画像解析とは

画像解析とは,画像から基本要素を,统计的なデータを得る画像処理技術を指します。画像解析の対象となる分野は衛星写真、天文、工業/農業の出荷前検査、指紋認証、セキュリティカメラ、医用画像など多岐にわたります。

画像解析の一流的な定理

画像解析の流れ

画像解析における领域解析は特价范囲の数,面积,长さ,角度,形状のの计测等うういいいいいいいためためますためうためためをををををををセグメンテーションを行います。この処理は,全体画像の対象領域を1,対象領域以外の不要な部分を0の値にわけることから2値化とも言います。元の画像は様々な外乱を含んでいることがあるため,より良い解析結果を得るために,セグメンテーションのアルゴリズムを使い分けるだけでなく,その前後で画像の強調やモルフォロジー演算により対象部分を正確に取り出す作業を行います。

また最近では機械学習ディープラーニングを用いた画像認識なども画像解析に含まれるようになっています。ディープラーニングで得られる判断の柔軟性により、画像解析の応用分野はさらなる広がりを見せています

画像解析の技術と手法

ここでは一般的な画像解析で使われる处理技术を上述の流れに沿ってご绍介します。

1.画像の强调

画像の強調は輝度の調整やノイズの除去により,次に行うセグメンテーションの精度を向上させる作業です。

照度のの正

上の散らばったお米をセグメンテーションで取り出そうとしたとき,背景との明るさの違いに注目することができますが,左側の元画像を見ると画像の下部が上部と比べて暗くなっており,一つのしきい値でお米と背景を切り分けることが困難です。背景の明るさの分布を取りだし,補正をかけることで取出しが容易になります。

コントラスト调整

画像データは一般的に0-255の辉度阶调を持ちますます。使されるが狭い狭い场,视覚での解析难しい难しい,照度によるセグメンテーションでもわずかなしきい値ののでで结果结果大大が起こり行照度照度0-255に引き伸ばすで,详细な解析が行ます。その他,ヒストグラム解析の均等等化,ガンマ补正,基于のヒストグラムにささ

ブレ除去

画像にブレが生じている場合には,ブレをあらかじめ除去する必要があります。上画像ではウィーナーデコンボリューションを使用して,ブレの除去を行っています。その他にもブラインドデコンボリューションやルーシー・リチャードソン,正則化フィルターを使ったブレ除去手法があります。

ノイズ除去

画像分類や物体検出で使われることが多いディープラーニング手法である畳み込みニューラルネットワークを用词たノイズ除去ののありあります。

2.画像​​のセグメンテーション

画像から必要な領域を取り出すセグメンテーションで広く用いられている手法をご紹介します。必要な部分を1,不要な部分0とするマスクを作成するため2値化とも言われます。

しきい値処理によるセグメンテーション

最もシンプルなセグメンテーションは照度のしきい値を用いる方法で,ピクセルごとの照度の値の大きい/小さいで領域をわける手法です。任意の数値で指定する他に,画像全体からグローバルしきい値を算出する大津法や明るさが一様でない場合には適応的なしきい値を用いて,自動的にしきい値を計算する方法があります。

エッジ処理を用いた細胞の検出

こちらの画像では検出したい細胞が背景と比較して明るい部分と暗い部分が両方含まれます。このようなときには境界の照度変化に注目しエッジ検出を用いることで輪郭を得ることができます。エッジ検出にはソーベル法、キャニー 法、ガウスのラプラシアン (log)、プレウィット法、ロバーツ法、ゼロクロッシング法などがあります。

カラー画像の場合特定の色だけを関心領域として取り出す手法もよく使われます。RGBに特定の範囲を指定する方法や,明るさのばらつきを無視するために,L * a * b *やHSVといった別の色空間に変換してから色を区分することもあります。上の画像では細胞核の抽出を目的としてL * a * b *色空間に変換したうえで,色情報を表す*,b *レイヤーでのユークリッド距離を解析し,k - meansクラスタリングにより近い色の領域を抽出しています。

