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Presentation Notes
Note: only slide 14, “architecture vision” is “HPE Internal and Partner use only”.
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— Introduction to CAEML
— Unique types of machine learning models for 10T and hardware system management

— Example small learning : proactive hardware failure prediction
— Example medium learning : 56G PAM SerDes performance optimization

— Example deep learning : Dynamic resources demand forecast
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The center’s goal is to enable fast, accurate design
and verification of microelectronic circuits and
systems by creating machine learning algorithms to
derive models used for electronic design
automation.

By speeding up the design and verification of
microelectronic circuits and systems, CAEML will
reduce development cost and time-to-market for
manufacturers of microelectronic products, and will
enable the development of optimized products, e.g.
for low-power, high-reliability or security.
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loT management model
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Edge inference
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3 Types of IOT and hardware management models

Feature size | Prediction Prediction | Machine Examples
(number of | throughput interval learning engine

variables or
complexity)

Big data Lessthan 100 Afew thousandsto Variable from Ensemble classifier = Hardware failure prediction

Small millions of days to ms Software failure prediction

learning predictions per sec Automatic application detection
Storage security applications
(ransomware detection)
System abnormally detection

Big data Between 100 A few hundred A few secs Generative Dynamic system performance
Medium to 500 predictions per performance optimization
learning secs surrogate model with

Bayesian learning

Big data 100sto 1000s  1000’s of 5-15 mins Deep Markovian High dimensional time series for
Deep predictions in an Models resource demand prediction
learning hours Deep learning neural

networks




Small learning example : |
proactive hardware failure detection
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Proactive hardware failure prediction

Trade off between detection rate and false positive
» Window N =5:

Detection rate
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Recommended MATLAB package : Statistics and Machine Learning Tool Box
—
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Causal inference for feature selection

Predict ¥, from (X k);zz for each feature X,

_wy,
Causal inference is used
to pick the sensor signals Prediction Windows —
and sample window SRR
30% features reduction
15% accuracy
improvement
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Performance limitation of GPU on ensemble classifier

Control Flow Problem in GPUs/SIMD

Relative inference time GPU uses SIMD
pipeline to save area
Number of samples Intel CPU CUDA-Tree on control logic. 1 1 1 1
2 Group scalar threads into
10k 1 22 Warps v 1 L 2B 1 1 1
20k 1 2 Branch divergence oy -
occurs when threads I 1]
50k 1 1.8 inside warps branch to
different execution 1 1 1 1 1 1 1 1
Higher is slower execution time paths.

; |
GPU is slower than Intel CPU ! Wilson Peng et al. UBC
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Medium learning example :
Surrogate models for system
performance optimization
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Discriminative system model

Configuration X

Performance 1

Configuration 2

Performance 2
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e Collect n samples of
system configurations
and observed
performance

 Build a model to predict
the performance
* Neural network

e Linear/non-linear
regression

e In the future, given a
configuration X, model
predict performance X



Generative system model
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* Collect n samples of system
configuration and performance

« Construct surrogate model and
use Bayesian learning to
construct additional
configurations and performance
measurement

 Keep iteration until target
uncertainty is hit

« Given a new target performance,
what is the optimal configuration
to achieve, usually tie in with a
cost function and optimize for the
lowest cost



Variation Explained (%)

Principal component analysis and surrogate models

25 controlling taps in the 56G PAM SerDes is Surrogate models based on
mapped into 4 principal component vectors that 5000+ measured samples
can cover 92% of solutions

5 6

3 4
Principal Component

Zhu et al, DesignCon 2019 0 1000 2000 3000 4000 5000

index

Recommended MATLAB package : Statistics and Machine Learning Toolbox
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Accelerated 56G PAM channel optimization using PCA

Best fitness function versus generation.

o (a) GA e (b) GA-PCA
g ; 10 5 X 10
45 45|
\ PCA based GA algorithm
c ’ £ converged with fewer generations,
¥ 35 @ 3.5 more quickly than the general GA
® | algorithm.
2.5 2.5
2 . : , 2 : . :
0 5 10 15 20 0 5 10 15 20
Generation Zhu et al. DesignCon 2019 Generation

Recommended MATLAB Package : Global Optimization Toolbox
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Deep learning example :
High dimension resource
demand forecast
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Time domain demand forecast o
Prediction

Window

| Observation period | l l
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Thank you
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