Containing the Power of the Sun

The Path to Carbon Independence Through Nuclear Fusion


当jesús罗梅罗,主导科学家TAE Technologies, was a child, his father used to bring home a newspaper every Sunday. Inside was a little newspaper for kids that included puzzles. The puzzles were often mazes, where the goal was to help a cartoon animal find the right path through various “dangers” to reach the prize at the end. Romero quickly recognized that puzzles were easier to solve if you started at the end and worked your way backward. He tells this story as a buildup to describe a poster at the entrance of TAE in California. The poster features the company’s late technology co-founder, Norman Rostoker, in a cowboy hat, and a quote: “We started with the end in mind.”

融合能源没有空气污染,没有核崩溃的威胁,有零温室气体排放,并没有创造长期放射性废物。

The end that TAE has in mind is safe nuclear fusion power. Fusion power is a goal that many have been working toward for decades. But the timeline for achieving terrestrial fusion has largely depended on technology catching up with the science, which is now accelerating exponentially. Once achieved, fusion would provide cheap, green, nearly endless energy, and transform society.

现有的核电站使用裂变,分裂原子。在融合中,原子被迫加入。这是一个更难的任务,但释放更多的能量。包括阳光在内的星星,由核聚变提供动力。融合能源没有空气污染,没有核崩溃的威胁,有零温室气体排放,并没有创造长期放射性废物。

TAE揭开诺曼,其第五代融合装置,于2017年7月。图片信用:TAE

普遍的方法使两种类型的氢原子熔断:氘,其在核中具有一个质子和一个中子,氚,具有一个质子和两个中子。质子呈正电和互相排斥。融合需要足够的压力和热量,以便以高速碰撞。所需的热量,大约数亿摄氏度,is enough to melt anything that might contain the plasma—an ionized gas in which electrons and nuclei fly around independently. Strong magnetic fields are used to center the plasma inside reactors, away from the walls.

大多数氘氚反应器是环形的,几何术语用于甜甜圈形状。这些系统面临挑战,包括氘氚处理设施的需要,氚的可用性极限,以及超导体磁体的尺寸和成本。

The TAE team realized there was a different way. They began with the end in mind: What would a truly safe reactor look like? They concluded that the only answer was to use hydrogen-boron fusion. This reaction only gives off three helium nuclei, also called alpha particles—hence TAE’s original name, Tri Alpha Energy—and X-rays, which can be captured to generate electricity by heating metal panels to cause liquid CO2蒸发并驱动涡轮机。

碰撞课程

Rostoker是加利福尼亚大学欧文的物理教授;他的学生Michl Binderbauer;并且每个人参与公司早期开始解决20世纪90年代初的问题,成立于1998年。Binderbauer现在是公司的首席执行官。TAE已申请或获得超过1,400项的专利,并在风险投资中获得超过7.5亿美元。他们经营了超过10万台实验,现在雇用了来自30多个国家的200多人。他们目前正在第五代实验反应堆上,后期罗斯特克后期被命名诺曼。

TAE的融合平台是一种现场反转的配置(FRC),由圆形磁铁包围的直线20米长的管。气体从每一端高速发射。TAE计划最终使用氢和硼的混合物,但直到它们达到足够的温度,它们是使用氢和氘。

The streams collide and merge and start rotating. A set of eight accelerator beams outside the central chamber shoot neutral particles—deuterium—at the plasma, which heats it up and keeps it spinning. When the plasma spins, it creates its own magnetic field, helping to keep it contained.

当两个粒子互相飞过时,他们击中头部和融合的可能性非常薄。这就是反应堆使等离子体含有和循环的原因。“它给出了颗粒更大的碰撞概率,”罗杰罗说。问题是等离子体是不稳定的并且想要弥漫。

A detailed rendering of field-reversed configuration. Image credit: TAE

Field Work

保持反应需要恒定的测量和调整。腔室包围超过300多个磁传感器,用于推断内部等离子体的形状和位置。具有自定义现场可编程门阵列(FPGA)的计算机连续收集数据并使用它来控制磁体,然后塑造等离子体。整个检测反应循环需要发生在10微秒内,或者秒为10百万分钟。

Norman采用七个基于FPGA的模块进行传感和控制。四个采集模块从传感器接收输入并将信息冷凝到20个数字,该数字描述了它们发送到通信模块的等离子体的当前状态。然后,将信息发送到两个控制模块,该模块决定如何调整到等离子体状态并将其信号传递到磁体上。FPGA全部与MATLAB编程®and Simulink®.

