主要内容

有限元方法基础

The core Partial Differential Equation Toolbox™ algorithm uses the Finite Element Method (FEM) for problems defined on bounded domains in 2-D or 3-D space. In most cases, elementary functions cannot express the solutions of even simple PDEs on complicated geometries. The finite element method describes a complicated geometry as a collection of subdomains by generating a mesh on the geometry. For example, you can approximate the computational domain Ω with a union of triangles (2-D geometry) or tetrahedra (3-D geometry). The subdomains form a mesh, and each vertex is called a node. The next step is to approximate the original PDE problem on each subdomain by using simpler equations.

For example, consider the basic elliptic equation.

( c u ) + a u = f 上domain ω.

Suppose that this equation is a subject to the Dirichlet boundary condition u = r ω. D 和Neumann boundary conditions on ω. N 。这里, ω. = ω. D ω. N is the boundary of Ω.

The first step in FEM is to convert the original differential (strong) form of the PDE into an integral () form by multiplying with test function v 和integrating over the domain Ω.

ω. ( · ( c u ) + a u f ) v d ω. = 0 v

测试函数选自在边界的Dirichlet部分上消失的功能集合(功能空间), v = 0 ω. D 。以上方程可以你ght of as weighted averaging of the residue using all possible weighting functions v 。允许解决方案的功能集合,金宝搏官方网站u, of the weak form of PDE are chosen so that they satisfy the Dirichlet BC,u=r ω. D

按零件(绿色配方)集成二阶项结果:

ω. ( c u v + a u v ) d ω. ω. N n · ( c u ) v d ω. N + ω. D n · ( c u ) v d ω. D = ω. f v d ω. v

Use the Neumann boundary condition to substitute for second term on the left side of the equation. Also, note that v = 0 ω. D nullifies the third term. The resulting equation is:

ω. ( c u v + a u v ) d ω. + ω. N q u v d ω. N = ω. N g v d ω. N + ω. f v d ω. v

Note that all manipulations up to this stage are performed on continuum Ω, the global domain of the problem. Therefore, the collection of admissible functions and trial functions span infinite-dimensional functional spaces. Next step is to discretize the weak form by subdividing Ω into smaller subdomains or elements ω. e , where ω. = ω. e 。该步骤相当于PDE弱形式的投影到有限维子空间上。使用符号 u h v h to represent the finite-dimensional equivalent of admissible and trial functions defined on ω. e ,您可以将PDE的离散弱形式写为:

ω. e ( c u h v h + a u h v h ) d ω. e + ω. N e q u h v h d ω. N e = ω. N e g v h d ω. N e + ω. e f v h d ω. e v h

接下来,让我们φ.i, withi= 1,2,......,Np, be the piecewise polynomial basis functions for the subspace containing the collections u h v h 然后是任何特定的 u h 可以表示为基础函数的线性组合:

u h = 1 N p U i φ. i

HereUiare yet undetermined scalar coefficients. Substituting u h 进入离散化的PDE弱形式,并使用每个 v h = φ. i as test functions and performing integration over element yields a system ofNpequations in terms ofNpunknownsUi

Note that finite element method approximates a solution by minimizing the associated error function. The minimizing process automatically finds the linear combination of basis functions which is closest to the solutionu

FEM产生一个系统ku.=Fwhere the matrixK和the right sideFcontain integrals in terms of the test functionsφ.i,φ.j,以及系数c,a,f,q,和g定义问题。解决方案矢量U包含扩展系数uh, which are also the values ofuh在每个节点xk(k= 1,2 for a 2-D problem ork= 1,2,3为3d问题)uh(xk) =Ui

FEM技术也用于解决更多的普遍问题,例如:

  • Time-dependent problems. The solutionu(x,t) of the equation

    d u t ( c u ) + a u = f

    可以近似

    u h ( x , t ) = i = 1 N U i ( t ) φ. i ( x )

    The result is a system of ordinary differential equations (ODEs)

    M d U d t + K U = F

    Two time derivatives result in a second-order ODE

    M d 2 U d t 2 + K U = F

  • Eigenvalue problems. Solve

    ( c u ) + a u = λ. d u

    for the unknownsuλ., whereλ.is a complex number. Using the FEM discretization, you solve the algebraic eigenvalue problemku.=λ.找到uh作为近似u。To solve eigenvalue problems, usesolvepdeeig

  • 非线性问题。如果是系数c,a,f,q, orgare functions ofuor ∇u, the PDE is called nonlinear and FEM yields a nonlinear systemK(U)U=F(U)

总结一下,有限元方法:

  1. Represents the original domain of the problem as a collection of elements.

  2. 对于每个元素,通过局部近似于原始方程的一组简单方程来替换原始PDE问题。为每个元素的边界应用边界条件。对于系数不依赖于解决方案或其梯度的静止线性问题,结果是方程的线性系统。对于系数取决于解决方案或其梯度的静止问题,结果是非线性方程的系统。对于时间依赖的问题,结果是一组ODES。

  3. 将生成的方程和边界条件组装到模拟整个问题的全局方程式系统中。

  4. 解决了使用线性溶剂或数值积分的代数方程或杂物的所得系统。工具箱内部呼叫合适的MATLAB®solvers for this task.

参考资料

[1]库克,罗伯特D.,David S. Malkus和Michael E. Plesha。有限元分析的概念和应用。3rd edition. New York, NY: John Wiley & Sons, 1989.

[2]吉尔伯特斯特朗和乔治修理。有限元法分析。第2版​​。Wellesley,Ma:Wellesley-Cambridge Press,2008年。

See Also

||