MATLAB

Automated Optical Inspection and Defect Detection with Deep Learning

Harshita Bhurat
Product Manager – Image Processing and Computer Vision

What is Automated Optical Inspection?

"Automated optical inspection is the **image-based** or **visual inspection** of manufacturing parts where a camera scans the device under test for both **failures** and **quality defects**"

Automated Defect Detection Machine Vision Visual Inspection Automated Inspection

Customer References

power with heart

Can you find the defective hex nut?

Finding Defective Hex Nuts

Good

Defective

Detecting Parts

Defect Detection Workflow

DATA PREPARATION

Simulation-based data generation

Model design and tuning

Hardwareaccelerated training

Model exchange across frameworks

Embedded Devices

Enterprise Systems

Edge, cloud, desktop

Iteration and Refinement

12

Defect Detection Workflow

DATA PREPARATION

Simulation-based data generation

Ground truth labeling

AI MODELING

Model design and tuning

Hardwareaccelerated training

Model exchange across frameworks

DEPLOYMENT

Embedded Devices

Enterprise Systems

Edge, cloud, desktop

Iteration and Refinement

Data Access and Preprocessing – Common Challenges

How do I access large data that might not fit in memory?

How do I preprocess data and get the right features?

How do I label my data faster?

What if I have an imbalanced dataset or don't have enough data?

Data Access and Preprocessing – Common Challenges

How do I access large data that might not fit in memory?

How do I load and access large amounts of data?

Datastores

Tall Arrays

Work with out-ofmemory numeric data

Train deep neural networks for numeric arrays

BigImage

Work with very large, tiled and multi-resolution images

Data Access and Preprocessing – Common Challenges

How do I preprocess data and get the right features?

Data Access and Preprocessing – Common Challenges

How do I preprocess data and get the right features?

Pre-processing Data – Registration Estimator App

Pre-processing Data – Image Segmenter App

Preprocessing Data - Apps

Color Thresholder

Image Region Analyzer

Pre-processing Data – Built-in Algorithms

imadjust

imgaborfilt

fibermetric

Defect detection using AlexNet: Results with preprocessing

Data Access and Preprocessing – Common Challenges

How do I label my data faster?

Data Preprocessing - Labeling

Image & Video Labeler

Image Labeler + Video labeler

Big-Image Labeler

Big Image Labeler

Image Labeler+ Video labeler

Big-Image Labeler

Data Access and Preprocessing – Common Challenges

What if I have an imbalanced dataset or don't have enough data?

Augmented Dataset

N times as much data

Data Augmentation: Generative Adversarial Networks (GANs)

Defect Detection Workflow

DATA PREPARATION

Simulation-based data generation

Model design and tuning

Hardwareaccelerated training

Model exchange across frameworks

Embedded Devices

Enterprise Systems

Edge, cloud, desktop

Iteration and Refinement

Deep Learning for Defect Detection

Deep learning for Classification

Defective

Deep Learning for Object Detection

Deep Learning for Defect Detection – Multiple techniques

Deep learning for Classification

Two Approaches for Deep Learning

1. Train a deep neural network from scratch

2. Fine-tune a pre-trained model (transfer learning)

Train a Deep Neural Network from Scratch

Two approaches for Deep learning

Approach 2. Fine-tune a pre-trained model (Transfer learning)

Fine-tune a Pre-trained Model (Transfer Learning)

Classification with Trained MobileNetV2

Challenges with Deep Learning Models

Explainable Al is required

- Class Activation Mapping (CAM)
- Grad-CAM

Class Activation Mapping to Investigate Network Predictions

Classified as "keyboard" due to the presence of the mouse

Incorrectly classified "coffee mug" as "buckle" due to the watch

Visualization of Features with CAM

Deep Learning for Defect Detection

Deep Learning for Object Detection

Detecting Objects with You Only Look Once (YOLO) v2

Build, test, and deploy a deep learning solution that can detect objects in images and video

Mask Detection with YOLO v2

Experiment Manager

Defect Detection Workflow

DATA PREPARATION

Simulation-based data generation

Ground truth labeling

AI MODELING

Model design and tuning

Hardwareaccelerated training

Model exchange across frameworks

DEPLOYMENT

Embedded Devices

Enterprise Systems

Edge, cloud, desktop

MATLAB EXPO

Iteration and Refinement

Deploy to Any Processor with Best-in-class Performance

Deploy to Hardware

Deploy defect detection algorithms from MATLAB to ZCU102 board from Xilinx

Deploy defect detection algorithms from MATLAB to Jetson AGX Xavier

Deploy to Hardware

Defect detection deployed on ARM Cortex-A microprocessor

Resources:

- Deploying Deep Neural Networks to GPUs and CPUs Using MATLAB Coder and GPU Coder
- Using GPU Coder to Prototype and Deploy on <u>NVIDIA Drive</u>, Jetson
- Real-Time Object Detection with YOLO v2 Using
 GPU Coder
- Image Classification on ARM CPU: SqueezeNet
 on Raspberry Pi
- Deep Learning on an Intel Processor with MKL-DNN

Deploy to Enterprise IT Infrastructure

Defect Detection Workflow

DATA PREPARATION

Simulation-based data generation

AI MODELING

Model design and tuning

Hardwareaccelerated training

Model exchange across frameworks

DEPLOYMENT

Embedded Devices

Enterprise Systems

Edge, cloud, desktop

Iteration and Refinement

Key Takeaways

Interactive and easy to use apps help explore, iterate and automate workflows

- Flexibility and options to choose networks and optimizations based on data and requirements
- MATLAB provides an easy and extensible framework for defect detection from data access to deployment

THANK YOU!

