主要内容

基于GPU编码器的车道检测优化

这个例子展示了如何从一个深度学习网络生成CUDA®代码,用a表示SeriesNetwork对象。在本例中,序列网络是一个卷积神经网络,可以从图像中检测和输出车道标记的边界。

先决条件

  • CUDA支持NVIDIA®GPU。

  • NVIDIA CUDA工具包和驱动程序。

  • 英伟达cuDNN图书馆。

  • 用于视频读取和图像显示操作的OpenCV库。

  • 编译器和库的环境变量。有关编译器和库支持的版本的信息,请参见金宝app第三方硬件.有关设置环境变量,请参见设置前提产品下载188bet金宝搏

验证GPU环境

使用coder.checkGpuInstall函数来验证运行此示例所需的编译器和库是否正确设置。

envCfg = coder.gpuEnvConfig (“主机”);envCfg。DeepLibTarget =“cudnn”;envCfg。DeepCodegen = 1;envCfg。安静= 1;coder.checkGpuInstall (envCfg);

得到Pretrained SeriesNetwork

[laneNet, coeffMeans, coeffStds] = getLaneDetectionNetworkGPU();

该网络以图像为输入输出两个车道边界,分别对应自我车辆的左右车道。每条车道边界用抛物方程表示:$ y = ax ^ 2 + bx + c $,其中y为横向偏移量,x为到车辆的纵向距离。网络输出每个车道的三个参数a、b和c。网络架构类似于AlexNet除了最后几层被一个更小的完全连接层和回归输出层所取代。

laneNet。层
ans = 23×1 Layer array with layers:1的数据图像输入227×227×3图片2的zerocenter正常化conv1卷积96年11×11×3旋转步[4 4]和填充[0 0 0 0]3‘relu1 ReLU ReLU 4 norm1的横通道正常化横通道正常化与5频道/元素5“pool1”马克斯池3×3马克斯池步(2 - 2)和填充[0 0 0 0]6conv2卷积256 5×5×48步[1]和填充的卷积[2 2 2 2]7‘relu2 ReLU ReLU 8“norm2”横通道正常化横通道规范化5频道每个元素9“pool2”马克斯池3×3马克斯池步(2 - 2)和填充[0 0 0 0]10 conv3卷积384 3×3×256[1]和隆起与进步填充[1 1 1 1]11的relu3 ReLU ReLU 12 conv4卷积384 3×3×192旋转步[1]和填充[1 1 1 1]13的relu4 ReLU ReLU 14 conv5卷积256 3×3×192旋转步[1]和填充[1 1 1 1]15 ' relu5 ReLU ReLU 16“pool5”马克斯池3×3马克斯池步(2 - 2)和填充[0 0 0 0]17 fc6完全Connected 4096 fully connected layer 18 'relu6' ReLU ReLU 19 'drop6' Dropout 50% dropout 20 'fcLane1' Fully Connected 16 fully connected layer 21 'fcLane1Relu' ReLU ReLU 22 'fcLane2' Fully Connected 6 fully connected layer 23 'output' Regression Output mean-squared-error with 'leftLane_a', 'leftLane_b', and 4 other responses

