Main Content

雅可比SN

Jacobi SN elliptic function

Description

example

雅可比SN(u,m)returns theJacobi SN Elliptic Functionofuandm. Ifu或者mis an array, then雅可比SNacts element-wise.

Examples

collapse all

雅可比SN(2,1)
ans = 0.9640

Call雅可比SNon array inputs.雅可比SNacts element-wise whenu或者m是一个数组。

雅可比SN([2 1 -3],[1 2 3])
ans = 0.9640 0.6721 0.5773

Convert numeric input to symbolic form usingsym, and find the Jacobi SN elliptic function. For symbolic input whereu = 0或者m = 0或者1,雅可比SNreturns exact symbolic output.

雅可比SN(sym(2),sym(1))
ans = tanh(2)

Show that for other values ofu或者m,雅可比SN返回一个未评估的函数调用。

雅可比SN(sym(2),sym(3))
ans = jacobiSN(2, 3)

For symbolic variables or expressions,雅可比SNreturns the unevaluated function call.

syms x y f = jacobiSN(x,y)
f = jacobiSN(x, y)

Substitute values for the variables by using潜艇, and convert values to double by usingdouble.

f = subs(f, [x y], [3 5])
f = jacobiSN(3, 5)
fVal = double(f)
fVal = 0.0311

Calculatefto higher precision usingvpa.

fVal = vpa(f)
fVal = 0.031144778155397389598324170696454

Plot the Jacobi SN elliptic function usingfcontour. Setuon the x-axis andmon the y-axis by using the symbolic functionfwith the variable order(u,m). Fill plot contours by settingFilltoon.

symsf(u,m)f(u,m) = jacobiSN(u,m); fcontour(f,'Fill','on') title('Jacobi SN Elliptic Function')xlabel('u') ylabel('m')

Figure contains an axes object. The axes object with title Jacobi SN Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi SN Elliptic Function

The Jacobi SN elliptic function issn(u,m)= sin(am(am)u,m))whereamis the Jacobi amplitude function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods4K(m)and4iK'(m), whereKis the complete elliptic integral of the first kind, implemented asellipticK.

Introduced in R2017b