复がつながり大きなう対象にで正当にあり计ままううませ面积をううませんやをうセグメンテーションんやをうセグメンテーションんセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションセグメンテーションをううセグメンテーションん计をううんセグメンテーションをううをうませその画像うううませたたううううませたた画像ううううた画像うううううその画像ううううう画像うううううた画像画像画像ででたたます画像画像に画像画像画像た画像画像而来内で接触してているををするするがができます。游艇変换は,明显ピクセルを高度表面,暗いピクセルを低いとして扱うこと,イメージ内の“集水果(集水区)”と“流域の绕线(流域脊线)“を検出します。

輝度や色が共通の際,質感や模様の違いに注目するのがテクスチャのセグメンテーションです。上の写真では2種類の布地の種類の違いをランダム性の統計的尺度であるエントロピーの出力を用いたセグメンテーションを行っています。

ディープラーニングを使用したセマンティックセグメンテーション

ています。

3.モルフォロジー演算

セグメンテーションで2値値化れ结果の形状に対して行うの総称をモルフォロジー演算といいます。
最も基本的なモルフォロジー演算は“膨”張と”収縮”で,組み合わせにより穴の塗りつぶしを行うクローズ処理や細かいノイズの除去のオープン処理,トップハットフィルタ,ボトムハットフィルタなどがあります。

モルフォロジー演算による前立腺癌細胞の検出

上の画像では一般的なモルフォロジー演算の組み合わせで前立腺癌細胞の検出を行った例です。あらかじめ用意された2値化画像に対して1。穴を埋める,2。画像の境界と接する領域を削除,3。収縮処理によりノイズを削除する,の3ステップで全体像がうつった前立腺癌細胞だけを取り出しています。

4.領域解析

セグメンテーション,モルフォロジー処理を経て意図する領域を取り出した後,領域解析を行います。各ピクセル単位の輝度やRGB数値の確認,画像の要素をヒストグラム,平均,分散などの統計処理,また,切り出した領域に対して長さ,面積,向きといったプロパティを測定することなどが含まれます。

上の画像では画像から重心座標や面積を解析しています。

MATLABを使用した画像解析

1.豊富で高度な画像解析用関数群

MATLAB®は画像解析で用いる関数や例題を多数提供しています。

例えば上述のプロパティ解析例でも使われているのがregionprops関数です。2値化後の画像を入れて測定したい項目をプロパティで指定するだけで実に30以上の項目の測定が可能です。また、多くの関数からどの関数を組み合わせて使うべきか迷う場合には、例題を参照することで解析の流れを理解しながら処理を学ぶことができます。例題の一部を変更するだけで課題が解決するかもしれません。

2.初心者にやさしいアプリからのコード生成

さらに初心者の方も画像解析を気軽に取り組めるよう,処理ごとにアプリケーションを用意しており,マウス操作で決定したアルゴリズムをMATLABコードとして生成し,処理を自動化することができます。

こちらの動画では”色のしきい値”“イメージの領域解析“の二つのアプリを使い,マウスで行った操作をMATLABコードで出力することで画像から大きないちごだけを判別する処理を自動化しています。

他にも,R2017b時点で画像処理系だけで15以上のアプリが用意されており高度な処理の関数の詳細を知らなくても,マウス操作,MATLABコード生成の順で自動化に取り組むことができます。

3.機械学習やディープラーニングと画像解析を同一環境で

MATLABは20年以上かけて拡張されてきた画像処理系ライブラリに加え,近年話題のディープラーニングをはじめとする機械学習にも対応しています。画像の準備,学習,精度の検証まで最小で10行で行うことができるシンプルなフレームワークです。

ディープラーニングを行う际に前前定理,后解析においてにおいて画像は必须テクニックにになりなり画像にになりて画像テクニックになりててプラーニング械习习习プラーニングを同环境环境进め进められることはは环境环境进め进められるうう环境発でうううきなメリットとます。

以下のMATLAB製品群が,画像解析を強力にサポートします。