检查主要入口点功能

类型检测_lane.m.
从网络输出中,计算%图像坐标中左右车道点。摄像机坐标由caltech % mono摄像机模型描述。一个持久对象mynet被用来加载序列网络对象。第一次调用这个函数时,将构造持久对象并设置。当该函数随后被调用时,相同的对象被重用%以调用预测输入,从而避免重新构造和重新加载%网络对象。持久lanenet;如果是空的(lanenet) lanenet = code . loaddeeplearningnetwork (' lanenet . loaddeeplearningnetwork ')席”、“lanenet”);end lanecoeffsNetworkOutput = lanenet。Predict (permute(frame, [2 1 3]));params = lanecoeffsNetworkOutput .* lanecoeffstd + laneCoeffMeans;isRightLaneFound = abs(params(6)) > 0.5; %c should be more than 0.5 for it to be a right lane isLeftLaneFound = abs(params(3)) > 0.5; vehicleXPoints = 3:30; %meters, ahead of the sensor ltPts = coder.nullcopy(zeros(28,2,'single')); rtPts = coder.nullcopy(zeros(28,2,'single')); if isRightLaneFound && isLeftLaneFound rtBoundary = params(4:6); rt_y = computeBoundaryModel(rtBoundary, vehicleXPoints); ltBoundary = params(1:3); lt_y = computeBoundaryModel(ltBoundary, vehicleXPoints); % Visualize lane boundaries of the ego vehicle tform = get_tformToImage; % map vehicle to image coordinates ltPts = tform.transformPointsInverse([vehicleXPoints', lt_y']); rtPts = tform.transformPointsInverse([vehicleXPoints', rt_y']); laneFound = true; else laneFound = false; end end function yWorld = computeBoundaryModel(model, xWorld) yWorld = polyval(model, xWorld); end function tform = get_tformToImage % Compute extrinsics based on camera setup yaw = 0; pitch = 14; % pitch of the camera in degrees roll = 0; translation = translationVector(yaw, pitch, roll); rotation = rotationMatrix(yaw, pitch, roll); % Construct a camera matrix focalLength = [309.4362, 344.2161]; principalPoint = [318.9034, 257.5352]; Skew = 0; camMatrix = [rotation; translation] * intrinsicMatrix(focalLength, ... Skew, principalPoint); % Turn camMatrix into 2-D homography tform2D = [camMatrix(1,:); camMatrix(2,:); camMatrix(4,:)]; % drop Z tform = projective2d(tform2D); tform = tform.invert(); end function translation = translationVector(yaw, pitch, roll) SensorLocation = [0 0]; Height = 2.1798; % mounting height in meters from the ground rotationMatrix = (... rotZ(yaw)*... % last rotation rotX(90-pitch)*... rotZ(roll)... % first rotation ); % Adjust for the SensorLocation by adding a translation sl = SensorLocation; translationInWorldUnits = [sl(2), sl(1), Height]; translation = translationInWorldUnits*rotationMatrix; end %------------------------------------------------------------------ % Rotation around X-axis function R = rotX(a) a = deg2rad(a); R = [... 1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]; end %------------------------------------------------------------------ % Rotation around Y-axis function R = rotY(a) a = deg2rad(a); R = [... cos(a) 0 sin(a); 0 1 0; -sin(a) 0 cos(a)]; end %------------------------------------------------------------------ % Rotation around Z-axis function R = rotZ(a) a = deg2rad(a); R = [... cos(a) -sin(a) 0; sin(a) cos(a) 0; 0 0 1]; end %------------------------------------------------------------------ % Given the Yaw, Pitch, and Roll, determine the appropriate Euler % angles and the sequence in which they are applied to % align the camera's coordinate system with the vehicle coordinate % system. The resulting matrix is a Rotation matrix that together % with the Translation vector defines the extrinsic parameters of the camera. function rotation = rotationMatrix(yaw, pitch, roll) rotation = (... rotY(180)*... % last rotation: point Z up rotZ(-90)*... % X-Y swap rotZ(yaw)*... % point the camera forward rotX(90-pitch)*... % "un-pitch" rotZ(roll)... % 1st rotation: "un-roll" ); end function intrinsicMat = intrinsicMatrix(FocalLength, Skew, PrincipalPoint) intrinsicMat = ... [FocalLength(1) , 0 , 0; ... Skew , FocalLength(2) , 0; ... PrincipalPoint(1), PrincipalPoint(2), 1]; end

生成网络代码和后处理代码

网络计算参数a, b和c,这些参数描述了左右车道边界的抛物线方程。

根据这些参数,计算车道位置对应的x和y坐标。坐标必须映射到图像坐标。这个函数检测_lane.m.执行所有这些计算。为图形处理器创建图形处理器代码配置对象,为该函数生成CUDA代码“自由”将目标语言设置为c++。使用编码器。DeepLearningConfig函数创建CuDNN的深度学习配置对象,并将其分配给DeepLearningConfig图形处理器代码配置对象的属性。运行codegen命令。

cfg = coder.gpuConfig (“自由”);cfg。DeepLearningConfig =编码器。DeepLearningConfig (“cudnn”);cfg。GenerateReport = true;cfg。TargetLang =“c++”;codegenarg游戏{ONE(227,227,3,'单'),一个(1,6,'双'),一个(1,6,'双')}配置cfgdetect_lane
代码生成成功:要查看报告,打开('codegen/lib/detect_lane/html/report.mldatx')。

生成的代码描述

这个系列网络是作为一个包含23个层类数组的c++类生成的。

c_lanenet公众:int32_TbatchSize;int32_TnumLayers;real32_T* inputData;real32_T * outputData;MWCNNLayer*层[23];公众:c_lanenet(无效);无效设置(空白);无效预测(空白);无效的清理(无效);~ c_lanenet(无效);};

设置()方法为每个层对象建立句柄并分配内存。的预测()方法对网络中的23层中的每一层调用预测。

cnn_lanenet_conv*_w和cnn_lanenet_conv*_b文件是网络中卷积层的二进制权值和偏置文件。cnn_lanenet_fc*_w和cnn_lanenet_fc*_b文件是网络中全连接层的二进制权值和偏置文件。

