Main Content

贝斯ly

Bessel function of the second kind for symbolic expressions

Description

example

贝斯ly(nu,z)returns theBessel function of the second kind,Yν(z).

Examples

Find Bessel Function of Second Kind

Compute the Bessel functions of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

[bessely(0, 5), bessely(-1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2*i)]
ans = -0.3085 + 0.0000i 0.1070 + 0.0000i 0.2358 + 0.0000i -0.4706 + 1.5873i

Compute the Bessel functions of the second kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers,贝斯lyreturns unresolved symbolic calls.

(贝斯(信谊(0),5),贝斯(信谊(1),2),…贝斯ly(1/3, sym(7/4)), bessely(sym(1), 3/2 + 2*i)]
ans = [ bessely(0, 5), -bessely(1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2i)]

For symbolic variables and expressions,贝斯lyalso returns unresolved symbolic calls:

syms x y [bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]
ans = [ bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]

Solve Bessel Differential Equation for Bessel Functions

Solve this second-order differential equation. The solutions are the Bessel functions of the first and the second kind.

syms nu w(z) dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)
ans = C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the second kind is a valid solution of the Bessel differential equation:

syms nu z isAlways(z^2*diff(bessely(nu, z), z, 2) + z*diff(bessely(nu, z), z)... + (z^2 - nu^2)*bessely(nu, z) == 0)
ans = logical 1

Special Values of Bessel Function of Second Kind

If the first parameter is an odd integer multiplied by 1/2,贝斯lyrewrites the Bessel functions in terms of elementary functions:

syms x bessely(1/2, x)
ans = -(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))
贝斯ly(-1/2, x)
ans = (2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))
贝斯ly(-3/2, x)
ans = (2^(1/2)*(cos(x) - sin(x)/x))/(x^(1/2)*pi^(1/2))
贝斯ly(5/2, x)
ans = -(2^(1/2)*((3*sin(x))/x + cos(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))

Differentiate Bessel Functions of Second Kind

Differentiate the expressions involving the Bessel functions of the second kind:

syms x y diff(bessely(1, x)) diff(diff(bessely(0, x^2 + x*y -y^2), x), y)
ans = bessely(0, x) - bessely(1, x)/x ans = - bessely(1, x^2 + x*y - y^2) -... (2*x + y)*(bessely(0, x^2 + x*y - y^2)*(x - 2*y) -... (bessely(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Find Bessel Function for Matrix Input

Call贝斯lyfor the matrixAand the value 1/2. The result is a matrix of the Bessel functions贝斯ly(1/2, A(i,j)).

syms x A = [-1, pi; x, 0]; bessely(1/2, A)
ans = [ (2^(1/2)*cos(1)*1i)/pi^(1/2), 2^(1/2)/pi] [ -(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2)), Inf]

Plot Bessel Functions of Second Kind

Plot the Bessel functions of the second kind for v = 0 , 1 , 2 , 3 .

symsxyfplot(bessely(0:3,x)) axis([0 10 -1 0.6]) gridonylabel('Y_v(x)') legend('Y_0','Y_1','Y_2','Y_3','Location','Best') title('Bessel functions of the second kind')

Figure contains an axes object. The axes object with title Bessel functions of the second kind contains 4 objects of type functionline. These objects represent Y_0, Y_1, Y_2, Y_3.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Ifnuis a vector or matrix,贝斯lyreturns the Bessel function of the second kind for each element ofnu.

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Ifzis a vector or matrix,贝斯lyreturns the Bessel function of the second kind for each element ofz.

More About

collapse all

Bessel Function of the Second Kind

贝塞尔微分equation

z 2 d 2 w d z 2 + z d w d z + ( z 2 ν 2 ) w = 0

has two linearly independent solutions. These solutions are represented by the Bessel functions of the first kind,Jν(z), and the Bessel functions of the second kind,Yν(z):

w ( z ) = C 1 J ν ( z ) + C 2 Y ν ( z )

The Bessel functions of the second kind are defined via the Bessel functions of the first kind:

Y ν ( z ) = J ν ( z ) cos ( ν π ) J ν ( z ) sin ( ν π )

HereJν(z)are the Bessel function of the first kind:

J ν ( z ) = ( z / 2 ) ν π Γ ( ν + 1 / 2 ) 0 π cos ( z cos ( t ) ) sin ( t ) 2 ν d t

Tips

  • Calling贝斯lyfor a number that is not a symbolic object invokes the MATLAB®贝斯lyfunction.

    At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix,贝斯ly(nu,z)expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. “Bessel Functions of Integer Order.”Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.(M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.”Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.(M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

Version History

Introduced in R2014a