测量每个等离子体颗粒是不可能的,因此系统在“状态空间”中找到了等离子体的位置,描述了使用一小组变量。它基本上是血浆的抽象模型。一部分采集系统的工作是使用数百个磁传感器的输入来找到20维状态空间中的等离子体位置。为了表明它可以在分配的时间内完成,要求MathWorks为FPGA设计一个收集算法,该算法将在10微秒内将1000个数字乘以1000个数字。

“我一直在设计FPGA超过三十年,并让他们跑得那么快,这是一个挑战,”MathWorks的技术顾问Jonathan Young说。

Because FPGAs have parallel circuitry, programmers need to orchestrate the timing of calculations so that each step receives all its inputs in time. Young used Simulink to visually move blocks of logic around, connect them with virtual wires, and observe their timing. It’s like designing a city grid to reduce traffic. MATLAB then translates the algorithm into code used to configure the FPGA.

“我们基本上在我们走了时写了关于FRC控制的书。”

Jesús Romero, lead scientist at TAE Technologies

经常修改反应堆的能力使TAE能够快速运行调整并快速纳入新的想法。图像信用:TAE

In the end, the math got down to 3 microseconds. “The amazing part was just to get that many calculations done that fast,” Young says. “TAE needed the calculations to complete in less than 10 microseconds, and we were able to beat that goal.”

The acquisition and control modules were designed bySpeedgoatusing Xilinx®FPGA。“我们从未有过这样的巨大设置,”Speedgoat的FPGA Technologies负责人Patrick Herzig说。ordan使用七个模块,典型项目使用一个。并且TAE希望包括来自磁传感器的多于磁传感器的诊断信号。

Romero说,“我们正在扩展触手来控制越来越多的东西,例如等离子密度。我们基本上在我们走了时基本上写了关于FRC控制的书。“

The End Is Green

TAE正在稳步发展。尽管对超高温等离子体的物理挑战,但FRCS的一个优点是它们比古典环形反应器机械地更简单。Romero回忆起邀请访客在其中一个融合设备建造并向他们展示一个空房间之前。“在这里我们将建立这一点,在几年内,我们会准备好一切,”他回忆起来。“他们的反应是”没办法“。我们一年后给他们带回来了,我们已经跑了并跑了,这是令他们兴奋的。”

TAE的最先进的控制室。图像信用:TAE

TAE has now demonstrated that they can actively control the plasma. They’ve also demonstrated that the experiments scale well—as they add more power, the temperature doesn’t plateau. The hardest questions about what’s possible have been answered. Rather than scaling up, only to find that the underlying ideas don’t work, “We believe in what we call ‘fail-first,’ ” Romero says. “It doesn’t make sense to delay the showstopper until the end.”

TAE的下一个融合设备,哥白尼目前正在开发中。它是一个旨在在约1亿摄氏度的电抗器规模平台,涉及氘氚融合所需的相同温度(但是,哥白尼不会被氚燃料)。然后,TAE计划构建一个名为Da Vinci的最终原型,以证明氢硼燃料循环的净能量增益,这意味着反应可以产生更多的能量而不是将其放入其中。

“我们在为非碳经济过渡提供全面的解决方案。”

Jesús Romero, lead scientist at TAE Technologies

运行一个简短实验所需的力量超过商业办公空间,因此TAE必须成为电源管理的专家,策略性地存储和部署电力。他们现在正在谈论以商业化这些创新。他们记住的结束是超出了融合功率反应堆。

“我们不仅仅是在发电的业务中,”罗杰罗说。“我们正在为向非碳经济转型提供全面的解决方案。如果您提供所有电力并不重要。如果你仍然有基于汽油的汽车,那么你就没有解决问题。“

AI

Reconnecting the Brain After Paralysis Using Machine Learning

大脑电脑接口用触觉信号恢复触摸感

面板导航

生物技术

强化推动​​呼吸器为Covid-19大流行

为英国呼吸机挑战创造了47天的新设计

面板导航

Academia / AI

做出更好的Beer and Wine with Data and Machine Learning

GPS-Wearing Dogs, an Electronic Nose, and a Robot That Pours the Perfect Beer