codegendir = fullfile (“codegen”“自由”“detect_lane”);dir (codegendir)
.cnn_lanenet0_0_conv4_w.bin . .cnn_lanenet0_0_conv5_b.bin .gitignorecnn_lanenet0_0_data_offset.bin DeepLearningNetwork.h cnn_lanenet0_0_data_scale.bin DeepLearningNetwork.ho cnn_lanenet0_0_fc6_b.bin MWCNNLayerImpl。cu cnn_lanenet0_0_fc6_w.bin MWCNNLayerImpl.hpp cnn_lanenet0_0_fclone1_b .bino cnn_lanenet0_0_fcLane1_w.bin MWCudaDimUtility。cu cnn_lanenet0_0_fclanne2_b .bin MWCudaDimUtility.hpp cnn_lanenet0_0_fclanne2_w .bin MWCustomLayerForCuDNN.cpp cnn_lanenet0_0_responsennames .txt MWCustomLayerForCuDNN.hpp codeInfo. txt MWCustomLayerForCuDNN.hpp垫MWCustomLayerForCuDNN。o codedescriptor。dmr MWElementwiseAffineLayer.cpp compileInfo。mat MWElementwiseAffineLayer.hpp definitions .txt MWElementwiseAffineLayer。o detect_lane。MWElementwiseAffineLayerImpl。铜detect_lane。hpp detect_lane.h MWElementwiseAffineLayerImpl. cu MWElementwiseAffineLayerImpl. cuo detect_lane。o MWElementwiseAffineLayerImplKernel.cu detect_lane_data.cu MWElementwiseAffineLayerImplKernel.o detect_lane_data.h MWFusedConvReLULayer.cpp detect_lane_data.o MWFusedConvReLULayer.hpp detect_lane_initialize.cu MWFusedConvReLULayer.o detect_lane_initialize.h MWFusedConvReLULayerImpl.cu detect_lane_initialize.o MWFusedConvReLULayerImpl.hpp detect_lane_ref.rsp MWFusedConvReLULayerImpl.o detect_lane_rtw.mk MWKernelHeaders.hpp detect_lane_terminate.cu MWTargetNetworkImpl.cu detect_lane_terminate.h MWTargetNetworkImpl.hpp detect_lane_terminate.o MWTargetNetworkImpl.o detect_lane_types.h buildInfo.mat examples cnn_api.cpp gpu_codegen_info.mat cnn_api.hpp html cnn_api.o interface cnn_lanenet0_0_conv1_b.bin mean.bin cnn_lanenet0_0_conv1_w.bin predict.cu cnn_lanenet0_0_conv2_b.bin predict.h cnn_lanenet0_0_conv2_w.bin predict.o cnn_lanenet0_0_conv3_b.bin rtw_proj.tmw cnn_lanenet0_0_conv3_w.bin rtwtypes.h cnn_lanenet0_0_conv4_b.bin

为后期处理输出生成附加文件

从经过培训的网络中导出平均值和标准值,以便在执行过程中使用。

codegendir = fullfile (pwd,“codegen”“自由”“detect_lane”);fid = fopen (fullfile (codegendir“mean.bin”),' w ');A = [coeffMeans coeffstd];写入文件(fid,,“双”);文件关闭(fid);

主文件

使用主文件编译网络代码。主文件使用OpenCVVideoCapture方法从输入的视频中读取帧。每一帧都被处理和分类,直到没有更多的帧被读取。在显示每一帧的输出之前,输出将使用detect_lane函数中生成detect_lane.cu

类型main_lanenet.cu
/ *版权所有2016 MathWorks,Inc. * / #include  #include  #include  #include  #include #include  #include  #include  #include  #include  #include“detect_lane.h”使用命名空间简历;void ReadData(Float *输入,Mat&Orig,Mat&IM){尺寸尺寸(227,227);调整大小(orig,Im,size,0,0,Inter_linear);for(int j = 0; j <227 * 227; j ++){// bgr到rgb输入[2 * 227 * 227 + j] =(float)(im.data [j * 3 + 0]);输入[1 * 227 * 227 + j] =(浮动)(im.data [j * 3 + 1]);输入[0 * 227 * 227 + j] =(浮动)(im.data [j * 3 + 2]);void addlane(float pts [28] [2],mat&im,nampts){std :: vector  iArirray;for(int k = 0; k > orig; if (orig.empty()) break; readData(inputBuffer, orig, im); writeData(inputBuffer, orig, 6, means, stds); cudaEventRecord(stop); cudaEventSynchronize(stop); char strbuf[50]; float milliseconds = -1.0; cudaEventElapsedTime(&milliseconds, start, stop); fps = fps*.9+1000.0/milliseconds*.1; sprintf (strbuf, "%.2f FPS", fps); putText(orig, strbuf, Point(200,30), FONT_HERSHEY_DUPLEX, 1, CV_RGB(0,0,0), 2); imshow("Lane detection demo", orig); if( waitKey(50)%256 == 27 ) break; // stop capturing by pressing ESC */ } destroyWindow("Lane detection demo"); free(inputBuffer); free(outputBuffer); return 0; }

下载示例视频

如果~ (”。/ caltech_cordova1.avi '“文件”) url =“//www.tatmou.com/金宝appsupportfiles/gpucoder/media/caltech_cordova1.avi”;websave (“caltech_cordova1.avi”url);结束

构建可执行

如果ispc setenv (“MATLAB_ROOT”, matlabroot);vcvarsall = mex.getCompilerConfigurations (“c++”) .Details.CommandLineShell;setenv (“VCVARSALL”, vcvarsall);系统(“make_win_lane_detection.bat”);cd (codegendir);系统(“lanenet.exe  ..\..\..\ caltech_cordova1.avi”);其他的setenv (“MATLAB_ROOT”, matlabroot);系统(“让- f Makefile_lane_detection.mk”);cd (codegendir);系统('./ lanenet  ../../../ caltech_cordova1.avi”);结束

输入截图

输出屏幕截图

也可以看看

功能

对象

相关的话题