Transformations
	Maximum Likelihood Estimation
	Fitting Workflow

	Supported Methods for Parameter Estimation in SimBiology
	Error Models
	Progress Plot
	Progress Plot for Nonlinear Mixed-Effects Methods
	Progress Plot for Nonlinear Regression Methods

	Fit One-Compartment Model to Individual PK Profile
	Estimate Category-Specific PK Parameters for Multiple Individuals
	Perform Hybrid Optimization Using sbiofit
	Fit Two-Compartment Model to PK Profiles of Multiple Individuals
	Estimate the Bioavailability of a Drug
	Accelerating Model Simulations and Analyses
	What Is Acceleration?
	When to Accelerate
	Prerequisites for Accelerating Simulations and Analyses
	Accelerate Simulations Programmatically
	Accelerate Simulations using SimBiology Model Analyzer
	Troubleshooting Accelerated Simulations

	Noncompartmental Analysis
	Data
	Dosing
	Calculating NCA Parameters

	Stochastic Simulation of Radioactive Decay
	Stochastic Simulation of the Lotka-Volterra Reactions
	Comparing SSA and Explicit Tau-Leaping Stochastic Solvers
	Deterministic Simulation of a Model Containing a Discontinuity
	Analysis of Stochastic Ensemble Data in SimBiology
	Deploy a SimBiology Model Using SimFunction
	Deploy a SimBiology Exported Model
	Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle
	Finding Conserved Quantities in a Pathway Model
	Model the Population Pharmacokinetics of Phenobarbital in Neonates
	Simulate the Glucose-Insulin Response
	Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics
	Fit PK Parameters Using SimBiology Problem-Based Workflow
	Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices
	Perform GSA by Computing Elementary Effects
	Perform Multiparametric Global Sensitivity Analysis (MPGSA)

	Pharmacokinetic Modeling
	Pharmacokinetic Modeling Functionality
	Overview
	How SimBiology Supports Pharmacokinetic Modeling
	Pharmacokinetic Modeling Examples
	Acknowledgements: Tobramycin Data Set

	Supported Files and Data Types
	Unit Conversion
	Create Data File with SimBiology Definitions
	Support for Importing NONMEM Formatted Files
	Supported Table Column Types in SimBiology Model Analyzer
	Support for Importing Multidimensional SimData to SimBiology Model Analyzer

	Import Tabular Data from Files
	Import Data from Text File
	Importing Data from NONMEM-Formatted Files
	Other Resources for Importing Data

	Create Pharmacokinetic Models
	Ways to Create or Import Pharmacokinetic Model
	How SimBiology Models Represent Pharmacokinetic Models
	Dosing Types
	Elimination Types
	Intercompartmental Clearance
	Unit Conversion for Imported Data
	Create a Pharmacokinetic Model Using the Command Line

	Creating Reaction Rates
	Define Reaction Rates with Mass Action Kinetics
	Definition of Mass Action Kinetics
	Zero-Order Reactions
	First-Order Reactions
	Second-Order Reactions
	Reversible Mass Action

	Define Reaction Rates with Enzyme Kinetics
	Simple Model for Single Substrate Catalyzed Reactions
	Enzyme Reactions with Differential Rate Equations
	Enzyme Reactions with Mass Action Kinetics
	Enzyme Reactions with Irreversible Henri-Michaelis-Menten Kinetics

	Models Used in Examples
	Minimal Cascade Model for a Mitotic Oscillator
	Goldbeter Model
	SimBiology Model with Rate Rules
	SimBiology Model with Reactions
	References

	Model of the Yeast Heterotrimeric G Protein Cycle
	Background on G Protein Cycles
	Modeling a G Protein Cycle
	References

	Model of M-Phase Control in Xenopus Oocyte Extracts
	M-Phase Control Model
	M-Phase Control Equations
	SimBiology Model with Rate and Algebraic Rules
	SimBiology Model with Reactions and Algebraic Rules
	References

