Main Content

Fully Independent Conditional Approximation for GPR Models

完全能自食其力ent conditional (FIC) approximation[1]is a way of systematically approximating the true GPR kernel function in a way that avoids thepredictive variance problem of the SR approximationwhile still maintaining a valid Gaussian process. You can specify the FIC method for parameter estimation by using the'FitMethod','fic'name-value pair argument in the call tofitrgp. For prediction using FIC, you can use the'PredictMethod','fic'name-value pair argument in the call tofitrgp.

Approximating the Kernel Function

The FIC approximation to k ( x i , x j | θ ) for active set A N = { 1 , 2 , ... , n } is given by:

k ^ F I C ( x i , x j | θ , A ) = k ^ S R ( x i , x j | θ , A ) + δ i j ( k ( x i , x j | θ ) k ^ S R ( x i , x j | θ , A ) ) , δ i j = { 1 , if i = j , 0 if i j .

That is, the FIC approximation is equal to the SR approximation if i j . For i = j ,software uses the exact kernel value rather than an approximation. Define ann-by-ndiagonal matrix Ω ( X | θ , A ) as follows:

[ Ω ( X | θ , A ) ] i j = δ i j ( k ( x i , x j | θ ) k ^ S R ( x i , x j | θ , A ) ) = { k ( x i , x j | θ ) k ^ S R ( x i , x j | θ , A ) if i = j , 0 if i j .

The FIC approximation to K ( X , X | θ ) is then given by:

K ^ F I C ( X , X | θ , A ) = K ^ S R ( X , X | θ , A ) + Ω ( X | θ , A ) = K ( X , X A | θ ) K ( X A , X A | θ ) 1 K ( X A , X | θ ) + Ω ( X | θ , A ) .

Parameter Estimation

Replacing K ( X , X | θ ) by K ^ F I C ( X , X | θ , A ) in the marginal log likelihood function produces its FIC approximation:

log P F I C ( y | X , β , θ , σ 2 , A ) = 1 2 ( y H β ) T [ K ^ F I C ( X , X | θ , A ) + σ 2 I n ] 1 ( y H β ) N 2 log 2 π 1 2 log | K ^ F I C ( X , X | θ , A ) + σ 2 I n | .

As in the确切的方法,software estimates the parameters by first computing β ^ ( θ , σ 2 ) ,optimal estimate of β , given θ and σ 2 . Then it estimates θ , and σ 2 using the β -profiled marginal log likelihood. The FIC estimate to β for given θ , and σ 2 is

β ^ F I C ( θ , σ 2 , A ) = [ H T ( K ^ F I C ( X , X | θ , A ) + σ 2 I N ) 1 H * ] 1 H T ( K ^ F I C ( X , X | θ , A ) + σ 2 I N ) 1 y * * ,

* = H T Λ ( θ , σ 2 , A ) 1 H H T Λ ( θ , σ 2 , A ) 1 K ( X , X A | θ ) B A 1 K ( X A , X | θ ) Λ ( θ , σ 2 , A ) 1 H , * * = H T Λ ( θ , σ 2 , A ) 1 y H T Λ ( θ , σ 2 , A ) 1 K ( X , X A | θ ) B A 1 K ( X A , X | θ ) Λ ( θ , σ 2 , A ) 1 y , B A = K ( X A , X A | θ ) + K ( X A , X | θ ) Λ ( θ , σ 2 , A ) 1 K ( X , X A | θ ) , Λ ( θ , σ 2 , A ) = Ω ( X | θ , A ) + σ 2 I n .

Using β ^ F I C ( θ , σ 2 , A ) , β -profiled marginal log likelihood for FIC approximation is:

log P F I C ( y | X , β ^ F I C ( θ , σ 2 , A ) , θ , σ 2 , A ) = 1 2 ( y H β ^ F I C ( θ , σ 2 , A ) ) T ( K ^ F I C ( X , X | θ , A ) + σ 2 I N ) 1 ( y H β ^ F I C ( θ , σ 2 , A ) ) N 2 log 2 π 1 2 log | K ^ F I C ( X , X | θ , A ) + σ 2 I N | ,

where

( K ^ F I C ( X , X | θ , A ) + σ 2 I N ) 1 = Λ ( θ , σ 2 , A ) 1 Λ ( θ , σ 2 , A ) 1 K ( X , X A | θ ) B A 1 K ( X A , X | θ ) Λ ( θ , σ 2 , A ) 1 , log | K ^ F I C ( X , X | θ , A ) + σ 2 I N | = log | Λ ( θ , σ 2 , A ) | + log | B A | log | K ( X A , X A | θ ) | .

Prediction

The FIC approximation to the distribution of y n e w given y , X , x n e w is

P ( y n e w | y , X , x n e w ) = N ( y n e w | h ( x n e w ) T β + μ F I C , σ n e w 2 + Σ F I C ) ,

where μ F I C and Σ F I C are the FIC approximations to μ and Σ given inprediction using exact GPR method. As in the SR case, μ F I C and Σ F I C are obtained by replacing all occurrences of the true kernel with its FIC approximation. The final forms of μ F I C and Σ F I C are as follows:

μ F I C = K ( x n e w T , X A | θ ) B A 1 K ( X A , X | θ ) Λ ( θ , σ 2 , A ) 1 ( y H β ) ,

Σ F I C = k ( x n e w , x n e w | θ ) K ( x n e w T , X A | θ ) K ( X A , X A | θ ) 1 K ( X A , x n e w T | θ ) + K ( x n e w T , X A | θ ) B A 1 K ( X A , x n e w T | θ ) ,

where

B A = K ( X A , X A | θ ) + K ( X A , X | θ ) Λ ( θ , σ 2 , A ) 1 K ( X , X A | θ ) , Λ ( θ , σ 2 , A ) = Ω ( X | θ , A ) + σ 2 I n .

References

[1] Candela, J. Q. "A Unifying View of Sparse Approximate Gaussian Process Regression."Journal of Machine Learning Research.Vol 6, pp. 1939–1959, 2005.

See Also

|

Related Topics